【0001】
【発明の属する技術分野】
本発明は、高速信号(光伝送)と低速信号(電気伝送)を光電気複合ケーブルにより伝送する光電気複合通信システムに用いられる、光信号供給用光源の光量調整装置に関する。
【0002】
【従来の技術】
図4に従来の光信号により高速にデータを伝送する光通信システムにおける光信号を伝送する光源の光信号制御装置の構成を示す。
光信号制御装置は、光送信用光源(LD:レーザダイオード)10−1からの光信号を送信する光送信部10と、光送信部10に対し隔離して設けられる光受信部13から構成される。
光受信部13は、光送信用光源10−1からの光信号を光ファイバ11を介して受信する第1光検出部(PD:フォトダイオード)13−1を備えている。第1制御部10−3は光送信部10(あるいは光受信部13)に設けられ、光受信部13の第1光検出部13−1で検出された光検出情報に基づいて光送信用光源10−1からの光信号の状態を制御するための光制御信号を出力する。また、光送信部10は、光送信用光源10−1の発光状態を検出する第2光検出部10−5を備え、検出された光検出情報に基づいて光送信用光源10−1からの光信号の状態を制御するための光制御信号を出力する第2制御部10−6及びスイッチ部10−2を備える。光受信部13に設けられた第1光検出部13−1と光送信部10に設けられた第1制御部10−3は制御線12を介して接続される。スイッチ部10−2は、第1制御部10−3からの光制御信号及び第2制御部10−6からの光制御信号のうち、光送信用光源10−1からの光信号レベルが小さくなるような光制御信号を光送信用光源10−1側へ選択的に出力する。
【0003】
これにより、第1制御部10−3において、光受信部13の第1光検出部13−1で検出された光検出情報に基づいて光送信用光源10−1からの光信号の状態を制御するための第1光制御信号を生成する一方、光送信部10の第2制御部10−6において、光送信用光源10−1の発光状態に基づいて光送信用光源10−1からの光信号の状態を制御するための第2光制御信号を生成し、スイッチ部10−2では、第1光制御信号及び第2光制御信号のうち、光送信用光源10−1からの光信号レベルが小さくなるような光制御信号を光送信用光源10−1側へ選択的に出力する。
第1光検出部13−1は、受信した光信号をアナログ信号として検出するPDを有し、光受信部13には第1光検出部13−1からの検出信号としてのアナログ電気信号についてデジタル電気信号に変換して光送信部10に出力するA/D変換部13−2を備える一方、光送信部10は制御線12を介してA/D変換部13−2から入力されたデジタル信号をアナログ信号に変換するD/A変換部10−4を備え、変換されたアナログ信号が第1制御部10−3に入力される。
【0004】
上記構成を備えることにより、第1光検出部13−1で受信した光検出情報に基づいて光送信用光源10−1からの光信号の状態を制御することにより、例えば周囲温度の変化等によらずに光検出部13−1の受信光レベルを一定に制御することができる。また、制御線12のコネクタ接続が外された場合等、第1制御部10−3に入力される電気信号のレベルが低下するので、第1光検出部13−1で検出される光検出情報が低くなったと認識され、光送信用光源10−1の発光量を増加させるように制御する(すなわち、LDに大きな電流を流すように制御する)ために信頼性を低下させる恐れがある。このようなことを防止するために第2制御部10−6は、光送信用光源10−1の発光状態を検出する第2光検出部10−5で検出された光検出情報により光送信用光源10−1からの光信号に状態を制御するための第2光制御信号を生成し、スイッチ部10−2では光送信用光源10−1からの光信号レベルが小さくなるように第1、第2制御部10−3、10−6からの光制御信号を選択的に出力する。(例えば、特許文献1 参照)
【0005】
従来の光信号制御装置において、光送信用光源(LD)10−1の発光量P0[dBm]は光ファイバ11の単位長当たりの伝送路損失:減衰量D[dB/km]と光受信部13の第1光検出部13−1の最大/最小受光量Pimin/Pimax[dBm]から最小受光量Piminに所望伝送路損失または伝送距離:Lmax[km]から発光量を式(1)の様に算出し、発光量を決定し、この光量が得られる様にレーザダイオードのドライブ電流を調整している。
P0=Pimin+D・L (1)
通常の光伝送モジュールでは最大伝送距離または許容損失を仕様として発光量を決めている。この発光量調整では伝送距離がLmax以下で使用される場合、必要以上の発光量(ドライブ電流)となり余分な消費電流によりドライブされていることになる。消費電流の増大は発光素子(LD)寿命を短くしてしまう。また、余分な消費電流を削減するためには伝送距離に応じて発光素子(LD)ドライブ電流を個別に調整することでも達成可能であるが、この場合は個別調整による製造コスト増大を招くことになる。
【0006】
伝送距離に応じて発光素子(LD)の発光量を調整する場合、図4に示されたように第1光検出部(PD)13−1で受光量を測定し、その情報を制御線12を介して光送信部10に送信し、発光素子(LD)ドライブ電流を調整することでも発光量の自動調整が可能となるが光受信部13から光送信部10へ光制御信号(光量情報)を伝送するための手段、例えばA/D変換部、D/A変換部、コーデック等が必要であり、また、伝送ラインでの伝送符号、伝送形式が規定されている場合、光量情報を伝送することは困難となる。
また、制御線12のコネクタ接続が外された場合、発光素子を保護するために第2光検出部10−5、第2制御部10−6、スイッチ部10−2が必要となり、構成が複雑となる。
【0007】
【特許文献1】
特開平9−116982号公報(図1,(0017)〜(0021))
【0008】
【発明が解決しようとする課題】
本発明は、伝送モジュール間でケーブル長が異なる場合であっても光信号供給用光源の発光量を個別調整する必要がなく、しかも簡単な構成によりケーブル長(伝送損失)の違いによる受光量の差を少なくして安定した伝送状態を確保するとともに、発光素子への供給電流を最適化して長寿命化を図る光電気通信システムの用いられる光信号供給用光源の光量調整装置を提供する。
【0009】
【課題を解決するための手段】
上記課題を解決するために、本発明は、光伝送のための光ファイバと電気伝送のための電線の両方で構成され、マスター側、スレーブ側機器の接続ステータスを検知するために直流電圧が印加されるステータスラインが具有される光電気複合ケーブルで機器間が接続される光電気複合通信システムに用いられる光信号供給用光源の光量調整装置であって、前記ステータスラインに印加される電圧のマスター側への折り返しにおける電圧降下と電線の単位長さの抵抗値とから算出されるケーブル長と、光ファイバの単位長さの伝送損失とに基づいて前記機器間の光ファイバの損失を求めて伝送損失分を補償する様に光信号供給用光源の発光量を制御する光量調整手段を備えたことを特徴とする。
【0010】
【発明の実施の形態】
図1に本発明の光伝送用光源の光量調整装置を適用した光電気複合ケーブルを用いた光電気複合通信システムの構成例を示す。
光電気複合通信システムは、高速信号(光伝送)、低速信号(電気伝送)を送受信するマスター側装置1、マスター側モジュール2と、高速信号(光伝送)、低速信号(電気伝送)を送受信するスレーブ側モジュール4、スレーブ側装置5と、高速信号を伝送する光ファイバ3−1、低速信号を伝送する電線3−2からなる光電気複合ケーブル3とから構成される。
マスター側モジュール2は、高速信号を光信号に変換するLD(レーザダイオード)ドライバ2−11、LD2−12からなるE/O変換器2(図2(a)参照)と抵抗測定回路2−2(図2(b)参照)から構成され、スレーブ側モジュール4は、光ファイバを介して伝送された光信号を電気信号に変換するPD(フォトダイオード)と増幅器からなるO/E変換器4−1を備える。
【0011】
図1において、マスター側モジュール2とスレーブ側モジュール4からなる光電気伝送モジュールにおいて主に低速信号を伝送するための電気信号の伝送のための電線3−2の抵抗値R[Ω]は式(2)によって表される。
R[Ω]=r[Ω/km]・L[km] (2)
例えば、AWG(American Wire Gauge)28番線ではr=228Ω/kmである。図1の電気伝送ライン:Elec.1+に規定の直流電圧を加え、スレーブ側でその電圧をElec.2+のラインを用いて返送すると、回路抵抗値(すなわち、電線の抵抗値)と返送された信号Elec.2+のマスター側入力抵抗値が既知であれば図2(b)に示すDC差動増幅器2−21によりElec.1+とElec.2+の電位差を測定し、演算回路2−22により電位差とマスター側入力抵抗値を元に往復の電線の抵抗2・Rが導かれ電線の単位長当たりの抵抗値をr[Ω/km]とすると(3)式によりケーブル長Lを知ることができる。
L=R/(2・r)[km] (3)
このケーブル長Lから光ファイバの伝送損失Dl[dB]を求め、伝送損失Dlから必要な発光量は
P0=Pi min+Dl (4)
となり、この発光量が得られる発光素子(LD)ドライブ電流を図2(a)のLDドライブ電流調整端子に印加し適正な発光量P0を得ることができる。
また、低速信号ライン(電線)のコネクタ接続の外れ(あるいは電線の切断)等によりマスター側に返送されたElect.2+の電圧が異常に低下した場合には、予め設定した閾値と比較し、閾値以下であれば発光素子ドライブ電流を抑えることにより発光素子の損傷を防ぐことができる。
【0012】
図3にパーソナルコンピュータ(PC)−モニター(Monitor)間の代表的な伝送規格であるDDWG(Digital Display Working Group)−DVI(Digital Visual Interface)規格の光電気複合ケーブルを用いた光電気通信システムに本発明の光信号供給用光源の光量調整装置を適用した例を示す。
DVI規格では高速の画像信号をPC(マスター側装置)からモニター(スレーブ側装置)に伝送し、更にDDC(デイスプレイ側の情報をシステムに送るための規格)と呼ばれるPC−モニター間の低速伝送ラインを持っている。DDC伝送ラインではPCから+5V、DDCクロック、DDCデータ、またモニターからは+5Vの折り返し信号であるHot Plug Detectの4本の信号ライン及びGroundの合わせて5本のラインを持っている。DVI規格の場合は、この+5Vラインがステータス(システムの状態)ラインであり、Hot Plug Detect(ホットプラグ:システムが通電された状態のまま電気機器を装着する行為)がその折り返しラインである。
伝送ケーブル長を知るために+5V信号ラインとHot Plug Detect信号間の電圧を図2(b)に示す抵抗測定回路2−2を用いて電線抵抗値を測定し、高速画像信号伝送用の光信号伝送に使用する発光素子のドライブ電流を、そのケーブル長に応じて自動調整し消費電力の低減、発光素子寿命の延長を図ることが可能となる。(図3のT.M.D.Sはディスプレイとアクセラレータ間の接続用規格を表す。)
上記実施例ではPC−モニター間の光電気複合通信システムについて説明したが、ステータスラインを含むあらゆる光電気複合通信システムに適用することができる。
【0013】
【発明の効果】
本発明は、光電気複合ケーブルに内装される電線の抵抗値から伝送距離を計算し、これに対する光ファイバの光伝送損失に応じた発光素子の発光量を自動的に得ることができることから、
(1)伝送距離の違いによる光伝送用光源の発光量の個別調整をすること無しに不要な消費電流を削減することができる。
(2)伝送に必要十分な電流で発光素子をドライブすることができ発光素子の長寿命化を図ることができる。
【図面の簡単な説明】
【図1】本発明の光信号供給用光源の光量調整装置を適用した光電気複合ケーブルを用いた光電気通信システムの構成例を示す図。
【図2】図1の光電気通信システムにおける(a)E/O変換器と(b)抵抗測定回路の構成例を示す図。
【図3】本発明の光信号供給用光源の光量調整装置を適用したDDWG−DVI規格の光電気複合ケーブルを用いた光電気通信システムの構成例を示す図。
【図4】従来の光信号制御装置の構成を示す図。
【符号の説明】
1・・・マスター側装置
2・・・マスター側モジュール
2−1・・・E/O変換器、2−2・・・抵抗測定回路
3・・・光電気複合ケーブル
4・・・スレーブ側モジュール
4−1・・・O/E変換器
5・・・スレーブ側装置[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light amount adjusting device for a light source for supplying an optical signal, which is used in an optical-electrical hybrid communication system for transmitting a high-speed signal (optical transmission) and a low-speed signal (electrical transmission) via an optical-electrical composite cable.
[0002]
[Prior art]
FIG. 4 shows a configuration of an optical signal control device of a light source for transmitting an optical signal in a conventional optical communication system for transmitting data at a high speed by an optical signal.
The optical signal control device includes an optical transmission unit 10 that transmits an optical signal from an optical transmission light source (LD: laser diode) 10-1 and an optical reception unit 13 that is provided separately from the optical transmission unit 10. You.
The light receiving unit 13 includes a first light detecting unit (PD: photodiode) 13-1 that receives an optical signal from the light source for light transmission 10-1 via the optical fiber 11. The first control unit 10-3 is provided in the light transmission unit 10 (or the light reception unit 13), and based on the light detection information detected by the first light detection unit 13-1 of the light reception unit 13, a light source for light transmission. An optical control signal for controlling the state of the optical signal from 10-1 is output. Further, the light transmitting unit 10 includes a second light detecting unit 10-5 for detecting a light emitting state of the light transmitting light source 10-1, and based on the detected light detection information, the second light detecting unit 10-5 outputs the light from the light transmitting light source 10-1. A second control unit 10-6 that outputs an optical control signal for controlling the state of the optical signal and a switch unit 10-2 are provided. The first light detection unit 13-1 provided in the light reception unit 13 and the first control unit 10-3 provided in the light transmission unit 10 are connected via a control line 12. The switch unit 10-2 reduces the optical signal level from the optical transmission light source 10-1 among the optical control signal from the first control unit 10-3 and the optical control signal from the second control unit 10-6. Such an optical control signal is selectively output to the optical transmission light source 10-1.
[0003]
Accordingly, the first control unit 10-3 controls the state of the optical signal from the light source for light transmission 10-1 based on the light detection information detected by the first light detection unit 13-1 of the light reception unit 13. While the first light control signal is generated, the second control unit 10-6 of the light transmission unit 10 controls the light from the light transmission light source 10-1 based on the light emission state of the light transmission light source 10-1. A second optical control signal for controlling the state of the signal is generated, and the switch unit 10-2 generates an optical signal level from the optical transmission light source 10-1 among the first optical control signal and the second optical control signal. Is selectively output to the light source for light transmission 10-1.
The first light detection unit 13-1 has a PD that detects a received optical signal as an analog signal, and the light reception unit 13 has a digital signal for an analog electric signal as a detection signal from the first light detection unit 13-1. An A / D converter 13-2 for converting the signal into an electric signal and outputting the converted signal to the optical transmitter 10 is provided, while the optical transmitter 10 includes a digital signal input from the A / D converter 13-2 via the control line 12. And a D / A conversion unit 10-4 for converting the analog signal into an analog signal. The converted analog signal is input to the first control unit 10-3.
[0004]
With the above configuration, by controlling the state of the optical signal from the optical transmission light source 10-1 based on the optical detection information received by the first optical detection unit 13-1, for example, a change in the ambient temperature, etc. The received light level of the light detection unit 13-1 can be controlled to be constant without depending on it. In addition, when the connector connection of the control line 12 is disconnected or the like, the level of the electric signal input to the first control unit 10-3 decreases, so that the light detection information detected by the first light detection unit 13-1 Is reduced, and control is performed so as to increase the light emission amount of the optical transmission light source 10-1 (that is, control is performed so that a large current flows through the LD), which may reduce reliability. In order to prevent such a situation, the second control unit 10-6 uses the light detection information detected by the second light detection unit 10-5 that detects the light emission state of the light transmission light source 10-1 to control the light transmission. A second optical control signal for controlling the state is generated in response to the optical signal from the light source 10-1, and the first and second switch units 10-2 reduce the optical signal level from the optical transmission light source 10-1 so as to reduce the level. Light control signals from the second control units 10-3 and 10-6 are selectively output. (For example, see Patent Document 1)
[0005]
In the conventional optical signal control device, the light emission amount P 0 [dBm] of the optical transmission light source (LD) 10-1 is represented by a transmission path loss per unit length of the optical fiber 11: attenuation D [dB / km] and optical reception. maximum / minimum light receiving quantity P i min / P i max [ dBm] desired transmission line loss or transmission to the minimum light receiving quantity P i min from the distance of the first optical detector 13-1 parts 13: light emission amount from Lmax [miles] Is calculated as in equation (1), the light emission amount is determined, and the drive current of the laser diode is adjusted so as to obtain this light amount.
P 0 = P i min + D · L (1)
In an ordinary optical transmission module, the amount of light emission is determined by using the maximum transmission distance or the permissible loss as a specification. In this light emission amount adjustment, when the transmission distance is used at Lmax or less, the light emission amount (drive current) becomes more than necessary, and the drive is performed with extra current consumption. The increase in current consumption shortens the life of the light emitting element (LD). Further, in order to reduce the excess current consumption, it can be achieved by individually adjusting the light emitting element (LD) drive current according to the transmission distance. However, in this case, the manufacturing cost increases due to the individual adjustment. Become.
[0006]
When adjusting the light emission amount of the light emitting element (LD) according to the transmission distance, the light reception amount is measured by the first photodetector (PD) 13-1 as shown in FIG. It is also possible to automatically adjust the light emission amount by transmitting the light to the light transmission unit 10 via the optical transmission unit 10 and adjusting the drive current of the light emitting element (LD). However, the light control signal (light amount information) is transmitted from the light reception unit 13 to the light transmission unit 10. For example, an A / D converter, a D / A converter, a codec and the like are required, and when a transmission code and a transmission format on a transmission line are specified, light amount information is transmitted. It becomes difficult.
Further, when the connector connection of the control line 12 is disconnected, the second light detection unit 10-5, the second control unit 10-6, and the switch unit 10-2 are required to protect the light emitting element, and the configuration is complicated. It becomes.
[0007]
[Patent Document 1]
JP-A-9-116982 (FIGS. 1, (0017) to (0021))
[0008]
[Problems to be solved by the invention]
The present invention eliminates the need to individually adjust the light emission amount of the light source for supplying an optical signal even when the cable length differs between transmission modules, and has a simple configuration to reduce the light reception amount due to the difference in cable length (transmission loss). Provided is a light amount adjusting device for a light source for supplying an optical signal, which is used in an opto-electrical communication system in which a difference is reduced and a stable transmission state is ensured, and a current supplied to a light emitting element is optimized and a life is extended.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the present invention comprises both an optical fiber for optical transmission and a wire for electric transmission, and a DC voltage is applied to detect a connection status of a master side device and a slave side device. A light amount adjusting device of a light source for supplying an optical signal used in an optical-electrical composite communication system in which devices are connected by an optical-electrical composite cable having a status line to be connected, wherein a master of a voltage applied to the status line is provided. The cable length calculated from the voltage drop and the resistance value of the unit length of the electric wire at the return to the side, and the loss of the optical fiber between the devices is determined based on the transmission loss of the unit length of the optical fiber and transmitted. A light amount adjusting means for controlling the light emission amount of the light source for supplying an optical signal so as to compensate for the loss is provided.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an example of a configuration of an optical-electrical composite communication system using an optical-electrical composite cable to which the light amount adjusting device for an optical transmission light source of the present invention is applied.
The opto-electric hybrid communication system transmits and receives a high-speed signal (optical transmission) and a low-speed signal (electric transmission) to and from a master device 1 and a master module 2 that transmit and receive a high-speed signal (optical transmission) and a low-speed signal (electric transmission). It comprises a slave-side module 4, a slave-side device 5, an optical fiber 3-1 for transmitting a high-speed signal, and an opto-electric composite cable 3 composed of an electric wire 3-2 for transmitting a low-speed signal.
The master module 2 includes an E / O converter 2 (see FIG. 2A) including an LD (laser diode) driver 2-11 and an LD 2-12 for converting a high-speed signal into an optical signal, and a resistance measuring circuit 2-2. The slave module 4 is composed of a PD (photodiode) for converting an optical signal transmitted through an optical fiber into an electric signal, and an O / E converter 4 including an amplifier. 1 is provided.
[0011]
In FIG. 1, in a photoelectric transmission module including a master module 2 and a slave module 4, a resistance value R [Ω] of an electric wire 3-2 mainly for transmitting an electric signal for transmitting a low-speed signal is expressed by the following equation. 2).
R [Ω] = r [Ω / km] · L [km] (2)
For example, in an AWG (American Wire Gauge) No. 28 line, r = 228Ω / km. The electric transmission line of FIG. 1+, a specified DC voltage is applied to the slave side, and the voltage is set to Elec. 2+ line, the circuit resistance (ie, the resistance of the wire) and the returned signal Elec. 2+ is known by the DC differential amplifier 2-21 shown in FIG. 1+ and Elec. The potential difference of 2+ is measured, and the arithmetic circuit 2-22 derives the resistance 2 · R of the reciprocating electric wire based on the electric potential difference and the master-side input resistance value. The resistance value per unit length of the electric wire is r [Ω / km]. Then, the cable length L can be known from the equation (3).
L = R / (2 · r) [km] (3)
The transmission loss Dl [dB] of the optical fiber is obtained from the cable length L, and the required light emission amount is P 0 = P i min + Dl from the transmission loss Dl (4)
Next, a light emitting element (LD) drive current the light emission amount can be obtained can be obtained LD drive current is applied to the adjustment terminal proper emission amount P 0 of FIG. 2 (a).
In addition, Elect. Returned to the master side due to disconnection of the connector of the low-speed signal line (wire) (or disconnection of the wire) or the like. When the voltage of 2+ drops abnormally, the light emitting element can be prevented from being damaged by comparing with a preset threshold value and, if the voltage is equal to or less than the threshold value, suppressing the light emitting element drive current.
[0012]
FIG. 3 shows a photoelectric transmission system using an optical / electrical composite cable of DDWG (Digital Display Working Group) -DVI (Digital Visual Interface) which is a typical transmission standard between a personal computer (PC) and a monitor (Monitor). 1 shows an example in which the light amount adjusting device for a light source for supplying an optical signal of the present invention is applied.
In the DVI standard, a high-speed image signal is transmitted from a PC (master side device) to a monitor (slave side device), and a low-speed transmission line between a PC and a monitor called DDC (standard for transmitting display side information to a system). have. The DDC transmission line has five signal lines including +5 V from the PC, DDC clock, DDC data, and four signal lines of Hot Plug Detect, which is a +5 V return signal from the monitor, and Ground. In the case of the DVI standard, this + 5V line is a status (system state) line, and Hot Plug Detect (hot plug: an act of mounting an electric device while the system is energized) is a return line.
In order to know the length of the transmission cable, the voltage between the + 5V signal line and the Hot Plug Detect signal is measured using a resistance measuring circuit 2-2 shown in FIG. The drive current of the light emitting element used for transmission is automatically adjusted according to the cable length, so that it is possible to reduce power consumption and extend the life of the light emitting element. (TMDS in FIG. 3 represents a connection standard between the display and the accelerator.)
In the above embodiment, the description has been given of the opto-electric hybrid communication system between the PC and the monitor. However, the present invention can be applied to any opto-electric hybrid communication system including the status line.
[0013]
【The invention's effect】
The present invention calculates the transmission distance from the resistance value of the electric wire housed in the photoelectric composite cable, and can automatically obtain the light emission amount of the light emitting element according to the optical transmission loss of the optical fiber with respect to this.
(1) Unnecessary current consumption can be reduced without individually adjusting the light emission amount of the optical transmission light source due to the difference in transmission distance.
(2) The light emitting element can be driven with a current sufficient and sufficient for transmission, and the life of the light emitting element can be extended.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration example of an optoelectronic communication system using an optoelectric composite cable to which an optical signal supply light source adjusting device of the present invention is applied.
FIG. 2 is a diagram showing a configuration example of (a) an E / O converter and (b) a resistance measurement circuit in the photoelectric communication system of FIG.
FIG. 3 is a diagram showing a configuration example of a photoelectric communication system using a photoelectric composite cable conforming to the DDWG-DVI standard to which the light amount adjusting device for a light source for supplying an optical signal according to the present invention is applied.
FIG. 4 is a diagram showing a configuration of a conventional optical signal control device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Master side apparatus 2 ... Master side module 2-1 ... E / O converter 2-2 ... Resistance measuring circuit 3 ... Photoelectric composite cable 4 ... Slave side module 4-1 O / E converter 5 slave device