JP2004178562A - グラフによる画像分割 - Google Patents

グラフによる画像分割 Download PDF

Info

Publication number
JP2004178562A
JP2004178562A JP2003364140A JP2003364140A JP2004178562A JP 2004178562 A JP2004178562 A JP 2004178562A JP 2003364140 A JP2003364140 A JP 2003364140A JP 2003364140 A JP2003364140 A JP 2003364140A JP 2004178562 A JP2004178562 A JP 2004178562A
Authority
JP
Japan
Prior art keywords
image
rectangle
pixels
graph
largest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003364140A
Other languages
English (en)
Other versions
JP4538214B2 (ja
Inventor
Henricus A Marquering
ヘンリクス・アー・マルケリング
Alena V Belitskaya
アレナ・ベー・ベリツツカヤ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Production Printing Netherlands BV
Original Assignee
Oce Nederland BV
Oce Technologies BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oce Nederland BV, Oce Technologies BV filed Critical Oce Nederland BV
Publication of JP2004178562A publication Critical patent/JP2004178562A/ja
Application granted granted Critical
Publication of JP4538214B2 publication Critical patent/JP4538214B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V30/00Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
    • G06V30/40Document-oriented image-based pattern recognition
    • G06V30/41Analysis of document content
    • G06V30/412Layout analysis of documents structured with printed lines or input boxes, e.g. business forms or tables

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Artificial Intelligence (AREA)
  • Character Input (AREA)
  • Image Analysis (AREA)
  • Editing Of Facsimile Originals (AREA)
  • Image Processing (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

【課題】より効果的な、画像を分割するための方法および装置であって、更なる処理ステップで簡単に使用できる分割画像の単純な記述を与える方法および装置を提供する。
【解決手段】ピクセルから成る画像を複数のフィールドに分割する方法について説明されている。グラフは画像を表すように構成されている。最初に、隣合うピクセルの長方形領域であり且つ画像のバックグラウンドを示すバックグラウンド特性を有する分離要素が構成される。その後、異なる分離方向、特に水平方向および垂直方向にほぼ向けられる前記分離要素の交差部に基づいてグラフの頂点が規定され、フィールドセパレータに対応する頂点間でグラフの辺が規定される。最後に、グラフの辺は、フィールドを分離するラインとして判断される。
【選択図】 図8

Description

本発明は、ピクセルから成る複合画像を、画像のレイアウト要素に対応する複数のフィールドに分割する方法であって、ピクセルが、画素の強度および/または色を示す値を有する方法に関する。
また、本発明は、前記方法を実施するための装置であって、画像を入力するための入力ユニットと処理ユニットとを備えた装置に関する。
レイアウト要素に対応するフィールドを識別するために、テキストおよび図を含む文書等の複合画像を分割する幾つかの方法が技術的に知られている。一般的な方法は、バックグラウンドの処理を基本としている。画像は、画素の強度および/または色を示す値を有するピクセルによって表わされる。その値は、バックグラウンド(通常、白)またはフォアグラウンド(通常、印刷スペースである黒)として分類される。ページ上の印刷領域を取り囲む白色のバックグラウンドスペースが解析される。
ページ分割方法は、1990年6月にニューヨークのアトランティックシティーで行なわれたパターン認識に関する第10回国際会議の議事録、820頁から825頁における、H.S.Bairdらによる「Image Segmentation by Shape−Directed Covers(形状指向カバーによる画像分割)」によって知られている。解析される画像において、バックグラウンドピクセルの最大長方形のセットが構成される。最大長方形は、フォアグラウンドピクセルを含んでいれば拡張されることができない長方形である。情報を保持するフィールドすなわちテキストコラムへの画像の分割は、減少された最大長方形のセットで画像全体を覆うことにより行なわれる。残りの「覆われていない」領域は、フォアグラウンドとして見なされ、更なる解析のために使用することができる。この方法の問題は、コンピュータによる効率的な更なる処理ができないピクセルドメイン内の領域として、フィールドが規定されるという点にある。
ページ分割のさらなる方法は、1994年10月9日から12日にイスラエルのエルサレムで行なわれたパターン認識に関する第12回国際会議の議事録、IEEE−CSプレス、第2刊、339頁から344頁における、A.AntonacopoulosおよびR.T.Ritchingsによる「Flexible page segmentation using the background(バックグラウンドを使用するフレキシブルなページ分割)」によって知られている。バックグラウンド白色スペースは、タイル、すなわちバックグラウンドピクセルの重なり合わない領域によって覆われる。
画像内のフォアグラウンドフィールドの外形は、それを取り囲む白色タイルに沿ってトレースすることにより識別され、これにより、タイルの内側の境界が、更なる解析のためのフィールドの境界を構成する。この方法の問題は、効率的な更なる解析を妨げる複雑な記述によって、フィールドの境界が表わされているという点にある。
米国特許第5,856,877号明細書 H.S.Bairdら、「Image Segmentation by Shape−Directed Covers(形状指向カバーによる画像分割)」、パターン認識に関する第10回国際会議の議事録、1990年6月、ニューヨーク、アトランティックシティー、p820−825 A.AntonacopoulosおよびR.T.Ritchings、「Flexible page segmentation using the background(バックグラウンドを使用するフレキシブルなページ分割)」、パターン認識に関する第12回国際会議の議事録、IEEE−CSプレス、1994年10月9日−12日、イスラエル、エルサレム、第2刊、p339−344 K.Y.Wong、R.G.Casey、およびF.M.Wahl、「Document analysis system(文書解析システム)」IBM J.Res.、Dev 26、(1982)、p647−656
本発明の目的は、より効果的な、画像を分割するための方法および装置であって、特に、更なる処理ステップで簡単に使用できる分割画像の単純な記述を与える方法および装置を提供することである。
本発明の第1の態様によれば、前記目的は、ピクセルから成る画像を複数のフィールドに分割する方法であって、
隣り合うピクセルの長方形領域に対応し且つ画像のバックグラウンドを示すバックグラウンド特性を有する分離要素を構成するステップと、
所定の分離方向、特に水平方向および垂直方向にほぼ向けられる前記分離要素の交差部に基づいてグラフの頂点を規定するステップ、およびフィールドセパレータに対応する頂点間のグラフの辺を規定するステップによって、画像のレイアウト構造を示すグラフを構成するステップと、
前記グラフの辺に対応するフィールドセパレータを規定するステップとを含む、
方法を提供することによって達成される。
本発明の第2の態様によれば、前記目的は、ピクセルから成る画像を、画像のレイアウト要素に対応する複数のフィールドに分割する装置であって、前記ピクセルが、画素の強度および/または色を示す値を有し、分割する装置が、
画像を入力するための入力ユニットと、
画像のレイアウト構造を示すグラフを構成する処理ユニットとを備え、該処理ユニットが、
隣り合うピクセルの長方形領域に対応し且つ画像のバックグラウンドを示すバックグラウンド特性を有する分離要素を構成し、
異なる分離方向、特に水平方向および垂直方向にほぼ向けられる前記分離要素の交差部に基づいてグラフの頂点を規定し、
前記分離要素に対応する頂点間のグラフの辺を規定することによって前記グラフを構成する、装置を提供することによって達成される。
本発明の第3の態様によれば、前記目的は、前記方法を実行するためのコンピュータプログラム製品を用いて達成される。
グラフを構成する利点は、辺が、フィールドの境界のコンパクトで有効な表示を与えるという点である。グラフに基づくフィールドの更なる解析は、コンピュータによるのが有効である。
また、本発明は、以下の認識に基づいている。グラフ表示は提案されたが、このグラフ表示は、前述したA.Antonacopoulosによる論文における分割においては非常に複雑であるとして拒絶された。本発明者らは、Antonacopoulosのグラフが、フィールドを全く表わしておらず、画像内のバックグラウンドタイル及びそれらと隣接するものだけを表わしていることが分かった。しかしながら、本発明にしたがって構成されるグラフは、バックグラウンドの構造に基づいてフィールドを直接に網羅し、したがって、画像のレイアウト内のフィールドを高レベルで表示する。
一実施形態において、頂点を規定するステップは、所定の分離方向にほぼ向けられる分離要素のサブセットを構成するステップと、両方のサブセットからの分離要素の対間の交差部を決定するステップとを含む。これは、グラフの頂点が、効率的な方法で構成されるという利点を有する。
更なる実施形態において、方法は、最大長方形のセットを構成するステップをさらに含み、最大長方形は、分離方向のうちの1つにおける画像の長方形部分であって、画像のバックグラウンドを示すバックグラウンド特性を有するピクセルだけを含む可能な最大の面積を有し、方法はさらに、クリーニングステップにおいて分離要素を構成するステップを含み、クリーニングステップにおいて、前記最大長方形のセット内にある少なくとも1対のオーバーラップする最大長方形が、情報提供長方形に取って代えられ、前記情報提供長方形は、前記オーバーラップする最大長方形の対の領域を組み合わせた領域の長方形部分であり、その長方形部分が当該分離方向で最大の可能な長さを有している。
これは、分離方向に沿って長くて狭い分離要素が、効率的に構成されるという作用を有している。利点は、フィールドを分離するために最も情報性がある分離要素が構成され、分離要素によって囲まれたフィールドが簡単に検出されるという点である。最初に多数の最大長方形が見つけられるが、クリーニングステップが前記数を効果的に減少させ、これにより、分離要素を構成するためのコンピュータによる効率的な処理が可能になる。
方法の一実施形態においては、最大長方形を構成するステップの前に、前記バックグラウンド特性から逸脱するピクセル値のパターンを有する画像のフォアグラウンド内のオブジェクトである、特に黒ラインまたは破線または点線といったフォアグラウンドセパレータ要素を検出するとともに、検出されたフォアグラウンドセパレータのピクセルを、バックグラウンド特性を有するピクセルに取って代えることにより、画像がフィルタリングされる。フォアグラウンドセパレータをバックグラウンドの色に取って代える作用は、バックグラウンドの更に大きく更に関連する領域が形成されることである。利点は、更に大きなバックグラウンド領域が存在し、別個の演算ステップが不要になるという点である。その結果、更に大きな最大長方形が形成され、結果として得られる分割の質が向上する。
本発明に係る装置の更に好ましい実施形態が、別の請求項に記載されている。
本発明のこれらの態様および他の態様は、以下の説明に一例として記載された実施形態および添付図面を更に参照することにより、明らかとなり、解明される。
図面は、概略図であり、一定の縮尺で描かれたものではない。図面において、既に説明した要素に対応する要素が、同じ参照符号で示されている。
図1は、知られている分割システムによる3つの基本的なステップを有する典型的な分割方法の概略を示している。入力画像11は、連結成分解析を使用して画像のピクセルを解析するCCA(Connected Component Analysis)モジュール14で処理される。最初に、白黒文書、グレースケール文書、またはカラー文書、例えば新聞の一面であっても良いオリジナル画像が、好ましくはグレースケールで走査される。このグレースケール走査された画像は、フォアグラウンド値(例えば黒)またはバックグラウンド値(例えば白)を各ピクセルに割り当てるため、ハーフトーン化される。CCAモジュール14は、同様の特性を有する隣り合うピクセルの連結成分(Connected Component、CC)を検出することにより、画像中のフォアグラウンド要素を見つける。分割処理におけるこの第1のステップの例は、例えばUS5,856,877に記載されている。CCAモジュールは、連結されたフォアグラウンドピクセルの連結成分であるCCオブジェクト12を出力として形成する。LA(Layout Analysis)モジュール15は、CCオブジェクト12を入力として受け、レイアウトオブジェクト13を形成する。CCオブジェクトを統合してグループ化することにより、テキストラインおよびテキストブロック等の大きなレイアウトオブジェクトが形成される。この段階中においては、ヒューリスティックス(経験則)を使用して、レイアウト要素をグループ化し、大きなレイアウト要素を形成する。これは、通常のボトムアップ処理における論理ステップである。AF(Article Formation)モジュール16は、レイアウトオブジェクト13を入力として受けて、記事形成(article formation)により出力として記事17を形成する。このモジュールにおいては、大きなエンティティを構成する幾つかのレイアウトオブジェクトが、一緒になってグループ化される。大きなエンティティは、オリジナル画像に適用されるレイアウトルールを使用してアセンブルされる。例えば、新聞の一面において、AFモジュールは、その特定の新聞様式のレイアウトルールにしたがって、テキストブロックおよび画像のようなグラフィック要素をグループ化し、個々の記事を形成する。例えば西洋タイプの雑誌のレイアウト、科学のテキストのレイアウト、または日本の記事のレイアウトといった画像のレイアウトタイプの知識は、ルールに基づいた記事形成方法において使用でき、これにより、テキストブロックのグループ化を向上させることができる。
本発明によれば、以下に説明するように、分割に対して複数の更なるステップが加えられる。これらのステップは、画像を複数のフィールドに分割した後、1つのフィールド内で要素を検出すること、すなわち、更に小さい相互に関連する別個の項目によって構成される、レイアウトオブジェクトを形成することに関するものである。図2は、サンプルとしての日本の新聞を示している。このような新聞は、水平方向読み方向22および垂直方向読み方向21の両方を有するテキストラインを含む特定のレイアウトを有している。検出された連結成分の従来のボトムアップグループ化処理における問題点は、グループ化をどの方向で進めるべきかが分からないという点である。そのため、バックグラウンドを処理してその頁(一面)のフィールドを検出する別個のステップにより、分割が増大される。その後、文字のグループ化を行なう前に、日本の新聞の各フィールドにおける読み方向が検出される。
この分割方法の一実施形態において、例えば個々のコラムにおける黒ライン23といったセパレータ要素が検出されて、複数のバックグラウンド要素に変換される。このような選択肢を用いれば、実際に連結される垂直および水平ラインを含む黒ライン23の大きな要素を、様々なセパレータ要素に分離することができる。日本の新聞において、ラインは、レイアウトにおいてフィールドを分割するための非常に重要なオブジェクトである。これらのオブジェクトが、分離方向に沿うラインとして認識されることが求められる。この選択肢が無いと、これらのオブジェクトはグラフィックスとして分類される。この選択肢を使用すると、ラインを、様々な方向のセパレータ要素として、各分離方向毎に個別に扱うことができる。
図3は、オブジェクトを1つの方向に統合する基本的な方法を示している。この図は、知られている方向に向けられたレイアウトオブジェクト、例えば読む順番が分かっている状況におけるテキストブロックを見つけるためのLAモジュール15の基本的な機能を示している。連結成分12は、統計的な解析により最初の解析ステップ31で処理され、これにより、算定閾値32が得られる。2番目の分類ステップ33においては、CC分類が補正され、これにより、補正された連結成分34が得られる。この補正された連結成分が、3番目の統合ステップ35で処理されることにより、文字がテキストラインに加えられ、その結果、テキストラインおよび他のオブジェクト36が得られる。4番目のテキスト統合ステップ37においては、テキストラインがテキストブロック38(および、可能であれば他のグラフィックオブジェクト)に加えられる。日本の新聞に関する要求事項に基づいて、従来のオブジェクトの統合は、少なくとも2つの読み方向に沿っていなければならず、そのため、前述した基本的な方法を改良しなければならない。
図4は、オブジェクトの分割および2方向統合を示している。図3の1方向処理に対して、新たな別個のステップが加えられている。最初の(前)処理ステップにおいては、画像のグラフ41が構成される。フィールドセパレータを見つけることによりグラフを構成することについて以下に述べる。グラフにおいて、フィールドは、フィールド検出ステップ42で、グラフの辺によって囲まれる領域を見出すことにより検出される。当該領域は、テキストブロック47を含むフィールドとして分類される。テキストブロック47において(テキストブロック領域内にある補正された連結成分34または連結成分43を使用して)、ステップ44で、読む順番45が決定される。読み方向検出は、文書スペクトルに基づいている。テキストブロック47のフィールド、含まれている連結成分、および読む順番45を入力として使用して、ライン形成ステップ46は、必要に応じて、見出された方向に沿って文字をラインに加える。
ここで、グラフ41の構成について説明する。文書のグラフ表示は、走査のバックグラウンドを使用して形成される。走査におけるピクセルは、バックグラウンドとして(通常、白)或はフォアグラウンド(通常、黒)として分類される。白の大きな領域だけがフィールドに関する情報を与えるため、例えば画像をダウンサンプリングすることにより、小さなノイズオブジェクトが除去される。1つのフォアグラウンド(黒)ピクセルを除去するため、更にダウンサンプリングされた画像から斑点が除去されても良い。
次の作業は、重要な白領域を抽出することである。最初のステップは、隣り合うバックグラウンドピクセルの1ピクセル高領域、所謂ホワイトランを検出することである。所定の最小長よりも短いホワイトランは、処理から除外される。
図5は、一例として、垂直方向で隣り合う白ピクセルの4つの水平方向のホワイトラン51を示している。フォアグラウンド領域53は、ホワイトラン51を直接に取り囲むフォアグラウンドピクセルを有していると仮定される。「最大白長方形」は、隣り合うホワイトラン51によって構成することができる最も大きな長方形領域、したがって、黒(フォアグラウンド)ピクセルを含んでいると延長することができない長方形白領域として規定される。最大白長方形52は、垂直方向の破線によって示される長さ、及び4ピクセル分の幅を有する4つのホワイトラン51に基づいて示されている。白長方形は、これを延長することができない場合に、いわゆる最大分離力を有する。そのような長方形は、より重要な白領域の更に小さい部分ではない。したがって、長方形52は、4ピクセル分の幅を有する考えられる唯一の最大長方形である。3ピクセル分または2ピクセル分の幅を持つ更なる長方形を構成することができる。更なる例が図6に示されている。
白長方形の構成は、例えば水平方向および垂直方向の白長方形といったように、異なる分離方向で別個に行なわれる。垂直方向の白長方形は、画像を回転させ、且つ回転された画像における水平方向のホワイトランを検出することにより検出される。なお、画像のタイプまたは用途に応じて、斜め方向等の他の分離方向が選択されても良いことに留意されたい。
最大白長方形を構成するためのアルゴリズムは、以下の通りである。アルゴリズムの入力は、所定の画像から検出された全ての水平方向の1ピクセル高ホワイトラン(White Run、WR)から成る。各ホワイトランは、一組の座標((x,y),(x,y))によって特徴付けられる長方形として表わされる。ここで、xおよびyは、その左上角部の座標であり、xおよびyは右下角部の座標である。順序付けられたアクティブなオブジェクトINPUT LISTに存在する各ホワイトランは、延長の可能性に関して検査される。延長の可能性は、pのラベルが付された所定のWRが、最大白長方形(Maximal White Rectangle、MWR)を形成できるか否かといった態様で表わされる。延長の可能性が偽である場合には、pが既に最大のものであり、pは、アクティブINPUT LISTから削除されるとともに、アクティブRESULT LISTに書き込まれる。延長の可能性が真である場合には、pで始まる全てのMWRが構成されるまで、延長のための検査が繰り返される。その後、pがINPUT LISTから削除され、pから得られる全てのMWRが、アクティブRESULT LISTに書き込まれる。INPUT LISTからの全ての白長方形が処理されると、RESULT LISTに全てのMWRが含まれるようになる。アルゴリズムの効率を高めるため、INPUT LISTにおいてyの値がソートされる。まず最初に、水平方向のWR、すなわち高さよりも幅が大きいホワイトランに関してアルゴリズムが適用される。そして、画像を90°回転させた後、垂直方向のWRに対してアルゴリズムを適用することができる。
一実施形態において、最大長方形を構成するためのアルゴリズムは、以下の通りである。まず、長方形データがリンクリストとして記憶される。この場合、長方形データには、少なくとも長方形の頂点の座標が含まれている。INPUT LISTおよびRESULT LISTも、リンクリストとして記憶される。このリンクリストには、少なくとも3つの要素、すなわち、白長方形の数、リンクリスト内の最初および最後の要素のポインタが含まれている。次に、以下のステップが実行される。すなわち、INPUT LISTをアクティブにして、RESULT LISTを開始し、選択された長方形の一次的な座標のためのBUFFERを開始する。順序付けられたアクティブなINPUT LISTにあるもののうち、pのラベルが付された最初の白長方形から始める。リスト中の次の白長方形にpのラベルが付される。INPUT LIST中の各白長方形毎に、pが延長の可能性を有しているか否かを検討する。アクティブな白長方形pに関し、順序付けられたアクティブなINPUT LIST中で、以下の条件を満たすpnj,j=1,....,lのラベルが付された最初のものを見つける。
Figure 2004178562
Figure 2004178562
Figure 2004178562
この検索により、{pn1,pn2,....pnl}のセットが得られる。このセット{pn1,pn2,....pnl}が空でない場合にだけ、pが延長の可能性を有していると言われる。
が延長の可能性を有していない場合には、pが最大白長方形である。pをRESULT LISTに書き込んで、pをINPUT LISTから削除し、pに関して処理を進める。
が延長の可能性を有している場合には、延長処理をpに適用する。pに関して処理を進める。なお、pがそれ自体最大であっても延長の可能性を有し得る。延長処理は以下の通りである。まず、pが延長の可能性を有していると仮定すると、セット{pn1,pn2,....pnl}が存在する。延長処理は、{pn1,pn2,....pnl}の各要素に対して一貫して適用される。長方形pnj,j=1,....,lを用いて延長可能な白長方形pに関して、以下の座標を有する新たな長方形p1,njを構成する。
Figure 2004178562
Figure 2004178562
Figure 2004178562
Figure 2004178562
1,nj,j=1,....,lの座標を「座標」バッファに書き込む。ここで、p1,njに関して延長可能性の検査を繰り返す。検査が真である場合には、p1,njが最大である。p1,njをRESULT LISTに書き込み、さもなければ、p1,njを延長する。
延長処理をp1,njに適用する前に、吸収作用に関してpおよびpnjをチェックする。p1,njを用いた吸収作用に関するpおよびpnjの検査は、以下の通りである。吸収作用とは、p(pnj)又はこれらの両方が、p1,njに完全に含まれている状態を意味する。座標において、このことは、以下の状態を意味する。
Figure 2004178562
Figure 2004178562
ここで、k=1,n,j=1,...,lである。状態がpに関して真である場合には、pはp1,njによって吸収される。pをINPUT LISTから除去する。状態がpnjに関して真である場合には、pnjはp1,njによって吸収される。pnjをINPUT LISTから除去する。
アルゴリズムでは、長方形の幅が高さよりも大きく、したがって、長方形が主として水平方向であると仮定される。垂直方向でMWRを構成するため、オリジナルの2値画像が90°時計周りに回転される。回転された画像に関して前述したアルゴリズムが繰り返される。その結果、オリジナル画像において全ての垂直方向のMWRが構成される。
図6は、最大白長方形の構成を示している。水平方向x軸および垂直方向y軸に沿ってピクセル座標が表わされている。4つのホワイトラン61が、図の左側に示されている。ホワイトラン(WR)は、その上角部および下角部の座標が以下の座標に対応する長方形として描かれている。
Figure 2004178562
Figure 2004178562
Figure 2004178562
Figure 2004178562
これらのホワイトランによって全ての最大白長方形が構成される。図の右側部分には、結果として得られる5つの最大白長方形(MWR)が、62、63、64、65、および66で示されている。図示された5つのMWRは、図の左側部分に示されたWRにおけるMWRの完全なセットである。構成アルゴリズムは以下の通りである。
INPUT LISTに4つのホワイトラン61を含ませる。INPUT LISTからの最初の要素は、WR((10,1),(50,2))である。WRにpのラベルを付ける。前述したように、延長の可能性に関してpを検査する。延長における第1の候補はWR((10,2),(50,3))である。WRにpn1のラベルを付ける。前述した延長に関する方式にしたがってpn1を用いてpを延長する。これにより、座標((10,1),(50,3))を有する新たな長方形p1,n1が与えられる。p1,n1を用いた吸収作用に関してpおよびpn1を検査する。以下の通り、吸収検査により、pおよびpn1の両方がp1,n1によって吸収される。したがって、pおよびpn1をINPUT LISTから削除する。p1,n1に関して処理を進める。延長の可能性に関してp1,n1を検査する。これにより、第1の候補WR((5,3),(30,4))が与えられる。WRにpt1のラベルを付ける。延長に関する方式にしたがってpt1を用いてp1,n1を延長する。その結果、座標((10,1),(30,4))を有する新たな長方形p(1,n1),t1が得られる。p(1,n1),t1を用いた吸収作用に関してpt1を有するp1,n1を検査する。検査は失敗する。
(1,n1),t1に関して延長の可能性の検査を繰り返す。検査は失敗する。すなわち、p(1,n1),t1は延長の可能性を有していない。このことは、p(1,n1),t1が最大であることを意味する。座標((10,1),(30,4))を有するp(1,n1),t1をRESULT LISTに書き込む。
1,n1に関して再び処理を進め、延長の可能性に関してp1,n1を検査する。第2の候補WR((40,3),(60,4))が見出される。WRにpt2のラベルを付ける。延長に関する方式にしたがってpt2を用いてp1,n1を延長する。その結果、座標((40,1),(50,4))を有する新たな長方形p(1,n1),t2が得られる。
(1,n1),t2を用いた吸収作用に関してpt2を有するp1,n1を検査する。検査は失敗する。すなわち、吸収がない。p(1,n1),t2に関して延長の可能性の検査を繰り返す。検査は失敗する。すなわち、p(1,n1),t2は延長の可能性を有していない。このことは、p(1,n1),t2が最大であることを意味する。座標((40,1),(50,4))を有するp(1,n1),t2をRESULT LISTに書き込む。
延長の可能性に関してp1,n1を再び検査する。検査は失敗し、p1,n1が最大である。座標((10,1),(50,3))を有するp1,n1をRESULT LISTに書き込む。
INPUT LISTに戻る。この段階におけるINPUT LISTは、2つのホワイトラン、すなわち、WR:((5,3),(30,4)),WR:((40,3),(60,4))を含んでいる。WRから開始して、これにpのラベルを付ける。pに関して延長の可能性の検査を繰り返す。検査は失敗し、pが最大である。座標((5,3),(30,4))を有するpをRESULT LISTに書き込む。INPUT LISTからpを除去する。WRに関して処理を進め、これにpのラベルを付ける。pに関して延長の可能性の検査を行なうことにより、pが最大であることが分かる。座標((40,3),(60,4))を有するpをRESULT LISTに書き込む。INPUT LISTからpを除去する。最終的に、RESULT LISTは、5つの最大白長方形、すなわち、図6に64で示されるMWR:((10,1),(50,3))と、62で示されるMWR:((10,1),(30,4))と、63で示されるMWR:((40,1),(50,4))と、65で示されるMWR:((5,3),(30,4))と、66で示されるMWR:((40,3),(60,4))とを含んでいる。
図7は、本発明にかかる方法における次のステップ、すなわち、最大白長方形をオーバーラップさせるクリーニングステップを示している。このクリーニングステップにおいて、オーバーラップする複数の最大白長方形は、後で詳述するように、オリジナルの最大白長方形の最も関連する特性を組み合わせる、1つの所謂「情報提供最大長方形」(Informative Maximal Rectangle、IWR)に統合される。
クリーニングは、サイズおよび空間的な関係をチェックする等のステップを更に含んでいる。図7の上側の部分は、一例として、2つの最大白長方形MWR1およびMWR2を示している。これらの対は、図の下側の部分に示されるように、クリーニングステップにおいて、1つの情報提供白長方形IWRに統合される。オーバーラップを検知する処理および統合する処理は、関連する対をもはや形成することができなくなるまで繰り返される。対を形成する基準は、オーバーラップ領域のサイズであっても良い。
また、クリーニングステップは、薄い或は短い長方形、すなわち、アスペクト比が所定の値を下回る長方形を除去することを含んでいても良い。除去する基準は、画像のタイプに基づいていても良い。例えば、所定のピクセル数を下回る幅は、テキストラインのセパレータを示し、フィールドの分離に関係しない。特定の値を下回る長さは、フィールドの期待されるサイズに関連しない。
クリーニングステップのためのアルゴリズムは、以下の通りである。クリーニング処理の開始は、図5および図6に関して前述したように構成されるMWRのセット全体である。クリーニング処理は、情報を提供しないMWRを破棄するべく適用される。このため、情報を提供しないことに関する尺度が規定される。例えば、長いMWRは、短いものよりも多くの情報を与える。低いアスペクト比は、情報提供量が少ない正方形を多かれ少なかれ示す。また、例えば2つのテキストラインを分離する極めて薄い長方形は除外しなければならない。最初に、全てのMWRは、その高さと幅との間の比が計算されることにより、水平方向、垂直方向、あるいは正方形であるとして分類される。正方形のMWRは、その情報提供性が無いことにより、削除される。残りの水平方向および垂直方向のMWRに関しては、以下の3つのステップから成るクリーニング技術が適用される。
長さまたは幅が所定の値を下回る各MWRが削除される。
長い辺の長さを短い辺の長さで割った比として規定されるアスペクト比(AR)が、所定の値を下回る各MWRが削除される。
互いにオーバーラップする水平方向(または垂直方向)のMWR((x,y),(x,y))および水平方向(または垂直方向)のMWR((a,b),(a,b))から成る各対毎に、以下の座標を用いて、情報提供白長方形IWRが構成される。
(a)水平方向のオーバーラップ
Figure 2004178562
Figure 2004178562
Figure 2004178562
Figure 2004178562
(b)垂直方向のオーバーラップ
Figure 2004178562
Figure 2004178562
Figure 2004178562
Figure 2004178562
この処理は、オーバーラップするMWRから成る全ての対に関して繰り返される。ここで、MWRのセットは、情報提供白長方形IWRを含んでいる。これらのIWRは、レイアウト要素に対応する複数のフィールドに、画像を分割するアルゴリズムのための開始点を形成する。IWRは、有力なフィールドセパレータであり、そのため、「分離要素」と呼ばれる。アルゴリズムは、IWRを使用して、画像の地理的記述へと更に処理するためにグラフを構成する。
図8は、新聞の一面におけるそのようなグラフを示している。画像は、ダウンサンプリングされた新聞の一面のデジタル画像80を示している。オリジナルテキストは、図2に対応するダウンサンプリングされたバージョンにおいて黒で見ることができる。分離要素を構成する情報提供長方形IWRが、灰色で示されている。グラフの構成のため、水平方向および垂直方向の白IWRによって構成される分離要素の交差部が決定される。2つのIWRの交点は、頂点すなわちグラフの頂点81を示す小さな黒色正方形で表わされている。一面内でフィールドを分離するラインを示す辺82は、頂点81から成る対を、「フィールドセパレータ」によって接続することにより構成される。グラフの辺82が白で示されている。辺の2つの頂点間の距離、すなわち長さは、更なる処理のために加重として辺に対して割り当てられる。他の実施形態においては、異なるパラメータが使用され、例えばピクセルの色等の加重が割り当てられる。グラフを構成するためのアルゴリズムは、以下の通りである。
初めに、IWRに関して以下の表記法および定義が与えられる。R={r,...,r}が空でなく、また全てのIWRの有限のセットが所定の画像lから得られると仮定する。ここで、各IWRはそれぞれ、その左上角部および右下角部のx座標およびy座標((x (τ),y (τ)),(x (τ),y (τ))),τ=1,2,...,mによってによって特定される。各長方形rτは、その高さと幅との比に基づいて、水平方向、垂直方向、あるいは正方形として分類される。H={h,...h},V={v,...,v},S={s,...,s}は、以下の関係を成すように、水平方向、垂直方向、および正方形のIWRのサブセットを示す。
Figure 2004178562
Figure 2004178562
ここで、以下が仮定される。
Figure 2004178562
また、Sの内容は無視され、HおよびVのサブセットだけが使用される。これは、多くの場合、テキストブロックまたは非テキストブロックの境界を形成する白空間が、細長い垂直方向または水平方向領域であるといった考えに基づいている。hが座標((x,y),(x,y))を有するHの一部であるとし、また、vが座標((a,b),(a,b))を有するVの一部であるとする。この時、以下の条件の下、hおよびvはオーバーラップを有する。
Figure 2004178562
オーバーラップの場合のhおよびvの交点により、以下の座標によって規定される唯一の点Pが得られる。
Figure 2004178562
IWRにおいては、考えられる全てのタイプのオーバーラップから、2つのオーバーラップだけが生じる。すなわち、長方形となるオーバーラップと、点となるオーバーラップだけが生じる。ラインのオーバーラップは生じない。これは、ラインのオーバーラップがMWRの概念と矛盾するからである。
図9は、最大長方形の2つのタイプの交差部を示している。グラフを構成するため、垂直方向および水平方向の情報提供最大長方形の交点が決定され、これにより、グラフの頂点の位置が見出される。すなわち、頂点の正確な座標が決定される。図の左側部分は、垂直方向のIWRであるvと水平方向のIWRであるhとの交差部の第1のタイプを示している。このタイプの交差では、交差部の中心が点Pである長方形領域88が形成される。図の右側部分は、垂直方向のIWRであるvと水平方向のIWRであるhとの交差部の第2のタイプを示している。このタイプの交差では、交差部の中心がP’である1つの交点89が生じる。
交点に基づいてグラフを構成するアルゴリズムは以下の通りである。
P={p,...,p}は、垂直方向のIWRおよび水平方向のIWRの全ての交点のセットを示している。この場合、Pの中の各pは、そのx座標およびy座標(x,y)によって特定される。ここで、p=1,....Nである。セットPが見出され、G=(X,A)がPに対応する方向性が無いグラフであるとする。グラフG=(X,A)は、交点に対して直接に関係する有限の数の頂点Xと、交点間の関係を描く有限の数の辺Aとから成る。これは、数学的には、以下のように表わされる。
Figure 2004178562
ここで、
Figure 2004178562
Figure 2004178562
ここで、dijは、点iと点jとの間のユークリッド距離を示している。また、4連鎖接続(4−chain connected)は、4つの可能な移動方向で長方形ブロックの頂点が接続されることを意味している。前述した2つの点i,jは、mindijを有する4つの接続連鎖コードによって1方向に動き回ることにより、これらの点に達し得る場合には、4連鎖接続である。
ここで、構成されたグラフを更に処理して、グラフの内部の領域をテキストブロックとして分類し、あるいは、画像のタイプに応じて同様の分類を行なっても良い。一実施形態において、グラフは、解析において、例えば黒ラインまたは破線/点線等のパターン化されたラインといったフォアグラウンドセパレータを含めることにより増大される。また、検出される写真またはグラフィックオブジェクトのエッジを、解析に含めることもできる。
また、この分割方法は、フォアグラウンドセパレータを除去するステップを含んでいても良い。まず最初に、フォアグラウンドセパレータが認識されて、1つのオブジェクトとして再構成される。パターン化されたラインを構成する成分は、要素ヒューリスティックス、空間的関係ヒューリスティックス、およびラインヒューリスティックスを解析することにより、すなわち、1方向で組み合わされた要素を構築し且つそれがラインとして分類するか否かを検出することにより接続される。パターン化されたラインから実線を再構成するための更なる方法は、ダウンサンプリングおよび/または「Document analysis system(文書解析システム)」IBM J.Res.Dev 26(1982)647−656において、K.Y.Wong,R.G.Casey,F.M.Wahlにより説明されている、ラン・レングス・スムージング・アルゴリズム(RLSA)使用することである。フォアグラウンドセパレータの検出後、フォアグラウンドセパレータは、バックグラウンドピクセルに取って代えられる。その結果、より大きな最大白長方形を構成することができ、あるいは、バックグラウンドピクセル特性を使用して、バックグラウンドセパレータを見出す任意の他の適した方法をサポートすることができる。
図10は、画像を分割するための装置を示している。この装置は、デジタル画像を入力するための入力ユニット91を有している。入力ユニットは、実際の文書からの画像を走査する電子光学スキャナ等の走査ユニット、および/またはインターネット等のネットワークからの画像を受けるデジタル通信ユニット、および/または光ディスクドライブ等の記録キャリアからデジタル情報を検索する再生ユニットを備えていても良い。入力ユニット91は、記憶ユニット92と協働する処理ユニット94に接続されている。処理ユニットは、汎用コンピュータ中央処理ユニット(CPU)および支援回路を備えていても良く、前述した分割を行なうためのソフトウェアを使用して動作する。処理ユニットは、キーボード、マウス装置、またはオペレータボタン等の制御手段を備えたユーザインタフェース95を有していても良い。処理ユニットの出力部は、ディスプレイユニット93に接続されている。ディスプレイユニットは、ディスプレイスクリーン、処理された画像を紙上に出力するための印刷ユニット、および/または磁気テープや光ディスク等の記録キャリア上に分割された画像を記憶する記録ユニットを備えていても良い。
分割されるデジタル画像として日本の新聞の一面を使用する実施形態によって、本発明を主に説明してきたが、本発明は、例えばIC設計のためのレイアウト画像における電気回路や、シティーマップ上の通りや建物など、バックグラウンド上のフィールドにレイアウトを有する任意のテキストまたは画像の任意のデジタル表示にも適している。なお、この明細書において、動詞「備える」、「含む」、「有する」及びその活用の用法は、記載された要素以外の他の要素またはステップの存在を排除しない。また、要素に先立つ単語「1つの」は、そのような要素が複数存在することを除外せず、任意の参照符号は、特許請求の範囲を限定しない。また、本発明、および全てのユニットまたは前述した手段は、適当なハードウェアおよび/またはソフトウェアによって実施することができ、幾つかの「手段」または「ユニット」は、同じ要素によって表わすことができる。また、本発明の範囲は実施形態に限定されず、本発明は、前述した個々の新規な特徴、全ての新規な特徴、または特徴の組み合わせにある。
典型的な分割方法の概略を示している。 サンプルとしての日本の新聞の一部を示している。 1方向に沿うオブジェクトの統合を示している。 オブジェクトの分割および2方向統合を示している。 ホワイトランからの最大長方形の構成を示している。 最大白長方形の構成を示している。 最大白長方形をオーバーラップさせるクリーニングを示している。 新聞の一面上のグラフを示している。 最大長方形の2つのタイプの交差部を示している。 画像を分割するための装置を示している。
符号の説明
11 入力画像
12 CCオブジェクト
13 レイアウトオブジェクト
14 CCAモジュール
15 LAモジュール
16 AFモジュール
17 記事
21 垂直方向の読み方向
22 水平方向の読み方向
23 黒ライン
31 最初の解析ステップ
32 算定閾値
33 分類ステップ
34 補正された連結成分
35 統合ステップ
36 オブジェクト
37 テキスト統合ステップ
38 テキストブロック
40、41 画像のグラフ
42 フィールド検出ステップ
43 連結成分
44 ステップ
45 読む順番
46 ライン形成ステップ
47 テキストブロック
51 ホワイトラン
52 最大白長方形
53 フォアグラウンド領域
61 ホワイトラン
62、63、64、65、66 最大白長方形
80 デジタル画像
81 グラフの頂点
82 辺
88 長方形領域
89 交点
91 入力ユニット
92 記憶ユニット
93 ディスプレイユニット
94 処理ユニット
95 ユーザインタフェース
MWR1、MWR2 最大白長方形
IWR 情報提供白長方形

Claims (15)

  1. ピクセルから成る複合画像を、画像のレイアウト要素に対応する複数のフィールドに分割する方法であって、前記ピクセルが、画素の強度および/または色を示す値を有し、前記分割する方法が、
    画像の隣り合うピクセルの長方形領域に対応し且つ画像のバックグラウンドを示すバックグラウンド特性を有する分離要素を構成するステップと、
    所定の分離方向、特に水平方向および垂直方向にほぼ向けられる前記分離要素の交差部に基づいてグラフの頂点を規定するステップ、およびフィールドセパレータに対応する頂点間のグラフの辺を規定するステップによって、画像のレイアウト構造を示すグラフを構成するステップと、
    前記グラフの辺に対応するフィールドセパレータを規定するステップとを含む、方法。
  2. 頂点を規定するステップが、
    所定の分離方向にほぼ向けられる分離要素のサブセットを構成するステップと、
    両方のサブセットから分離要素の対間の交差部を決定するステップとを含む、請求項1に記載の方法。
  3. 交差部を決定するステップが、両方のサブセットから分離要素のオーバーラップ領域を決定するステップと、該オーバーラップ領域の中心に頂点を位置付けるステップとを含む、請求項2に記載の方法。
  4. グラフを構成するステップが、頂点間のユークリッド距離を示す辺に対して加重を割り当てるステップを含む、請求項1に記載の方法。
  5. 分割する方法が、最大長方形のセットを構成するステップをさらに含み、最大長方形が、分離方向のうちの1つにおける画像の長方形部分であって、画像のバックグラウンドを示すバックグラウンド特性を有するピクセルだけを含む可能な最大の面積を有し、
    分割する方法がさらに、
    クリーニングステップにおいて前記分離要素を構成するステップを含み、前記クリーニングステップにおいて、前記最大長方形セット内にある少なくとも1対のオーバーラップする最大長方形が、情報提供長方形に取って代えられ、前記情報提供長方形が、前記オーバーラップする最大長方形の対の領域を組み合わせた領域の長方形部分であり、該長方形部分が当該分離方向で最大の可能な長さを有している、請求項1から4のいずれか一項に記載の方法。
  6. 前記クリーニングステップが、以下の少なくとも1つのステップ、すなわち、
    所定の値を下回る長さを有する最大長方形を削除するステップと、
    所定の値を下回る幅を有する最大長方形を削除するステップと、
    所定の値を下回る、長い辺の長さを短い辺の長さで割ったものであるアスペクト比を有する最大長方形を削除するステップとをさらに含んでいる、請求項5に記載の方法。
  7. 最大長方形を構成する前記ステップの前に、以下の少なくとも1つのステップ、すなわち、
    孤立して外れたピクセルの値を、隣り合うピクセルの平均値に適合させることによりノイズを除去するステップと、
    ピクセルを白または黒のいずれかに変換することによりハーフトーン化するステップと、
    ダウンサンプリングによりピクセルの数を減少させるステップとによって、画像が予め処理される、請求項5または6に記載の方法。
  8. 最大長方形を構成する前記ステップの前に、前記バックグラウンド特性から逸脱するピクセル値のパターンを有する画像のフォアグラウンド内のオブジェクトである、特に黒ラインまたは破線または点線といったフォアグラウンドセパレータ要素を検出するとともに、検出されたフォアグラウンドセパレータのピクセルを、バックグラウンド特性を有するピクセルに取って代えることにより、画像がフィルタリングされる、請求項5から7のいずれか一項に記載の方法。
  9. 最大長方形を構成するステップが、
    最大ランのリストを決定するステップを含み、前記最大ランが、バックグラウンド特性を有するピクセルの真っ直ぐなラインであり、該ラインが、バックグラウンド特性を有するピクセルだけを含む可能な最大の長さを有し、
    前記最大長方形を構成するステップがさらに、
    前記リストから特定の最大ランを長方形として取得するステップと、
    次の最大ランに関し、当該次の最大ランが前記長方形のピクセルと幅方向で隣り合うピクセルを含んでいるか否かについて決定することにより、延長の可能性があるか否かについて前記長方形を検査するステップと、
    延長の可能性がある場合には、次の最大ランおよび前記長方形のピクセルを含む最大面積を有する新たな長方形を構成することにより、前記長方形を延長するステップと、
    延長の可能性がない場合には、前記長方形を前記最大長方形のセットに加えるステップと、
    前記新たな長方形内に完全に含まれる任意の最大ランを前記リストから削除するステップとを含む、請求項5から8のいずれか一項に記載の方法。
  10. 分離要素を構成する前記ステップが、2つの直交する分離方向で画像を処理するステップを含む、請求項1から9のいずれか一項に記載の方法。
  11. 分離要素を構成する前記ステップが、前記バックグラウンド特性から逸脱するピクセル値のパターンを有する画像のフォアグラウンド内のオブジェクトであるグラフィック要素を検出するステップを含み、分離要素が、グラフィック要素の周囲に構成される、請求項1から10のいずれか一項に記載の方法。
  12. 少なくとも1つのフィールドが、テキストフィールドとして分類され、該テキストフィールド内で読む順番が検出されるとともに、フォアグラウンド成分が、前記読む順番で、前記テキストフィールド内のテキストラインに加えられる、請求項1に記載の方法。
  13. ピクセルから成る画像を複数のフィールドに分割するためのコンピュータプログラム製品であって、請求項1から12のいずれか一項に記載の方法をプロセッサに実行させるようにそのプログラムが動作する、コンピュータプログラム製品。
  14. ピクセルから成る複合画像を、画像のレイアウト要素に対応する複数のフィールドに分割する装置であって、前記ピクセルが、画素の強度および/または色を示す値を有し、前記分割する装置が、
    画像を入力するための入力ユニット(91)と、
    画像のレイアウト構造を示すグラフを構成する処理ユニット(94)とを備え、該処理ユニット(94)が、
    隣り合うピクセルの長方形領域に対応し且つ画像のバックグラウンドを示すバックグラウンド特性を有する分離要素を構成し、
    異なる分離方向、特に水平方向および垂直方向にほぼ向けられる前記分離要素の交差部に基づいてグラフの頂点を規定し、
    前記分離要素に対応する頂点間のグラフの辺を規定することによって前記グラフを構成する、装置。
  15. 分割後に画像のフィールドを表示するディスプレイユニット(93)を備えている、請求項14に記載の装置。
JP2003364140A 2002-11-22 2003-10-24 グラフによる画像分割 Expired - Fee Related JP4538214B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP02079880 2002-11-22

Publications (2)

Publication Number Publication Date
JP2004178562A true JP2004178562A (ja) 2004-06-24
JP4538214B2 JP4538214B2 (ja) 2010-09-08

Family

ID=32695562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003364140A Expired - Fee Related JP4538214B2 (ja) 2002-11-22 2003-10-24 グラフによる画像分割

Country Status (5)

Country Link
US (1) US7570811B2 (ja)
EP (1) EP1439486B1 (ja)
JP (1) JP4538214B2 (ja)
AT (1) ATE418117T1 (ja)
DE (1) DE60325322D1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9898157B2 (en) 2014-05-08 2018-02-20 International Business Machines Corporation Generation of a filter that separates elements to be displayed from elements constituting data

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7995841B2 (en) * 2007-09-24 2011-08-09 Microsoft Corporation Hybrid graph model for unsupervised object segmentation
TWI413937B (zh) * 2008-08-11 2013-11-01 Asia Optical Co Inc 影像辨識方法與裝置
AU2010257298B2 (en) * 2010-12-17 2014-01-23 Canon Kabushiki Kaisha Finding text regions from coloured image independent of colours
US8478032B2 (en) * 2011-05-24 2013-07-02 Hewlett-Packard Development Company, L.P. Segmenting an image
CN104346615B (zh) * 2013-08-08 2019-02-19 北大方正集团有限公司 版式文档中复合图的提取装置和提取方法
US9852114B2 (en) 2014-06-18 2017-12-26 Vmware, Inc. HTML5 graph overlays for application topology
US9740792B2 (en) 2014-06-18 2017-08-22 Vmware, Inc. Connection paths for application topology
US9836284B2 (en) * 2014-06-18 2017-12-05 Vmware, Inc. HTML5 graph layout for application topology
US9436445B2 (en) 2014-06-23 2016-09-06 Vmware, Inc. Drag-and-drop functionality for scalable vector graphics
US10839573B2 (en) * 2016-03-22 2020-11-17 Adobe Inc. Apparatus, systems, and methods for integrating digital media content into other digital media content
CN118397078A (zh) * 2024-02-21 2024-07-26 成都维海德科技有限公司 屏幕定位方法、装置、电子设备及计算机可读存储介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6470095B2 (en) * 1998-10-13 2002-10-22 Xerox Corporation Automatic extraction of text regions and region borders for an electronic work surface

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4288852A (en) * 1979-11-28 1981-09-08 General Motors Corporation Method and apparatus for automatically determining sheet metal strain
JPS6180374A (ja) * 1984-09-21 1986-04-23 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション 可変走査領域による細線化処理の方法及び装置
EP0461817A3 (en) * 1990-06-15 1993-11-18 American Telephone & Telegraph Image segmenting apparatus and methods
EP0472313B1 (en) * 1990-08-03 1998-11-11 Canon Kabushiki Kaisha Image processing method and apparatus therefor
US5335298A (en) * 1991-08-19 1994-08-02 The United States Of America As Represented By The Secretary Of The Army Automated extraction of airport runway patterns from radar imagery
JP2579397B2 (ja) * 1991-12-18 1997-02-05 インターナショナル・ビジネス・マシーンズ・コーポレイション 文書画像のレイアウトモデルを作成する方法及び装置
US5335290A (en) * 1992-04-06 1994-08-02 Ricoh Corporation Segmentation of text, picture and lines of a document image
US5680479A (en) * 1992-04-24 1997-10-21 Canon Kabushiki Kaisha Method and apparatus for character recognition
US5321768A (en) * 1992-09-22 1994-06-14 The Research Foundation, State University Of New York At Buffalo System for recognizing handwritten character strings containing overlapping and/or broken characters
US5416849A (en) * 1992-10-21 1995-05-16 International Business Machines Corporation Data processing system and method for field extraction of scanned images of document forms
ATE196205T1 (de) * 1993-06-30 2000-09-15 Ibm Verfahren zum segmentieren von bildern und klassifizieren von bildelementen zur dokumentverarbeitung
US5588072A (en) * 1993-12-22 1996-12-24 Canon Kabushiki Kaisha Method and apparatus for selecting blocks of image data from image data having both horizontally- and vertically-oriented blocks
JPH07220091A (ja) * 1994-02-04 1995-08-18 Canon Inc 画像処理装置及び方法
US5574802A (en) * 1994-09-30 1996-11-12 Xerox Corporation Method and apparatus for document element classification by analysis of major white region geometry
EP0724229B1 (en) * 1994-12-28 2001-10-10 Canon Kabushiki Kaisha Image processing apparatus and method
US5745596A (en) * 1995-05-01 1998-04-28 Xerox Corporation Method and apparatus for performing text/image segmentation
US5778092A (en) * 1996-12-20 1998-07-07 Xerox Corporation Method and apparatus for compressing color or gray scale documents
US6226402B1 (en) * 1996-12-20 2001-05-01 Fujitsu Limited Ruled line extracting apparatus for extracting ruled line from normal document image and method thereof
US6167150A (en) * 1998-07-24 2000-12-26 Cognex Corporation Method and apparatus for detecting extended defects in an object
US6263113B1 (en) * 1998-12-11 2001-07-17 Philips Electronics North America Corp. Method for detecting a face in a digital image
US6577762B1 (en) * 1999-10-26 2003-06-10 Xerox Corporation Background surface thresholding
US6629292B1 (en) * 2000-10-06 2003-09-30 International Business Machines Corporation Method for forming graphical images in semiconductor devices
US6987588B2 (en) * 2001-06-25 2006-01-17 Xerox Corporation Text and image quality enhancement
JP4390523B2 (ja) * 2002-11-22 2009-12-24 オセ−テクノロジーズ・ベー・ヴエー 最小領域による合成画像の分割
DK1688842T3 (da) * 2005-01-26 2008-06-16 Oce Tech Bv Automatiseret ydelsesanalyse og fejludbedring

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6470095B2 (en) * 1998-10-13 2002-10-22 Xerox Corporation Automatic extraction of text regions and region borders for an electronic work surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9898157B2 (en) 2014-05-08 2018-02-20 International Business Machines Corporation Generation of a filter that separates elements to be displayed from elements constituting data

Also Published As

Publication number Publication date
US20040140992A1 (en) 2004-07-22
DE60325322D1 (de) 2009-01-29
EP1439486A1 (en) 2004-07-21
US7570811B2 (en) 2009-08-04
EP1439486B1 (en) 2008-12-17
ATE418117T1 (de) 2009-01-15
JP4538214B2 (ja) 2010-09-08

Similar Documents

Publication Publication Date Title
JP3950777B2 (ja) 画像処理方法、画像処理装置および画像処理プログラム
US8532374B2 (en) Colour document layout analysis with multi-level decomposition
Song et al. A Hough transform based line recognition method utilizing both parameter space and image space
JP5854802B2 (ja) 画像処理装置、画像処理方法、及びコンピュータプログラム
US9965695B1 (en) Document image binarization method based on content type separation
JPH0652354A (ja) スキュー補正方法並びにスキュー角検出方法並びにドキュメントセグメンテーションシステムおよびスキュー角検出装置
CN111460355B (zh) 一种页面解析方法和装置
JP3204259B2 (ja) 文字列抽出方法、手書き文字列抽出方法、文字列抽出装置、および画像処理装置
JP4538214B2 (ja) グラフによる画像分割
EP1017011A2 (en) Block selection of table features
JP2004288158A (ja) 最短サイクルによる画像分割
US10586125B2 (en) Line removal method, apparatus, and computer-readable medium
JP4390523B2 (ja) 最小領域による合成画像の分割
JP2004282701A5 (ja)
CN111832390B (zh) 一种手写古文字检测方法
Lehal A complete machine-printed Gurmukhi OCR system
US20050238235A1 (en) Run length based connected components and contour following for enhancing the performance of circled region extraction algorithm
EP1439485B1 (en) Segmenting a composite image via basic rectangles
JP3476595B2 (ja) 画像領域分割方法、および画像2値化方法
EP1439484B1 (en) Segmenting an image via shortest cycles
Kumar et al. A Hybrid Approach for Complex Layout Detection of Newspapers in Gurumukhi Script Using Deep Learning
AU2007249098B2 (en) Method of multi-level decomposition for colour document layout analysis
Lehal et al. A complete OCR system for Gurmukhi script
JP2768249B2 (ja) 文書画像レイアウト解析装置
JP2003271973A (ja) 画像処理方法および画像処理プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100119

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees