JP2004179080A - Fuel supply device of fuel cell - Google Patents

Fuel supply device of fuel cell Download PDF

Info

Publication number
JP2004179080A
JP2004179080A JP2002346335A JP2002346335A JP2004179080A JP 2004179080 A JP2004179080 A JP 2004179080A JP 2002346335 A JP2002346335 A JP 2002346335A JP 2002346335 A JP2002346335 A JP 2002346335A JP 2004179080 A JP2004179080 A JP 2004179080A
Authority
JP
Japan
Prior art keywords
hydrogen
fuel cell
valve
pressure
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002346335A
Other languages
Japanese (ja)
Other versions
JP3916150B2 (en
Inventor
Minoru Uoshima
稔 魚嶋
Tomoki Kobayashi
知樹 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002346335A priority Critical patent/JP3916150B2/en
Priority to US10/723,622 priority patent/US7282286B2/en
Publication of JP2004179080A publication Critical patent/JP2004179080A/en
Application granted granted Critical
Publication of JP3916150B2 publication Critical patent/JP3916150B2/en
Priority to US11/805,182 priority patent/US7910254B2/en
Priority to US13/023,270 priority patent/US8142947B2/en
Priority to US13/370,929 priority patent/US8288044B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently remove an impure gas which stays in a hydrogen electrode space while a system is left standing, before the power generation of a fuel cell system is started. <P>SOLUTION: A hydrogen tank 3 is connected to the hydrogen electrode 2A of the fuel cell 2 via a hydrogen supply passage 4, and a hydrogen shut-off valve 6 is provided in this hydrogen supply passage 4. A hydrogen-circulating passage 4A is provided in the hydrogen supply passage 4, and an unused hydrogen, which does not contribute to the generation of the fuel cell 2, is circulated to the fuel cell 2 and is recycled. A pressure sensor 9 for detecting the pressure of the hydrogen, flowing from the hydrogen tank 3 to the fuel cell 2 at the inlet side of the hydrogen electrode 2A, is provided at the hydrogen-circulating passage 4A. The time, from the valve-opening starting time of the hydrogen shut-off valve 6 to the valve-opening starting time of a hydrogen purge valve 10 is set, in response to the detected value by the pressure sensor 9. When this time has elapsed, the pressure of the inlet side of the hydrogen electrode 2A is considered to have risen to "atmospheric pressure + several kPas", and the hydrogen purge valve 10 is opened. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は、例えば電気自動車の動力源となる燃料電池に水素を供給する燃料電池の燃料供給装置に関する。
【0002】
【従来の技術】
電気自動車(以下、車両という)の動力源となる燃料電池システムの起動に際しては、水素タンクからの水素を燃料電池の水素極空間に供給し、水素の圧力を所定の圧力まで到達させた後、発電を開始させる方法が知られている。即ち、燃料電池システムは、燃料電池の水素極の上流側に水素遮断弁(水素供給口)、下流側に水素パージ弁(水素排出口)を設ける構成となっており、燃料電池システムの起動時には、水素パージ弁を閉弁して水素遮断弁を開弁し、この状態で燃料電池システムの水素極空間に水素を供給し、水素の圧力が予め決められた所定の圧力まで到達した後に発電を開始させ、発電効率を高めるようにしている。
【0003】
また、このような水素を燃料とする場合、燃料電池システムを構成する燃料電池スタックへの水素供給は、その利用効率を上げる(燃費を良くする)ために循環系を採用している(例えば、特許文献1参照)。循環方式としては、水素を加圧するブロア、負圧を発生させて水素を吸引するエジェクタ、水素ポンプ等を利用する。これにより、燃料電池での発電に寄与しなかった未利用の水素を燃料電池に循環させ、燃費の向上を図っている。
【0004】
【特許文献1】
特開平6−275300号公報(第4頁、図1)
【0005】
【発明が解決しようとする課題】
ところで、前記従来技術では、燃料電池システムを長時間(例えば一晩停止しておくような場合)停止した後は、停止後の時間の経過に伴って水素極側に空気等の不純ガスが徐々に侵入し、水素極の水素濃度が低下する事態が生じる。
【0006】
このような不具合を解消するために、発電開始前に予め水素パージ弁を開弁して水素と一緒に不純物を外部に排出しておく方法が考えられる。しかし、燃料電池システムの停止後の経過時間と大気圧の変動の如何によっては、逆に水素極内の圧力が大気圧以下となる場合も考えられ、この場合には、不純ガスの排出どころか水素極側に不純物が逆流してしまうこともあり、燃料電池システムの信頼性が低下するという問題がある。即ち、燃料電池の発電を停止したときに、燃料電池のガス通路内に水素が残留するが、クロスリークにより固体高分子膜を通して水素極から空気極へと水素が透過し、空気極の電極上で反応するため、水素極内に残留する水素ガスが消費されていき、水素極のガス圧が低下する。水素極には水素しか存在しないため、発電消費が進むと、場合によっては大気圧より低下することがあり、この状態で燃料電池を再始動したときに水素パージ弁を開くと、大気を吸い込む(逆流する)虞れがあった。つまり、従来技術はこのような問題点に対する配慮がなされていなかった。
【0007】
そこで、本発明は、燃料電池システムでの発電開始前において、システム放置中に内部(水素極空間)に滞留している不純ガス(空気)を効率的に排除し、高濃度な水素に置換することで、燃料電池システムの起動(発電開始)を円滑に行えるようにした燃料電池の燃料供給装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
前記の課題を解決する本発明による燃料電池の燃料供給装置は、燃料電池に供給する水素を蓄える水素タンクと、前記水素タンクと燃料電池との間を流通、遮断する水素遮断弁と、前記燃料電池での発電に寄与しなかった未利用の水素を燃料電池に循環させる水素循環路と、前記水素遮断弁の下流側に位置し前記水素循環路内の水素をパージする水素パージ弁とを有している。
【0009】
そして、請求項1に記載の発明が採用する構成の特徴は、前記水素遮断弁の開弁時に、前記燃料電池の水素極の圧力を検出する圧力検出手段と、前記圧力検出手段の検出値に応じて水素パージ弁の開弁開始時間を設定する開弁開始時間設定手段とを備えたことにある。
【0010】
このように構成した場合、圧力検出手段により、水素遮断弁の開弁時に燃料電池の水素極の圧力を検出できるので、この圧力検出手段の検出値に応じて水素パージ弁の開弁開始時間を設定することができる。これにより、水素循環路内への空気等の不純ガスの逆流を防止でき、水素循環路内の水素のパージを円滑に行うことができる。
【0011】
また、請求項2に記載の発明が採用する構成の特徴は、燃料電池の水素極の圧力を検出する圧力検出手段と、
前記圧力検出手段の検出値が所定値以上か否かを判定する判定手段と、
前記水素遮断弁の開弁後に、前記圧力検出手段の検出値が所定値以上になった時、水素パージ弁の開弁を行う水素パージ弁開弁手段とを備えたことにある。
【0012】
このように構成した場合、圧力検出手段により、水素遮断弁の開弁時に燃料電池の水素極の圧力を検出できるので、判定手段により圧力検出手段の検出値が所定値以上か否かを判定することができる。そして、圧力検出手段の検出値が所定値以上のときには、水素パージ弁開弁手段により水素パージ弁の開弁を行うことができ、水素循環路内の水素のパージを円滑に行うことができる。従って、水素循環路内への空気等の不純ガスの逆流を阻止することができる。
【0013】
【発明の実施の形態】
(第1の実施の形態)
本発明の第1の実施の形態による燃料電池の燃料供給装置を、図面を参照して詳細に説明する。
【0014】
図1は本実施の形態による燃料供給装置の構成を示す構成図であり、図2は燃料供給制御装置による制御のフローチャートである。また、図3は水素極入口圧力と水素パージ弁開弁開始時間との関係を示す特性線図であり、図4は水素極入口圧力、水素遮断弁及び水素パージ弁の関係を示すタイムチャートである。
【0015】
図1に示すように、燃料供給装置1は、燃料電池2に供給する燃料である水素を蓄える水素タンク3と、この水素タンク3と燃料電池2の水素極2Aとの間を接続する水素供給路4と、空気を燃料電池2の空気極2Bに供給する空気供給路5とを備えている。
【0016】
ここで、水素供給路4の上流側には水素遮断弁6が設けられ、この水素遮断弁6は、常時は閉弁状態におかれ、燃料電池2の水素極2Aと水素タンク3との間を遮断している。そして、水素遮断弁6に対して後記するECU13からの信号が入力されたときに、水素遮断弁6は開弁し、図示しないレギュレータを介して燃料電池2と水素タンク3との間を流通させる。
【0017】
また、水素供給路4は水素循環路4Aを有し、この水素循環路4Aは、燃料電池2での発電に寄与しなかった未利用の水素を燃料電池2に循環させて再利用するものである。そして、水素循環路4Aには、水素循環路4A内の水素を図1中の矢印方向へと加圧する水素ポンプ7と、水素供給路4内に負圧を発生させて水素タンク3から水素を吸引するエジェクタ8と、水素タンク3から燃料電池2に流入する水素の圧力を水素極2Aの入口側で検出する圧力検出手段となる圧力センサ9とが設けられている。なお、水素ポンプ7またはエジェクタ8のいずれか一方を省略する構成としてもよい。また、水素ポンプ7とエジェクタ8を水素循環路4Aに直列に設けたが、並列に設けるようにしてもよい。
【0018】
さらに、この水素供給路4には、水素遮断弁6の下流側に位置して水素循環路4A内の水素をパージする水素パージ弁10が設けられている。この水素パージ弁10は、常時は閉弁状態におかれると共に、ECU13からの信号が入力されたときには開弁し、水素循環路4内の水素をパージするものである。
【0019】
一方、空気供給路5には空気を燃料電池2の空気極2Bに向けて送風するスーパチャージャ11と、空気供給路5内を流通する空気等の圧力を調整する圧力調整弁12とが設けられている。この圧力調整弁12は常時は閉弁状態におかれ、ECU13からの信号が入力されたときには開弁するものである。
【0020】
次に、燃料供給装置1の制御を行う燃料供給制御装置となるECU(Electrical Control Unit)13の制御について、図2、図3を参照して説明する。
【0021】
まず、図2のステップ1でイグニッションスイッチ14(図1参照)がONであるか否かを判定し、ONである場合(Yes)にはステップ2に進み、OFFである場合(No)にはステップ1に戻り、処理を繰り返す。
【0022】
次に、ステップ2では、水素遮断弁6を開弁させると共に水素ポンプ7を作動させ、水素タンク3からの水素を水素供給路4を介して燃料電池2の水素極2Aに供給する。また、スーパチャージャ11を作動させると共に、圧力調整弁12を開弁させ、空気を空気供給路5を介して燃料電池2の空気極2Bに供給し、ステップ3に移る。
【0023】
ステップ3では、圧力センサ9により水素極2Aの入口側における水素の圧力P1を検出する。つまり、圧力センサ9は、イグニッションスイッチ14をONとし、反応ガスが燃料電池2の水素極2A内に供給される前の圧力、即ち発電停止時の水素極2Aの圧力を検出する。ここで、ECU13は、図3に示す特性線図を有し、この特性線図に基づいて、水素の圧力P1に応じた所定時間(開弁開始時間)T1を算出する。この特性線図では、後記するように水素循環路4A内への不純ガスの逆流等を防止するため、水素の圧力P1が小さい程、水素遮断弁6の開弁開始時間が長くなるように設定してある。そして、ECU13は、圧力センサ9による検出値(圧力P1)に応じて、水素遮断弁6の開弁開始時刻から水素パージ弁10の開弁開始時刻までの時間T1(図4参照)を設定する開弁開始時間設定手段を有している。
【0024】
次に、ステップ4では、水素遮断弁6を開弁してから所定時間T1が経過したか否かを判定する。所定時間T1が経過したときには(Yes)、水素の圧力P1が「大気圧+数kPa」まで上昇しているものとみなし(図4参照)、ステップ5に移る。所定時間T1が経過していないときには(No)、水素の圧力P1が「大気圧+数kPa」まで到達していないものとみなし、ステップ4の処理を繰り返す。
【0025】
そして、最後にステップ5では、水素パージ弁10をタイマ(図示せず)等を用いて予め決められた所定時間T2(図4参照)だけ開弁状態に保持し、この間に、水素循環路4A内の水素をパージし、処理を終了する。
【0026】
このように、本実施の形態では、図4に示すように、燃料電池2による発電開始前において、水素極入口圧力(P1)が予め「大気圧+数kPa」となった状態で、水素パージ弁10による水素循環路4A内の水素パージを行うことができ、水素循環路4A内への空気等の不純ガスの逆流等を防止でき、水素循環路4A内の水素のパージを円滑に行うことができる。
【0027】
従って、発電開始前において、燃料電池2の水素極2A空間に滞留している不純ガス(空気)を、効率的に排除でき、これにより水素循環路4A内を高濃度な水素に置換することができ、燃料電池2の起動(発電開始)を円滑に行うことができる。なお、「大気圧+数kPa」における「数kPa」は不純ガスの逆流等を防止する観点から定められる。
【0028】
(第2の実施の形態)
次に、図5は本発明の第2の実施の形態による燃料供給制御装置による制御のフローチャートである。そこで、本実施の形態による燃料供給制御装置となるECUの制御について、図5を参照して説明する。
【0029】
まず、ステップ11でイグニッションスイッチ14がONであるか否かを判定し、ONである場合(Yes)にはステップ12に進み、OFFである場合(No)にはステップ11に戻り、処理を繰り返す。
【0030】
次に、ステップ12では、水素遮断弁6を開弁させると共に水素ポンプ7を作動させ、水素タンク3からの水素を水素供給路4を介して燃料電池2の水素極2Aに供給する。また、スーパチャージャ11を作動させると共に、圧力調整弁12を開弁させ、空気を空気供給路5を介して燃料電池2の空気極2Bに供給し、ステップ13に移る。
【0031】
ステップ13では、圧力センサ9により水素極2Aの入口側における水素の圧力P1を検出し、この水素の圧力P1が予め決められた所定値(大気圧+数kPa)よりも大きいか否かを判定する。この圧力センサ9についても、前記第1の実施の形態と同様に、イグニッションスイッチ14をONとし、反応ガスが燃料電池2の水素極2A内に供給される前の圧力、即ち発電停止時の水素極2Aの圧力を検出する。そして、本実施の形態によるECU13は圧力センサ9の検出値が所定値以上か否かを判定する判定手段を有している。
【0032】
そして、ステップ13において水素の圧力P1が所定値(大気圧+数kPa)よりも大きい場合(Yes)には、ステップ14に移り、小さい場合(No)にはステップ13に戻って処理を繰り返す。
【0033】
ステップ14では、水素パージ弁10を一定時間だけ開弁状態に保持し、この間、水素循環路4A内の水素をパージし、処理を終了する。即ち、本実施の形態によるECU13は、圧力センサ9が検出した水素の圧力P1が所定値以上のときに水素パージ弁10を開弁状態に保持する水素パージ弁開弁手段を有している。
【0034】
このように構成される本実施の形態でも、燃料電池2による発電開始前において、水素極入口圧力(P1)が予め「大気圧+数kPa」となった状態で、水素パージ弁10による水素循環路4A内の水素パージを行うことができ、水素循環路4A内への空気等の不純ガスの逆流を防止でき、前記第1の実施の形態とほぼ同様の作用効果を得ることができる。
【0035】
最後に、本発明は、前記した各実施の形態による燃料供給装置に限定されるものではなく、発明の技術的範囲を逸脱しない範囲内で適宜変更して実施することができる。例えば、各実施の形態では燃料として水素を燃料電池に供給したが、燃料は、圧縮空気中の酸素と反応するものであれば何でも良く、例えば有機系の含水素化合物を改質器で改質することにより生成した改質水素なども供給することができる。
【0036】
【発明の効果】
以上、詳述した通り、請求項1の発明によれば、燃料電池の発電開始前に、予め圧力検出手段によって、水素遮断弁の開弁時における水素極の圧力に応じて水素パージ弁の開弁開始時間を設定する構成としたので、水素循環路内への空気等の不純ガスの逆流等を防止でき、水素循環路内の水素のパージを円滑に行うことができる。従って、燃料電池による発電開始前において、燃料電池の水素極空間に滞留している不純ガスを、効率的に排除でき、水素循環路内を高濃度な水素に置換することができ、燃料電池の起動(発電開始)を円滑に行うことができる。
【0037】
また、請求項2の発明によれば、圧力検出手段の検出値が所定値以上のときには、水素パージ弁開弁手段により水素パージ弁の開弁を行う構成としたので、水素循環路内の水素のパージを円滑に行うことができ、請求項1の発明とほぼ同様に、燃料電池による発電開始前において、水素循環路内への空気等の不純ガスの逆流等を阻止することができ、燃料電池の水素極空間に滞留している不純ガスを効率的に排除できる。そして、水素循環路内を高濃度な水素に置換することができ、燃料電池の起動(発電開始)を円滑に行うことができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態による燃料電池の燃料供給装置の構成を示す構成図である。
【図2】図1中のECUによる制御のフローチャートである。
【図3】第1の実施の形態による水素極入口圧力と水素パージ弁開弁開始時間との関係を示す特性線図である。
【図4】第1の実施の形態による水素極入口圧力、水素遮断弁及び水素パージ弁の関係を示すタイムチャートである。
【図5】本発明の第2の実施の形態によるECUの制御のフローチャートである。
【符号の説明】
1 燃料供給装置
2 燃料電池
2A 水素極
2B 空気極
3 水素タンク
4 水素供給路
6 水素遮断弁
9 圧力センサ(圧力検出手段)
10 水素パージ弁
13 ECU(燃料供給制御装置)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel supply device for a fuel cell that supplies hydrogen to a fuel cell serving as a power source of an electric vehicle, for example.
[0002]
[Prior art]
When starting a fuel cell system that is a power source of an electric vehicle (hereinafter referred to as a vehicle), hydrogen from a hydrogen tank is supplied to a hydrogen electrode space of the fuel cell, and after the hydrogen pressure reaches a predetermined pressure, Methods for starting power generation are known. That is, the fuel cell system has a configuration in which a hydrogen shutoff valve (hydrogen supply port) is provided on the upstream side of the hydrogen electrode of the fuel cell and a hydrogen purge valve (hydrogen discharge port) is provided on the downstream side. Then, the hydrogen purge valve is closed and the hydrogen shut-off valve is opened. In this state, hydrogen is supplied to the hydrogen electrode space of the fuel cell system, and after the hydrogen pressure reaches a predetermined pressure, power generation is started. It is started to increase power generation efficiency.
[0003]
Further, when such hydrogen is used as a fuel, a circulation system is used for supplying hydrogen to the fuel cell stack constituting the fuel cell system in order to increase its utilization efficiency (improve fuel efficiency) (for example, Patent Document 1). As a circulation system, a blower for pressurizing hydrogen, an ejector for generating negative pressure and sucking hydrogen, a hydrogen pump, and the like are used. As a result, unused hydrogen that has not contributed to power generation in the fuel cell is circulated to the fuel cell, thereby improving fuel efficiency.
[0004]
[Patent Document 1]
JP-A-6-275300 (page 4, FIG. 1)
[0005]
[Problems to be solved by the invention]
By the way, in the prior art, after the fuel cell system is stopped for a long time (for example, when the fuel cell system is stopped overnight), an impurity gas such as air gradually flows to the hydrogen electrode side with the lapse of time after the stop. And the concentration of hydrogen at the hydrogen electrode decreases.
[0006]
In order to solve such a problem, a method is conceivable in which the hydrogen purge valve is opened before the start of power generation to discharge impurities together with hydrogen to the outside. However, depending on the elapsed time after the fuel cell system is stopped and the fluctuation of the atmospheric pressure, the pressure in the hydrogen electrode may be reduced to the atmospheric pressure or less. Impurities may flow back to the pole side, and there is a problem that the reliability of the fuel cell system is reduced. That is, when the power generation of the fuel cell is stopped, hydrogen remains in the gas passage of the fuel cell. However, hydrogen permeates from the hydrogen electrode to the air electrode through the solid polymer membrane due to cross leak, and the hydrogen flows over the air electrode. , The hydrogen gas remaining in the hydrogen electrode is consumed, and the gas pressure at the hydrogen electrode decreases. Since only hydrogen exists at the hydrogen electrode, the power generation consumption may drop below atmospheric pressure in some cases. When the hydrogen purge valve is opened when the fuel cell is restarted in this state, the atmosphere is sucked ( Backflow). That is, the prior art does not consider such a problem.
[0007]
Therefore, according to the present invention, before starting the power generation in the fuel cell system, the impurity gas (air) staying inside (hydrogen electrode space) while the system is left is efficiently removed and replaced with high-concentration hydrogen. Accordingly, it is an object of the present invention to provide a fuel cell fuel supply device capable of smoothly starting (starting power generation) a fuel cell system.
[0008]
[Means for Solving the Problems]
A fuel supply device for a fuel cell according to the present invention that solves the above-mentioned problems includes a hydrogen tank that stores hydrogen to be supplied to the fuel cell, a hydrogen shutoff valve that flows and shuts off between the hydrogen tank and the fuel cell, A hydrogen circulation path for circulating unused hydrogen not contributing to power generation in the battery to the fuel cell; and a hydrogen purge valve located downstream of the hydrogen cutoff valve for purging hydrogen in the hydrogen circulation path. are doing.
[0009]
The first aspect of the present invention is characterized in that, when the hydrogen shutoff valve is opened, a pressure detection unit that detects a pressure of a hydrogen electrode of the fuel cell and a detection value of the pressure detection unit. Valve opening start time setting means for setting the valve opening start time of the hydrogen purge valve accordingly.
[0010]
In such a configuration, the pressure of the hydrogen electrode of the fuel cell can be detected by the pressure detecting means when the hydrogen shut-off valve is opened. Therefore, the valve opening start time of the hydrogen purge valve is set in accordance with the detection value of the pressure detecting means. Can be set. Thus, backflow of the impurity gas such as air into the hydrogen circulation path can be prevented, and the purge of hydrogen in the hydrogen circulation path can be performed smoothly.
[0011]
Further, the feature of the configuration adopted by the invention according to claim 2 is that a pressure detecting means for detecting the pressure of the hydrogen electrode of the fuel cell,
Determining means for determining whether the detection value of the pressure detecting means is equal to or greater than a predetermined value,
A hydrogen purge valve opening means for opening the hydrogen purge valve when the detection value of the pressure detection means becomes equal to or more than a predetermined value after the opening of the hydrogen cutoff valve.
[0012]
In the case of such a configuration, the pressure of the hydrogen electrode of the fuel cell can be detected by the pressure detecting means when the hydrogen shutoff valve is opened, so that the determining means determines whether or not the detected value of the pressure detecting means is equal to or more than a predetermined value. be able to. When the value detected by the pressure detecting means is equal to or more than a predetermined value, the hydrogen purge valve can be opened by the hydrogen purge valve opening means, and the hydrogen in the hydrogen circulation path can be purged smoothly. Therefore, the backflow of the impurity gas such as air into the hydrogen circulation path can be prevented.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
(First Embodiment)
A fuel supply device for a fuel cell according to a first embodiment of the present invention will be described in detail with reference to the drawings.
[0014]
FIG. 1 is a configuration diagram showing a configuration of a fuel supply device according to the present embodiment, and FIG. 2 is a flowchart of control by a fuel supply control device. FIG. 3 is a characteristic diagram showing the relationship between the hydrogen electrode inlet pressure and the hydrogen purge valve opening start time, and FIG. 4 is a time chart showing the relationship between the hydrogen electrode inlet pressure, the hydrogen cutoff valve, and the hydrogen purge valve. is there.
[0015]
As shown in FIG. 1, a fuel supply device 1 includes a hydrogen tank 3 for storing hydrogen as a fuel to be supplied to a fuel cell 2, and a hydrogen supply connecting the hydrogen tank 3 and a hydrogen electrode 2 </ b> A of the fuel cell 2. There is provided a passage 4 and an air supply passage 5 for supplying air to the air electrode 2B of the fuel cell 2.
[0016]
Here, a hydrogen shut-off valve 6 is provided on the upstream side of the hydrogen supply passage 4, and the hydrogen shut-off valve 6 is normally kept in a closed state, and is provided between the hydrogen electrode 2 A of the fuel cell 2 and the hydrogen tank 3. Is shut off. Then, when a signal from the ECU 13 described later is input to the hydrogen shutoff valve 6, the hydrogen shutoff valve 6 opens and allows the fuel to flow between the fuel cell 2 and the hydrogen tank 3 via a regulator (not shown). .
[0017]
The hydrogen supply path 4 has a hydrogen circulation path 4A. The hydrogen circulation path 4A circulates unused hydrogen that has not contributed to the power generation in the fuel cell 2 to the fuel cell 2 for reuse. is there. A hydrogen pump 7 pressurizes the hydrogen in the hydrogen circulation path 4A in the direction of the arrow in FIG. 1 and a negative pressure is generated in the hydrogen supply path 4 to supply hydrogen from the hydrogen tank 3 to the hydrogen circulation path 4A. An ejector 8 for suctioning and a pressure sensor 9 serving as pressure detecting means for detecting the pressure of hydrogen flowing into the fuel cell 2 from the hydrogen tank 3 on the inlet side of the hydrogen electrode 2A are provided. Note that a configuration in which one of the hydrogen pump 7 and the ejector 8 is omitted may be adopted. Although the hydrogen pump 7 and the ejector 8 are provided in series in the hydrogen circulation path 4A, they may be provided in parallel.
[0018]
Further, the hydrogen supply path 4 is provided with a hydrogen purge valve 10 located downstream of the hydrogen cutoff valve 6 for purging hydrogen in the hydrogen circulation path 4A. The hydrogen purge valve 10 is normally closed and opens when a signal from the ECU 13 is input to purge hydrogen in the hydrogen circulation path 4.
[0019]
On the other hand, the air supply path 5 is provided with a supercharger 11 for blowing air toward the air electrode 2B of the fuel cell 2 and a pressure adjusting valve 12 for adjusting the pressure of air or the like flowing in the air supply path 5. ing. The pressure regulating valve 12 is normally closed, and opens when a signal from the ECU 13 is input.
[0020]
Next, control of an ECU (Electrical Control Unit) 13 serving as a fuel supply control device that controls the fuel supply device 1 will be described with reference to FIGS.
[0021]
First, in step 1 of FIG. 2, it is determined whether or not the ignition switch 14 (see FIG. 1) is ON. If it is ON (Yes), the process proceeds to step 2, and if it is OFF (No), Returning to step 1, the process is repeated.
[0022]
Next, in step 2, the hydrogen shutoff valve 6 is opened and the hydrogen pump 7 is operated to supply hydrogen from the hydrogen tank 3 to the hydrogen electrode 2A of the fuel cell 2 via the hydrogen supply path 4. Further, the supercharger 11 is operated, the pressure regulating valve 12 is opened, and air is supplied to the air electrode 2B of the fuel cell 2 via the air supply path 5, and the process proceeds to step 3.
[0023]
In step 3, the pressure sensor 9 detects the hydrogen pressure P1 on the inlet side of the hydrogen electrode 2A. That is, the pressure sensor 9 turns on the ignition switch 14 and detects the pressure before the reaction gas is supplied into the hydrogen electrode 2A of the fuel cell 2, that is, the pressure of the hydrogen electrode 2A when power generation is stopped. Here, the ECU 13 has a characteristic diagram shown in FIG. 3, and calculates a predetermined time (valve opening start time) T1 corresponding to the hydrogen pressure P1 based on the characteristic diagram. In this characteristic diagram, in order to prevent the backflow of the impure gas into the hydrogen circulation path 4A as described later, the opening time of the hydrogen shutoff valve 6 is set to be longer as the hydrogen pressure P1 is smaller. I have. Then, the ECU 13 sets a time T1 (see FIG. 4) from the opening start time of the hydrogen shutoff valve 6 to the opening start time of the hydrogen purge valve 10 according to the value detected by the pressure sensor 9 (pressure P1). It has a valve opening start time setting means.
[0024]
Next, in step 4, it is determined whether or not a predetermined time T1 has elapsed since the opening of the hydrogen shutoff valve 6. When the predetermined time T1 has elapsed (Yes), it is considered that the hydrogen pressure P1 has increased to "atmospheric pressure + several kPa" (see FIG. 4), and the routine proceeds to step 5. When the predetermined time T1 has not elapsed (No), it is considered that the hydrogen pressure P1 has not reached “atmospheric pressure + several kPa”, and the process of step 4 is repeated.
[0025]
Finally, in step 5, the hydrogen purge valve 10 is kept open for a predetermined time T2 (see FIG. 4) using a timer (not shown) or the like, and during this time, the hydrogen circulation path 4A The hydrogen inside is purged, and the process ends.
[0026]
As described above, in the present embodiment, as shown in FIG. 4, before the power generation by the fuel cell 2 is started, the hydrogen purge is performed with the hydrogen electrode inlet pressure (P1) previously set to “atmospheric pressure + several kPa”. The hydrogen purge in the hydrogen circulation path 4A can be performed by the valve 10, the backflow of the impurity gas such as air into the hydrogen circulation path 4A can be prevented, and the hydrogen in the hydrogen circulation path 4A can be smoothly purged. Can be.
[0027]
Therefore, before the start of power generation, the impurity gas (air) staying in the hydrogen electrode 2A space of the fuel cell 2 can be efficiently removed, whereby the inside of the hydrogen circulation path 4A can be replaced with high-concentration hydrogen. Thus, the start-up (start of power generation) of the fuel cell 2 can be performed smoothly. Note that “several kPa” in “atmospheric pressure + several kPa” is determined from the viewpoint of preventing the backflow of the impurity gas.
[0028]
(Second embodiment)
Next, FIG. 5 is a flowchart of control by the fuel supply control device according to the second embodiment of the present invention. Thus, control of the ECU serving as the fuel supply control device according to the present embodiment will be described with reference to FIG.
[0029]
First, in step 11, it is determined whether or not the ignition switch 14 is ON. If it is ON (Yes), the process proceeds to step 12, and if it is OFF (No), the process returns to step 11 and the process is repeated. .
[0030]
Next, in step 12, the hydrogen shutoff valve 6 is opened and the hydrogen pump 7 is operated to supply hydrogen from the hydrogen tank 3 to the hydrogen electrode 2A of the fuel cell 2 via the hydrogen supply path 4. Further, the supercharger 11 is operated, the pressure regulating valve 12 is opened, and air is supplied to the air electrode 2B of the fuel cell 2 via the air supply path 5, and the process proceeds to step S13.
[0031]
In step 13, the pressure sensor 9 detects the hydrogen pressure P1 on the inlet side of the hydrogen electrode 2A, and determines whether or not the hydrogen pressure P1 is greater than a predetermined value (atmospheric pressure + several kPa). I do. As with the first embodiment, the ignition switch 14 is turned on for the pressure sensor 9 so that the pressure before the reaction gas is supplied to the hydrogen electrode 2A of the fuel cell 2, that is, the hydrogen when the power generation is stopped, The pressure of the pole 2A is detected. The ECU 13 according to the present embodiment has a determination unit that determines whether the detection value of the pressure sensor 9 is equal to or greater than a predetermined value.
[0032]
If the hydrogen pressure P1 is higher than the predetermined value (atmospheric pressure + several kPa) in step 13 (Yes), the process proceeds to step 14, and if lower (No), the process returns to step 13 and repeats the process.
[0033]
In step 14, the hydrogen purge valve 10 is kept open for a certain period of time. During this time, the hydrogen in the hydrogen circulation path 4A is purged, and the process ends. That is, the ECU 13 according to the present embodiment has a hydrogen purge valve opening unit that holds the hydrogen purge valve 10 in the open state when the hydrogen pressure P1 detected by the pressure sensor 9 is equal to or higher than a predetermined value.
[0034]
Also in the present embodiment configured as described above, before the power generation by the fuel cell 2 starts, the hydrogen circulation by the hydrogen purge valve 10 is performed in a state where the hydrogen electrode inlet pressure (P1) is previously set to “atmospheric pressure + several kPa”. The hydrogen purging in the passage 4A can be performed, the backflow of the impurity gas such as air into the hydrogen circulation passage 4A can be prevented, and substantially the same operation and effect as in the first embodiment can be obtained.
[0035]
Lastly, the present invention is not limited to the fuel supply device according to each of the above-described embodiments, and can be implemented with appropriate modifications without departing from the technical scope of the invention. For example, in each embodiment, hydrogen was supplied to the fuel cell as fuel, but any fuel may be used as long as it reacts with oxygen in compressed air. For example, an organic hydrogen-containing compound may be reformed in a reformer. By doing so, reformed hydrogen and the like generated can also be supplied.
[0036]
【The invention's effect】
As described in detail above, according to the first aspect of the present invention, before the power generation of the fuel cell is started, the pressure detecting means opens the hydrogen purge valve according to the pressure of the hydrogen electrode at the time of opening the hydrogen shutoff valve. Since the valve start time is set, it is possible to prevent the backflow of the impurity gas such as air into the hydrogen circulation path, and to smoothly purge the hydrogen within the hydrogen circulation path. Therefore, before the start of power generation by the fuel cell, the impurity gas remaining in the hydrogen electrode space of the fuel cell can be efficiently removed, and the inside of the hydrogen circulation path can be replaced with high-concentration hydrogen. Startup (power generation start) can be performed smoothly.
[0037]
According to the second aspect of the invention, when the detected value of the pressure detecting means is equal to or more than the predetermined value, the hydrogen purge valve is opened by the hydrogen purge valve opening means. Can be smoothly performed, and in the same manner as in the first aspect of the present invention, backflow of impurity gas such as air into the hydrogen circulation path can be prevented before the start of power generation by the fuel cell. Impurity gas remaining in the hydrogen electrode space of the battery can be efficiently removed. Then, the inside of the hydrogen circulation path can be replaced with high-concentration hydrogen, and the fuel cell can be smoothly started (start of power generation).
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a configuration of a fuel supply device for a fuel cell according to a first embodiment of the present invention.
FIG. 2 is a flowchart of control by an ECU in FIG. 1;
FIG. 3 is a characteristic diagram showing a relationship between a hydrogen electrode inlet pressure and a hydrogen purge valve opening start time according to the first embodiment.
FIG. 4 is a time chart showing a relationship between a hydrogen electrode inlet pressure, a hydrogen cutoff valve, and a hydrogen purge valve according to the first embodiment.
FIG. 5 is a flowchart of control of an ECU according to a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fuel supply device 2 Fuel cell 2A Hydrogen electrode 2B Air electrode 3 Hydrogen tank 4 Hydrogen supply path 6 Hydrogen shutoff valve 9 Pressure sensor (pressure detecting means)
10 hydrogen purge valve 13 ECU (fuel supply control device)

Claims (2)

燃料電池に供給する水素を蓄える水素タンクと、前記水素タンクと燃料電池との間を流通、遮断する水素遮断弁と、前記燃料電池での発電に寄与しなかった未利用の水素を燃料電池に循環させる水素循環路と、前記水素遮断弁の下流側に位置し前記水素循環路内の水素をパージする水素パージ弁とを有してなる燃料電池の燃料供給装置において、
前記水素遮断弁の開弁時に、前記燃料電池の水素極の圧力を検出する圧力検出手段と、
前記圧力検出手段の検出値に応じて水素パージ弁の開弁開始時間を設定する開弁開始時間設定手段とを備えてなることを特徴とする燃料電池の燃料供給装置。
A hydrogen tank that stores hydrogen to be supplied to the fuel cell, a hydrogen shutoff valve that circulates and shuts off the hydrogen tank and the fuel cell, and supplies unused hydrogen that has not contributed to power generation in the fuel cell to the fuel cell. In a fuel supply device for a fuel cell, comprising: a hydrogen circulation path to be circulated; and a hydrogen purge valve positioned downstream of the hydrogen cutoff valve to purge hydrogen in the hydrogen circulation path.
At the time of opening the hydrogen cutoff valve, pressure detecting means for detecting the pressure of the hydrogen electrode of the fuel cell,
A fuel supply device for a fuel cell, comprising: valve opening start time setting means for setting a valve opening start time of a hydrogen purge valve according to a value detected by the pressure detecting means.
燃料電池に供給する水素を蓄える水素タンクと、前記水素タンクと燃料電池との間を流通、遮断する水素遮断弁と、前記燃料電池での発電に寄与しなかった未利用の水素を燃料電池に循環させる水素循環路と、前記水素遮断弁の下流側に位置し水素循環路内の水素をパージする水素パージ弁とを有してなる燃料電池の燃料供給装置において、
前記燃料電池の水素極の圧力を検出する圧力検出手段と、
前記圧力検出手段の検出値が所定値以上か否かを判定する判定手段と、
前記水素遮断弁の開弁後に、前記圧力検出手段の検出値が所定値以上になった時、水素パージ弁の開弁を行う水素パージ弁開弁手段とを備えてなることを特徴とする燃料電池の燃料供給装置。
A hydrogen tank that stores hydrogen to be supplied to the fuel cell, a hydrogen shutoff valve that circulates and shuts off the hydrogen tank and the fuel cell, and unused hydrogen that has not contributed to power generation in the fuel cell. In a fuel supply device for a fuel cell, comprising: a hydrogen circulation path to be circulated; and a hydrogen purge valve located downstream of the hydrogen cutoff valve to purge hydrogen in the hydrogen circulation path.
Pressure detection means for detecting the pressure of the hydrogen electrode of the fuel cell,
Determining means for determining whether the detected value of the pressure detecting means is equal to or greater than a predetermined value,
A hydrogen purge valve opening means for opening the hydrogen purge valve when a detection value of the pressure detection means becomes equal to or more than a predetermined value after the opening of the hydrogen cutoff valve. Battery fuel supply.
JP2002346335A 2002-11-28 2002-11-28 Fuel cell system Expired - Fee Related JP3916150B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002346335A JP3916150B2 (en) 2002-11-28 2002-11-28 Fuel cell system
US10/723,622 US7282286B2 (en) 2002-11-28 2003-11-25 Start-up method for fuel cell
US11/805,182 US7910254B2 (en) 2002-11-28 2007-05-21 Start-up method for fuel cell
US13/023,270 US8142947B2 (en) 2002-11-28 2011-02-08 Start-up method for fuel cell
US13/370,929 US8288044B2 (en) 2002-11-28 2012-02-10 Start-up method for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002346335A JP3916150B2 (en) 2002-11-28 2002-11-28 Fuel cell system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006351097A Division JP4825125B2 (en) 2006-12-27 2006-12-27 Method of purging hydrogen at startup of fuel cell system

Publications (2)

Publication Number Publication Date
JP2004179080A true JP2004179080A (en) 2004-06-24
JP3916150B2 JP3916150B2 (en) 2007-05-16

Family

ID=32707274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002346335A Expired - Fee Related JP3916150B2 (en) 2002-11-28 2002-11-28 Fuel cell system

Country Status (1)

Country Link
JP (1) JP3916150B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327397A (en) * 2003-04-28 2004-11-18 Equos Research Co Ltd Fuel cell system
JP2006114226A (en) * 2004-10-12 2006-04-27 Toyota Motor Corp Fuel cell system and its control unit
JP2006302832A (en) * 2005-04-25 2006-11-02 Toyota Motor Corp Fuel cell system
JP2006310000A (en) * 2005-04-27 2006-11-09 Denso Corp Fuel cell system
JP2007035369A (en) * 2005-07-25 2007-02-08 Nissan Motor Co Ltd Fuel cell system and antifreeze method therefor
JP2007165103A (en) * 2005-12-13 2007-06-28 Toyota Motor Corp Fuel cell system, its operation method, and movable body
JP2008269911A (en) * 2007-04-19 2008-11-06 Toyota Motor Corp Fuel cell system, and gas pressure control method in fuel cell system
JP2008269910A (en) * 2007-04-19 2008-11-06 Toyota Motor Corp Fuel cell system, and method for exhausting impurity in fuel cell system
JP2011165655A (en) * 2010-01-14 2011-08-25 Honda Motor Co Ltd Fuel cell device
JP2018098191A (en) * 2016-12-07 2018-06-21 パナソニックIpマネジメント株式会社 Fuel cell system and method of operating fuel cell system
CN110311156A (en) * 2019-07-15 2019-10-08 苏州氢洁电源科技有限公司 A kind of fuel cell electrode spirt liquid device and its control method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4686958B2 (en) * 2003-04-28 2011-05-25 株式会社エクォス・リサーチ Fuel cell system
JP2004327397A (en) * 2003-04-28 2004-11-18 Equos Research Co Ltd Fuel cell system
JP2006114226A (en) * 2004-10-12 2006-04-27 Toyota Motor Corp Fuel cell system and its control unit
JP2006302832A (en) * 2005-04-25 2006-11-02 Toyota Motor Corp Fuel cell system
JP2006310000A (en) * 2005-04-27 2006-11-09 Denso Corp Fuel cell system
JP2007035369A (en) * 2005-07-25 2007-02-08 Nissan Motor Co Ltd Fuel cell system and antifreeze method therefor
JP2007165103A (en) * 2005-12-13 2007-06-28 Toyota Motor Corp Fuel cell system, its operation method, and movable body
JP2008269911A (en) * 2007-04-19 2008-11-06 Toyota Motor Corp Fuel cell system, and gas pressure control method in fuel cell system
JP2008269910A (en) * 2007-04-19 2008-11-06 Toyota Motor Corp Fuel cell system, and method for exhausting impurity in fuel cell system
JP2011165655A (en) * 2010-01-14 2011-08-25 Honda Motor Co Ltd Fuel cell device
JP2018098191A (en) * 2016-12-07 2018-06-21 パナソニックIpマネジメント株式会社 Fuel cell system and method of operating fuel cell system
JP7038301B2 (en) 2016-12-07 2022-03-18 パナソニックIpマネジメント株式会社 Fuel cell system and how to operate the fuel cell system
CN110311156A (en) * 2019-07-15 2019-10-08 苏州氢洁电源科技有限公司 A kind of fuel cell electrode spirt liquid device and its control method
CN110311156B (en) * 2019-07-15 2024-02-02 苏州氢洁电源科技有限公司 Control method of electronic injection liquid inlet device for fuel cell

Also Published As

Publication number Publication date
JP3916150B2 (en) 2007-05-16

Similar Documents

Publication Publication Date Title
JP4715103B2 (en) Fuel cell system
JP4632055B2 (en) Fuel cell system and liquid discharge method thereof
JP2007179949A (en) Fuel cell system
JP5711010B2 (en) Method for stopping operation of fuel cell system
JP3916150B2 (en) Fuel cell system
JP5858138B2 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
JP5759229B2 (en) Control method of fuel cell system
JP4847724B2 (en) Fuel cell system
JP2009117189A (en) Control method of fuel cell system
JP5396748B2 (en) Fuel cell system and method for stopping fuel cell system
JP2004319318A (en) Fuel cell system
JP4825125B2 (en) Method of purging hydrogen at startup of fuel cell system
JP2013089352A (en) Fuel cell system and stopping method therefor
JP2003331888A (en) Fuel cell system
JP6409691B2 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
KR101113652B1 (en) Fuel supply method of fuel cell system
JP2004179054A (en) Power generation shutdown method of fuel cell system
JP4181390B2 (en) Method for stopping operation of fuel cell system
JP5722669B2 (en) Control method of fuel cell system
JP3952461B2 (en) Control method for exhaust gas treatment device of fuel cell
JP5250294B2 (en) Method for starting fuel cell system and fuel cell system
JP2009146656A (en) Fuel cell system
JP2007213827A (en) Fuel cell system, and method for controlling the same
JP2006049234A (en) Liquid discharge of fuel cell system
JP4784062B2 (en) Fuel cell system and control device thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061227

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070202

R150 Certificate of patent or registration of utility model

Ref document number: 3916150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees