JP2004177823A - Liquid crystal display - Google Patents

Liquid crystal display Download PDF

Info

Publication number
JP2004177823A
JP2004177823A JP2002346261A JP2002346261A JP2004177823A JP 2004177823 A JP2004177823 A JP 2004177823A JP 2002346261 A JP2002346261 A JP 2002346261A JP 2002346261 A JP2002346261 A JP 2002346261A JP 2004177823 A JP2004177823 A JP 2004177823A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
display device
approximately
panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002346261A
Other languages
Japanese (ja)
Inventor
Shin Tabata
伸 田畑
Takahiro Nishioka
孝博 西岡
Yasunori Niwano
泰則 庭野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Melco Display Technology Inc
Original Assignee
Mitsubishi Electric Corp
Melco Display Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Melco Display Technology Inc filed Critical Mitsubishi Electric Corp
Priority to JP2002346261A priority Critical patent/JP2004177823A/en
Publication of JP2004177823A publication Critical patent/JP2004177823A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid crystal display which prevents coloring of display due to highness of induced birefringence of a liquid crystal layer. <P>SOLUTION: The liquid crystal display is a semitransmission type liquid crystal display wherein liquid crystal alignment is parallel alignment. In a transmission type liquid crystal display element having a polarizing plate, a retardation film of nearly λ/2 to wavelength λ of light, a retardation film of nearly λ/4, and a glass substrate of a panel on the surface of the panel on the viewer side of the liquid crystal display from the viewer side, the slow phase axis of a phase difference compensation layer constituted by superposing the two retardation films on each other nearly coincides with the alignment direction of a liquid crystal and the induced birefringence value of the phase difference compensation layer is set to be lower than λ/4. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は液晶表示装置に関する。さらに詳しくは液晶層の複屈折が大きくなったことによる表示の着色を防止することができる液晶表示装置に関する。
【0002】
【従来の技術】
液晶表示装置は大きく反射型、透過型の2種に大別することができ、携帯電話用の表示装置のように、使用環境に応じて、その両者を必要とする場合、半透過型と呼ばれる表示素子構造が用いられている。この半透過型液晶表示素子の基本的な構造の概要は先行出願等に開示されている(特許文献1参照)。
【0003】
特許文献1に示された先行出願によると、半透過型液晶表示素子は同一画素内に透過表示を行なう領域A(図1参照)と反射表示を行なう領域B(図1参照)を有し、携帯電話用表示素子に用いた場合、通常の操作時には、表示素子の背面に設置したバックライトを点灯させ、液晶表示素子を透過してきたバックライトからの出射光による領域Aの表示を観察し、待機時にはバックライトを消灯し、液晶表示素子内で反射した外光による領域Bの表示を観察するものである。したがって使用環境によらず良好な表示を行なうことができ、また消費電力も少なくすることができるため、携帯電話等の表示素子に適している。
【0004】
特許文献1に示された半透過型液晶表示装置の構造例を図1に示す。液晶層22、23は基板21a、21bに狭持された構造をしており、観察者側(図の上方)に円偏光板11を、背面側(図の下)に円偏光板12を有しており、基板21a上の透明電極33および基板21b上の透明電極33、導電性を有する反射鏡31間に印加される電界による液晶層22、23の複屈折変化により表示を行なうことができる。
【0005】
一般に液晶層22と23の厚さは異なって設定され、その違いは基板21b上の有機膜32の厚さで調整することができる。その調整手法、作成手法は他の先行出願に詳しく、また本出願の目的ではないので省略する(特許文献2参照)。
【0006】
つぎに図2の座標系を用いて各構成材料の光学的な機能等を説明する。図2において、T、Tは透過軸方向、L、L、L、Lは遅相軸方向、およびR、Rはラビング軸方向である。
【0007】
図2において、基板21aと21bのラビング方向は一致しており、いわゆる平行配向(反平行配向を含む)と呼ばれる液晶の配向状態としている。両基板面上の電極に電界を印加すると、正の誘電異方性の液晶材料を用いている場合、液晶分子は、電界無印加時の基板面にほぼ平行な配向状態から徐々に基板面から立ち上がった配向へ変化し、それにともなって、複屈折性が減少する。もっとも基本的な構成の場合、電界無印加時の複屈折を、反射表示を行なう液晶層22では光の波長λに対してλ/4、透過表示を行なう液晶層23ではλ/2となるように液晶材料およびおのおのの液晶層の厚さを調整する。電界を印加し、液晶分子が基板面にほぼ垂直となったときには複屈折はほぼ0となるため、電圧印加による複屈折性の変化は、反射部でλ/4(反射部では入射光は往復するので、実質的にはλ/4×2=λ/2)、透過部ではλ/2となる。実際には電圧印加時の複屈折は完全には0にはならないので、液晶層22、23の電圧無印加時の複屈折はやや大きめに設定することが多い。
【0008】
位相差板2と位相差板3は2枚合わせて広い波長範囲でλ/4の特性を示すように配置するもので、一般的には位相差板2はほぼλ/2、位相差板3はλ/4の特性を有する一軸延伸フィルムを用いる。ただし近年、単独で用いても広い波長範囲でλ/4の特性を示すフィルムも開発されており、その場合、位相差板2は省略することが可能である。
【0009】
位相差板5、6も2、3と同様に合わせてλ/4となるように配置されており、特性に応じて位相差板5は省略可能である。
【0010】
以上より先行例に記載されている代表的な構造およびおのおのの部材の機能をまとめると以下のようになる。
偏光板1:入射、出射光を直線偏光に変換
位相差板2、3:合わせてλ/4
液晶層22:複屈折λ/4(反射により往復するためλ/4×2=λ/2)、電圧印加時ほぼ0
液晶層23:複屈折λ/2、電圧印加時ほぼ0
位相差板5、6:合わせてλ/4
偏光板4:バックライトの光を直線偏光に変換
【0011】
このとき表示のメカニズムは以下のようになる。
【0012】
<<反射表示>>
(白表示:電圧無印加)
位相差板2,3は入射時λ/4、反射時λ/4で合計λ/2として寄与する。
【0013】
液晶層は往復λ/2として寄与する。合計λになる。
【0014】
したがって偏光板1を通った直線偏光は1周期位相がずれ、もとの偏光状態で偏光板1に戻ってくるため偏光板1を透過でき、白表示となる。
【0015】
(黒表示:電圧印加により液晶層の複屈折=ほぼ0)
前記と同じで位相差板は往復でλ/2として寄与する。
【0016】
液晶層は0。合計λ/2になる。
【0017】
偏光板1を通った直線偏光は、1/2周期位相がずれるため、もとの偏光状態から90°回転して偏光板1に戻ってくるため偏光板1を透過できず、黒表示となる。
【0018】
<<透過表示>>
(白表示:電圧無印加)
位相差板2、3と5、6でλ/4×2=λ/2になる。
【0019】
液晶層はλ/2になる。合計λになる。
【0020】
偏光板4を透過した直線偏光は、同じ偏光状態で偏光板1に到達するため、偏光板1と4の透過軸をほぼ一致させておけば白表示となる。
【0021】
(黒表示:電圧印加により液晶層の複屈折=ほぼ0)
位相差板は合計λ/2になる。
【0022】
液晶層は0。合計λ/2になる。
【0023】
偏光板4を透過した直線偏光は、90°回転して偏光板1に到達するため、偏光板1と4の透過軸をほぼ一致させておけば透過することができず黒表示となる。
【0024】
【特許文献1】
特開2000−187220号公報
【特許文献2】
特開平10−186359号公報
【0025】
【発明が解決しようとする課題】
現在使用可能な液晶材料の屈折率異方性(Δn)は波長550nmに対して0.065〜0.1であり、これらの液晶を用いて反射部分で複屈折(Δnd:dは液晶層厚)をλ/4とするためには、2.1ミクロン以下のパネルギャップとしなければならないが、現状のパネル製造プロセスでは2.5ミクロンが安定して作成できる下限である。したがって反射部分の液晶層の複屈折が大きくなってしまい、まず第1の問題として着色が大きくなる。一般にこのような場合、黄色い着色が顕著となり、表示品位を著しく低下させると言う問題がある。
【0026】
また本出願の液晶表示装置では、液晶層の液晶配向を平行配向のみについて記載しているが、従来は液晶配向をねじれ配向(上下基板間で液晶の配向方向が異なり、上下基板のあいだで液晶分子がねじれた配向をしている)とした半透過型液晶表示素子も多く開発されていた。このねじれ配向を用いた場合、反射部分に関しては先に説明したメカニズムと同様に白黒の表示を行なうことができるが、透過部分に関しては白表示時に、上偏光板に到達したとき楕円偏光となり、その1偏光成分しか透過できないので光の利用効率が本件の平行配向としたときに比べ1/2となると言う問題があり、平行配向を用いることで大きな改善をすることができたという経緯がある。
【0027】
先に示した着色の問題を解決するために、液晶層の観察者側の偏光板、位相差板を調整すると、多くの場合、せっかく平行配向を採用したことによって得られた、透過部分での高い透過率を犠牲にすることになる。
【0028】
そこで本発明では、平行配向を用いた高い透過率を充分に維持しながら、反射部分の着色を低減するパネル構成を提案する。
【0029】
【課題を解決するための手段】
液晶表示素子の観察者側の位相差板3または位相差板2と3を合わせて形成される位相差層の遅相軸を液晶の配向方向とほぼ一致させ、さらに複屈折値を光の波長λに対してλ/4より小さくする。複屈折値をλ/4より小さくする程度は、反射部の液晶層の複屈折値がλ/4を超えた量とほぼ等しくする。
【0030】
つまり考え方としては液晶層は本当は2ミクロン程度とすることがパネル設計面からは光学的には適しているが、プロセス的制約から2.5ミクロン以上としなければならず、液晶層の複屈折が大きくなりすぎ、黄色く着色してしまう。またこの黄色を防止すると光の利用効率が低下してしまう。
【0031】
液晶層の観察者側には位相差層があり、この位相差値(複屈折値)を理想的な値からやや小さくし、液晶層の一部を位相差板と考える。そうすると液晶層が厚く、複屈折が大きくなっても位相差板の位相差値を調整することで不要な複屈折値を吸収することができ、着色を低減することができる。
【0032】
【発明の実施の形態】
本発明における液晶配向はいわゆる平行配向と呼ばれるもので、液晶を挟持する2枚の電極基板面の配向処理方向がほぼ等しく、液晶材料がねじれることなく2枚の基板間にまっすぐ配向した状態のものである。また平行配向と呼ばれるものは平行配向と反平行配向の2種類があり、その両者を合わせてここでは平行配向と呼んでいる。つまり液晶配向を詳細に説明すると、液晶分子は配向処理をした基板面に対し数度程度立ち上がって配向している。液晶分子の面内での配向方向が同じであっても、この立ち上がりが同じ方向の場合と反対方向の場合とがあり、前者を狭義の平行配向、後者を反平行配向と呼ぶことがあり、この両者を合わせた配向状態を広義の平行配向と呼んでいる。ここではこの広義の平行配向の意味で現している。
【0033】
また液晶配向と位相差フィルム3の遅相軸、または位相差フィルム2と3を合わせた時の遅相軸はほぼ同一であるときもっとも効果が大きい。両者のなす角が30度以上では効果が薄くなり、良好な表示を得ることは困難であり、30度以下のとき良好な表示を得ることができる。
【0034】
実施例1
表1のような条件の半透過型パネルを作成し、位相差板3のみ変化させた。液晶の配向方向は90°方向に平行(反平行)となるようにした。
【0035】
そのときの反射特性を図3〜4に示した(なお、図3において、白丸は色度(x,y)のx成分の数値、黒丸はy成分の数値をそれぞれ表わす)。
【0036】
本実施例での液晶層の複屈折は、反射部で163nmであり、理想的なλ/4(約140nm)より大きく、通常では反射光が黄色く着色し、良好な表示を得ることができなかった(評価はD65換算で行なった)。
【0037】
位相差板3を変化させると、約100nm以上の範囲で透過率は30%を超え、また位相差値が小さいほど白色色度が良好になることが確認できた(位相差板を通常どおり140nmとすると白色色度は(0.35、0.38)となり、黄色い着色により良好な表示は得られなかった)。両者の特性はトレードオフの関係にあり、100〜130nmの範囲では、色特性、透過率ともほぼ満足できる特性を示すことができ、さらに最適化した結果、105nmとしたときにもっとも総合的に見たときに良好な特性を示した。同時に透過特性もすぐれており、良好な表示品位を得た。
【0038】
本特性は上下2枚の偏光板を両方とも90°回転した場合もほぼ同様の良好な特性となった。
【0039】
また位相差板6をハイブリッドフィルムとすることも可能で、たとえば日石三菱社製のNHフィルム(商品名)とすることで視野角特性を拡大することができる。
【0040】
さらに本実施例では位相差板をパネル上下に2枚ずつ用いて、広帯域λ/4フィルムとして用いたが、波長分散の小さな位相差板を用いた場合、上下1枚に省略することができる。それにより最適化が容易となり、コスト削減に有利である。
【0041】
【表1】

Figure 2004177823
【0042】
実施例2
表2のような条件の半透過型パネルを作成し、位相差板3のみ変化させた。液晶の配向方向は90°方向に平行(反平行)となるようにした。
【0043】
そのときの反射特性を図5〜6に示した(なお、図5において、白丸は色度(x,y)のx成分の数値、黒丸はy成分の数値をそれぞれ表わす)。
【0044】
本実施例での液晶層の複屈折は、反射部で163nmであり、理想的なλ/4(約140nm)より大きく、通常では反射光が黄色く着色し、良好な表示を得ることができなかった(評価はD65換算で行なった)。
【0045】
位相差板3を変化させると、約100nm以上の範囲で透過率は30%を超え、また位相差値が小さいほど白色色度が良好になることが確認できた(位相差板を通常どおり140nmとすると白色色度は(0.35、0.37)となり、黄色い着色により良好な表示は得られなかった)。両者の特性はトレードオフの関係にあり、90〜125nmの範囲では、色特性、透過率ともほぼ満足できる特性を示すことができ、さらに最適化した結果、100nmとしたときにもっとも総合的に見たときに良好な特性を示した。同時に透過特性もすぐれており、良好な表示品位を得た。
【0046】
本特性は上下2枚の偏光板を両方とも90°回転した場合もほぼ同様の良好な特性となった。
【0047】
また位相差板6をハイブリッドフィルムとすることも可能で、たとえば日石三菱社製のNHフィルム(商品名)とすることで視野角特性を拡大することができる。
【0048】
さらに本実施例では位相差板をパネル上下に2枚ずつ用いて、広帯域λ/4フィルムとして用いたが、波長分散の小さな位相差板を用いた場合、上下1枚に省略することができる。それにより最適化が容易となり、コスト削減に有利である。
【0049】
【表2】
Figure 2004177823
【0050】
実施例3
表3のような条件の半透過型パネルを作成し、位相差板3のみ変化させた。液晶の配向方向は90°方向に平行(反平行)となるようにした。
【0051】
そのときの反射特性を図7〜8に示した(なお、図7において、白丸は色度(x,y)のx成分の数値、黒丸はy成分の数値をそれぞれ表わす)。
【0052】
本実施例での液晶層の複屈折は、反射部で163nmであり、理想的なλ/4(約140nm)より大きく、通常では反射光が黄色く着色し、良好な表示を得ることができなかった(評価はD65換算で行なった)。
【0053】
位相差板3を変化させると、約100nm以上の範囲で透過率は30%を超え、また位相差値が小さいほど白色色度が良好になることが確認できた(位相差板を通常どおり140nmとすると白色色度は(0.35、0.39)となり、黄色い着色により良好な表示は得られなかった)。両者の特性はトレードオフの関係にあり、90〜125nmの範囲では、色特性、透過率ともほぼ満足できる特性を示すことができ、さらに最適化した結果、100nmとしたときにもっとも総合的に見たときに良好な特性を示した。同時に透過特性もすぐれており、良好な表示品位を得た。
【0054】
同様条件のパネルについて位相差板3を100nmとし、その設置角度の依存性を求め、その結果を図9〜10に示した(なお、図9において、白丸は色度(x,y)のx成分の数値、黒丸はy成分の数値をそれぞれ表わす)。90°を中心に−20°〜0°の範囲で透過率30%を超え、50〜110°(90°を中心に−40°〜20°)の範囲で良好な白色色度を示した。種々の特性にはトレードオフ両者の特性はトレードオフの関係にあり、70〜100°の範囲では、色特性、透過率ともほぼ満足できる特性を示すことができ、さらに最適化した結果、72°のときもっともすぐれた特性を示した。
【0055】
本特性は上下2枚の偏光板を両方とも90°回転した場合もほぼ同様の良好な特性となった。
【0056】
また位相差板6をハイブリッドフィルムとすることも可能で、たとえば日石三菱社製NHフィルムとすることで視野角特性を拡大することができる。
【0057】
さらに本実施例では位相差板をパネル上下に2枚ずつ用いて、広帯域λ/4フィルムとして用いたが、波長分散の小さな位相差板を用いた場合、上下1枚に省略することができる。それにより最適化が容易となり、コスト削減に有利である。
【0058】
【表3】
Figure 2004177823
【0059】
【発明の効果】
従来では、液晶層の複屈折値は、プロセス面の制約、液晶材料の制約より、動作原理から考えられる値より大きく設定せざるを得なかったが、本発明によれば、この差を、液晶の配向方向と遅相軸をほぼ一致させた位相差フィルムで吸収することにより、液晶層の複屈折が大きくなったことによる表示の着色を防止することができる。
【図面の簡単な説明】
【図1】本発明が適用される半透過型液晶表示装置の構造例を示す断面説明図である。
【図2】図1の各構成要素の光学的機能を模式的に示す説明図である。
【図3】本発明の液晶表示装置の実施例1の反射特性として位相差と色度との関係を示すグラフである。
【図4】本発明の液晶表示装置の実施例1の反射特性として位相差と透過率との関係を示すグラフである。
【図5】本発明の液晶表示装置の実施例2の反射特性として位相差と色度との関係を示すグラフである。
【図6】本発明の液晶表示装置の実施例2の反射特性として位相差と透過率との関係を示すグラフである。
【図7】本発明の液晶表示装置の実施例3の反射特性として位相差と色度との関係を示すグラフである。
【図8】本発明の液晶表示装置の実施例3の反射特性として位相差と透過率との関係を示すグラフである。
【図9】本発明の液晶表示装置の実施例3の反射特性として位相差板の設置角度と色度との関係を示すグラフである。
【図10】本発明の液晶表示装置の実施例3の反射特性として位相差板の設置角度と透過率との関係を示すグラフである。
【符号の説明】
1、4 偏光板
2、3、5、6 位相差板
7 バックライト
21a、21b 基板[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a liquid crystal display device. More specifically, the present invention relates to a liquid crystal display device capable of preventing display coloring due to an increase in birefringence of a liquid crystal layer.
[0002]
[Prior art]
Liquid crystal display devices can be broadly classified into two types, a reflection type and a transmission type. When both are required according to the use environment, such as a display device for a mobile phone, it is called a transflective type. A display element structure is used. An outline of the basic structure of this transflective liquid crystal display element is disclosed in a prior application or the like (see Patent Document 1).
[0003]
According to the prior application disclosed in Patent Document 1, the transflective liquid crystal display element has a region A (see FIG. 1) for performing transmissive display and a region B (see FIG. 1) for performing reflective display in the same pixel, When used for a mobile phone display element, during normal operation, the backlight installed on the back of the display element is turned on, and the display of the area A by the light emitted from the backlight transmitted through the liquid crystal display element is observed. During standby, the backlight is turned off, and the display of the area B due to external light reflected in the liquid crystal display element is observed. Accordingly, favorable display can be performed regardless of the use environment and power consumption can be reduced, so that the display device is suitable for a display element of a mobile phone or the like.
[0004]
FIG. 1 shows a structural example of a transflective liquid crystal display device disclosed in Patent Document 1. The liquid crystal layers 22 and 23 have a structure sandwiched between the substrates 21a and 21b, and have the circularly polarizing plate 11 on the observer side (upper side in the figure) and the circularly polarizing plate 12 on the back side (lower side in the figure). The display can be performed by changing the birefringence of the liquid crystal layers 22 and 23 due to the electric field applied between the transparent electrode 33 on the substrate 21a, the transparent electrode 33 on the substrate 21b, and the reflecting mirror 31 having conductivity. .
[0005]
Generally, the thicknesses of the liquid crystal layers 22 and 23 are set differently, and the difference can be adjusted by the thickness of the organic film 32 on the substrate 21b. The adjustment method and the preparation method are detailed in other prior applications and are not the object of the present application, and thus will be omitted (see Patent Document 2).
[0006]
Next, the optical function and the like of each constituent material will be described using the coordinate system shown in FIG. In FIG. 2, T 1 and T 2 are transmission axis directions, L 1 , L 2 , L 3 , and L 4 are slow axis directions, and R 1 and R 2 are rubbing axis directions.
[0007]
In FIG. 2, the rubbing directions of the substrates 21a and 21b are the same, and the liquid crystal is in a so-called parallel alignment (including anti-parallel alignment). When an electric field is applied to the electrodes on both substrate surfaces, when a liquid crystal material having a positive dielectric anisotropy is used, the liquid crystal molecules gradually move from the substrate surface from an alignment state substantially parallel to the substrate surface when no electric field is applied. The orientation changes to a rising orientation, and the birefringence decreases accordingly. In the most basic configuration, the birefringence when no electric field is applied is λ / 4 with respect to the wavelength λ of light in the liquid crystal layer 22 for reflective display and λ / 2 for the liquid crystal layer 23 for transmissive display. Adjust the thickness of the liquid crystal material and each liquid crystal layer. When an electric field is applied and the liquid crystal molecules become almost perpendicular to the substrate surface, the birefringence becomes almost 0. Therefore, the change in the birefringence due to the voltage application is λ / 4 at the reflection part (in the reflection part, incident light reciprocates. Λ / 4 × 2 = λ / 2), and λ / 2 in the transmission part. In practice, the birefringence when a voltage is applied does not become completely zero, so that the birefringence of the liquid crystal layers 22 and 23 when no voltage is applied is often set to be slightly larger.
[0008]
The two phase difference plates 2 and 3 are arranged so as to exhibit a characteristic of λ / 4 over a wide wavelength range. Generally, the phase difference plate 2 is approximately λ / 2 and the phase difference plate 3 Uses a uniaxially stretched film having a property of λ / 4. However, in recent years, a film exhibiting a characteristic of λ / 4 in a wide wavelength range even when used alone has been developed. In that case, the retardation plate 2 can be omitted.
[0009]
The retardation plates 5 and 6 are also arranged so as to be λ / 4 in the same manner as 2 and 3, and the retardation plate 5 can be omitted according to the characteristics.
[0010]
From the above, the typical structure and the function of each member described in the prior art are summarized as follows.
Polarizing plate 1: Incoming and outgoing light is converted into linearly polarized light. Phase difference plates 2, 3: Total λ / 4
Liquid crystal layer 22: birefringence λ / 4 (λ / 4 × 2 = λ / 2 due to reciprocation by reflection), almost 0 when voltage is applied
Liquid crystal layer 23: birefringence λ / 2, almost 0 when voltage is applied
Phase difference plates 5 and 6: combined λ / 4
Polarizing plate 4: Converts light from backlight to linearly polarized light
At this time, the display mechanism is as follows.
[0012]
<< Reflection display >>
(White display: no voltage applied)
The phase difference plates 2 and 3 contribute λ / 2 at the time of incidence and λ / 4 at the time of reflection as a total λ / 2.
[0013]
The liquid crystal layer contributes as a round trip λ / 2. Totals λ.
[0014]
Accordingly, the linearly polarized light that has passed through the polarizing plate 1 is shifted in phase by one period and returns to the polarizing plate 1 in the original polarization state, so that the linearly polarized light can pass through the polarizing plate 1 and display white.
[0015]
(Black display: Birefringence of liquid crystal layer by voltage application = almost 0)
As described above, the phase difference plate contributes as λ / 2 in a reciprocating manner.
[0016]
The liquid crystal layer is 0. The total is λ / 2.
[0017]
The linearly polarized light that has passed through the polarizing plate 1 has a phase shift of 周期 period, and thus returns to the polarizing plate 1 after being rotated 90 ° from the original polarization state. .
[0018]
<< Transparent display >>
(White display: no voltage applied)
Λ / 4 × 2 = λ / 2 for the phase difference plates 2, 3, 5 and 6.
[0019]
The liquid crystal layer becomes λ / 2. Totals λ.
[0020]
Since the linearly polarized light transmitted through the polarizing plate 4 reaches the polarizing plate 1 in the same polarization state, a white display is obtained if the transmission axes of the polarizing plates 1 and 4 are almost matched.
[0021]
(Black display: Birefringence of liquid crystal layer by voltage application = almost 0)
The retardation plate has a total of λ / 2.
[0022]
The liquid crystal layer is 0. The total is λ / 2.
[0023]
The linearly polarized light that has passed through the polarizing plate 4 reaches the polarizing plate 1 after being rotated by 90 °. Therefore, if the transmission axes of the polarizing plates 1 and 4 are almost aligned, the linearly polarized light cannot be transmitted and black display is performed.
[0024]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-187220 [Patent Document 2]
JP-A-10-186359
[Problems to be solved by the invention]
Currently available liquid crystal materials have a refractive index anisotropy (Δn) of 0.065 to 0.1 with respect to a wavelength of 550 nm, and a birefringence (Δnd: d is a thickness of the liquid crystal layer) at a reflection portion using these liquid crystals. In order to make λ / 4), the panel gap must be 2.1 microns or less, but 2.5 microns is the lower limit for stable production in the current panel manufacturing process. Therefore, the birefringence of the liquid crystal layer in the reflective portion becomes large, and first, coloring becomes large as a first problem. Generally, in such a case, there is a problem that yellow coloring is remarkable and display quality is remarkably reduced.
[0026]
Further, in the liquid crystal display device of the present application, the liquid crystal alignment of the liquid crystal layer is described only for the parallel alignment. However, conventionally, the liquid crystal alignment is twisted (the alignment direction of the liquid crystal is different between the upper and lower substrates, and the liquid crystal is Many transflective liquid crystal display elements (in which molecules are twisted) have been developed. When this twist orientation is used, black and white display can be performed for the reflective portion in the same manner as the mechanism described above, but for the transmissive portion, elliptically polarized light is reached when the light reaches the upper polarizing plate during white display. Since only one polarized light component can be transmitted, there is a problem that the light utilization efficiency is halved compared to the case of the parallel orientation of the present invention, and there is a history that the use of the parallel orientation has made a great improvement.
[0027]
Adjustment of the polarizing plate and retardation plate on the viewer side of the liquid crystal layer to solve the coloring problem described above often resulted in the transmission part, which was obtained by adopting the parallel alignment in many cases. High transmittance will be sacrificed.
[0028]
In view of the above, the present invention proposes a panel configuration that reduces coloring of a reflective portion while sufficiently maintaining a high transmittance using parallel alignment.
[0029]
[Means for Solving the Problems]
The slow axis of the retardation plate 3 or the retardation layer formed by combining the retardation plates 2 and 3 on the observer side of the liquid crystal display element is made substantially coincident with the orientation direction of the liquid crystal, and the birefringence value is changed to the wavelength of light. λ is smaller than λ / 4. The degree to which the birefringence value is smaller than λ / 4 is substantially equal to the amount of the birefringence value of the liquid crystal layer of the reflection portion exceeding λ / 4.
[0030]
In other words, it is optically suitable from the viewpoint of panel design that the liquid crystal layer is actually about 2 microns, but it must be 2.5 microns or more due to process restrictions. It becomes too large and is colored yellow. Further, if this yellow color is prevented, the light use efficiency is reduced.
[0031]
There is a retardation layer on the viewer side of the liquid crystal layer, and this retardation value (birefringence value) is made slightly smaller than an ideal value, and a part of the liquid crystal layer is considered as a retardation plate. Then, even if the liquid crystal layer is thick and the birefringence becomes large, unnecessary birefringence values can be absorbed by adjusting the retardation value of the retardation plate, and coloring can be reduced.
[0032]
BEST MODE FOR CARRYING OUT THE INVENTION
The liquid crystal alignment in the present invention is what is called parallel alignment, in which the alignment directions of the two electrode substrate surfaces sandwiching the liquid crystal are substantially equal, and the liquid crystal material is aligned straight between the two substrates without twisting. It is. There are two types of so-called parallel orientations, a parallel orientation and an anti-parallel orientation, and both are collectively referred to herein as a parallel orientation. In other words, the liquid crystal alignment will be described in detail. The liquid crystal molecules are aligned by rising about several degrees with respect to the alignment-treated substrate surface. Even if the orientation direction in the plane of the liquid crystal molecules is the same, there are cases where this rise is in the same direction and in the opposite direction, the former may be referred to as parallel orientation in a narrow sense, and the latter may be referred to as anti-parallel orientation, The orientation state combining these two is called a parallel orientation in a broad sense. Here, this is expressed in the broad sense of parallel orientation.
[0033]
The effect is greatest when the liquid crystal alignment and the slow axis of the retardation film 3 or the slow axis when the retardation films 2 and 3 are combined are substantially the same. If the angle between them is 30 degrees or more, the effect is weak, and it is difficult to obtain a good display. If the angle is 30 degrees or less, a good display can be obtained.
[0034]
Example 1
A transflective panel under the conditions shown in Table 1 was prepared, and only the retardation plate 3 was changed. The alignment direction of the liquid crystal was parallel (anti-parallel) to the 90 ° direction.
[0035]
The reflection characteristics at that time are shown in FIGS. 3 and 4 (in FIG. 3, white circles represent the numerical value of the x component of chromaticity (x, y), and black circles represent the numerical value of the y component, respectively).
[0036]
The birefringence of the liquid crystal layer in the present embodiment is 163 nm at the reflection part, which is larger than the ideal λ / 4 (about 140 nm). Normally, the reflected light is colored yellow, and good display cannot be obtained. (Evaluation was performed in D65 conversion).
[0037]
When the retardation plate 3 was changed, it was confirmed that the transmittance exceeded 30% in the range of about 100 nm or more, and that the smaller the retardation value, the better the white chromaticity was. Then, the white chromaticity was (0.35, 0.38), and good display was not obtained due to yellow coloring.) There is a trade-off between the two characteristics. In the range of 100 to 130 nm, both color characteristics and transmittance can be almost satisfied, and as a result of further optimization, the best overall performance is obtained at 105 nm. Exhibited good characteristics. At the same time, the transmission characteristics were excellent, and good display quality was obtained.
[0038]
The characteristics were almost the same when the upper and lower polarizing plates were both rotated by 90 °.
[0039]
Also, the retardation plate 6 can be a hybrid film. For example, the viewing angle characteristic can be expanded by using an NH film (trade name) manufactured by Mitsubishi Nisseki Co., Ltd.
[0040]
Further, in the present embodiment, two retardation plates are used at the top and bottom of the panel and used as a broadband λ / 4 film. However, when a retardation plate with small wavelength dispersion is used, it can be omitted for one upper and lower plate. This facilitates optimization and is advantageous for cost reduction.
[0041]
[Table 1]
Figure 2004177823
[0042]
Example 2
A transflective panel under the conditions shown in Table 2 was prepared, and only the retarder 3 was changed. The alignment direction of the liquid crystal was parallel (anti-parallel) to the 90 ° direction.
[0043]
The reflection characteristics at that time are shown in FIGS. 5 and 6 (in FIG. 5, white circles represent the numerical value of the x component of chromaticity (x, y), and black circles represent the numerical value of the y component).
[0044]
The birefringence of the liquid crystal layer in the present embodiment is 163 nm at the reflection part, which is larger than the ideal λ / 4 (about 140 nm). Normally, the reflected light is colored yellow, and good display cannot be obtained. (Evaluation was performed in D65 conversion).
[0045]
When the retardation plate 3 was changed, it was confirmed that the transmittance exceeded 30% in the range of about 100 nm or more, and that the smaller the retardation value, the better the white chromaticity was. , The white chromaticity was (0.35, 0.37), and good display was not obtained due to yellow coloring). There is a trade-off between the two characteristics. In the range of 90 to 125 nm, both the color characteristics and the transmittance can be almost satisfied. Exhibited good characteristics. At the same time, the transmission characteristics were excellent, and good display quality was obtained.
[0046]
The characteristics were almost the same when the upper and lower polarizing plates were both rotated by 90 °.
[0047]
Also, the retardation plate 6 can be a hybrid film. For example, the viewing angle characteristic can be expanded by using an NH film (trade name) manufactured by Mitsubishi Nisseki Co., Ltd.
[0048]
Further, in the present embodiment, two retardation plates are used at the top and bottom of the panel and used as a broadband λ / 4 film. However, when a retardation plate with small wavelength dispersion is used, it can be omitted for one upper and lower plate. This facilitates optimization and is advantageous for cost reduction.
[0049]
[Table 2]
Figure 2004177823
[0050]
Example 3
A transflective panel under the conditions shown in Table 3 was prepared, and only the retarder 3 was changed. The alignment direction of the liquid crystal was parallel (anti-parallel) to the 90 ° direction.
[0051]
The reflection characteristics at that time are shown in FIGS. 7 and 8 (in FIG. 7, white circles represent the numerical value of the x component of chromaticity (x, y), and black circles represent the numerical value of the y component).
[0052]
The birefringence of the liquid crystal layer in the present embodiment is 163 nm at the reflection part, which is larger than the ideal λ / 4 (about 140 nm). Normally, the reflected light is colored yellow, and good display cannot be obtained. (Evaluation was performed in D65 conversion).
[0053]
When the retardation plate 3 was changed, it was confirmed that the transmittance exceeded 30% in the range of about 100 nm or more, and that the smaller the retardation value, the better the white chromaticity was. , The white chromaticity was (0.35, 0.39), and good display was not obtained due to yellow coloring.) There is a trade-off between the two characteristics. In the range of 90 to 125 nm, both the color characteristics and the transmittance can be almost satisfied. Exhibited good characteristics. At the same time, the transmission characteristics were excellent, and good display quality was obtained.
[0054]
With respect to the panel under the same conditions, the phase difference plate 3 was set to 100 nm, and the dependence of the installation angle was obtained. The results are shown in FIGS. 9 to 10 (in FIG. 9, white circles indicate x of chromaticity (x, y)). The numerical value of the component and the black circle represent the numerical value of the y component, respectively. The transmittance exceeded 30% in the range of -20 ° to 0 ° around 90 °, and showed good white chromaticity in the range of 50 to 110 ° (-40 ° to 20 ° around 90 °). Various characteristics have a trade-off relationship between the two characteristics. Within the range of 70 to 100 °, both color characteristics and transmittance can be almost satisfied. In the case of, the most excellent characteristics were shown.
[0055]
The characteristics were almost the same when the upper and lower polarizing plates were both rotated by 90 °.
[0056]
Also, the retardation plate 6 can be a hybrid film. For example, by using an NH film manufactured by Nisseki Mitsubishi Corporation, the viewing angle characteristics can be expanded.
[0057]
Further, in the present embodiment, two retardation plates are used at the top and bottom of the panel and used as a broadband λ / 4 film. However, when a retardation plate with small wavelength dispersion is used, it can be omitted for one upper and lower plate. This facilitates optimization and is advantageous for cost reduction.
[0058]
[Table 3]
Figure 2004177823
[0059]
【The invention's effect】
In the past, the birefringence value of the liquid crystal layer had to be set to be larger than the value conceivable from the operating principle due to the limitations of the process surface and the limitation of the liquid crystal material. Absorption by a retardation film whose alignment direction and the slow axis are almost coincident with each other can prevent display coloring due to an increase in birefringence of the liquid crystal layer.
[Brief description of the drawings]
FIG. 1 is a cross-sectional explanatory view showing a structural example of a transflective liquid crystal display device to which the present invention is applied.
FIG. 2 is an explanatory diagram schematically showing an optical function of each component of FIG. 1;
FIG. 3 is a graph illustrating a relationship between a phase difference and chromaticity as a reflection characteristic of the liquid crystal display device according to the first embodiment of the present invention.
FIG. 4 is a graph showing a relationship between a phase difference and a transmittance as a reflection characteristic of the liquid crystal display device according to the first embodiment of the present invention.
FIG. 5 is a graph showing a relationship between a phase difference and chromaticity as a reflection characteristic of the liquid crystal display device according to the second embodiment of the present invention.
FIG. 6 is a graph showing a relationship between a phase difference and a transmittance as a reflection characteristic of the liquid crystal display device according to the second embodiment of the present invention.
FIG. 7 is a graph showing the relationship between the phase difference and the chromaticity as the reflection characteristic of the liquid crystal display device according to the third embodiment of the present invention.
FIG. 8 is a graph showing a relationship between a phase difference and a transmittance as a reflection characteristic of the liquid crystal display device according to the third embodiment of the present invention.
FIG. 9 is a graph showing a relationship between an installation angle of a retardation plate and chromaticity as a reflection characteristic of a liquid crystal display device according to a third embodiment of the present invention.
FIG. 10 is a graph showing the relationship between the installation angle of the retardation plate and the transmittance as the reflection characteristic of the liquid crystal display device of Example 3 of the present invention.
[Explanation of symbols]
1, 4 polarizing plate 2, 3, 5, 6 retardation plate 7 backlight 21a, 21b substrate

Claims (8)

液晶配向を平行配向とする半透過型液晶表示装置であって、液晶表示装置の観察者側のパネル表面に、観察者側から偏光板、光の波長λに対してほぼλ/2となる位相差フィルム、ほぼλ/4となる位相差フィルム、パネルのガラス基板となる構成を有する半透過型液晶表示素子において、前記2枚の位相差フィルムを重ね合わせて構成される位相差補償層の遅相軸が液晶の配向方向とほぼ一致し、複屈折値がλ/4より小さく設定されている液晶表示装置。A transflective liquid crystal display device in which the liquid crystal alignment is parallel alignment, wherein a polarizing plate is arranged on the panel surface on the observer side of the liquid crystal display device from the observer side to be approximately λ / 2 with respect to the wavelength λ of light. In a transflective liquid crystal display device having a structure that becomes a retardation film, a retardation film having a substantially λ / 4, and a glass substrate of a panel, a retardation compensation layer formed by laminating the two retardation films is formed. A liquid crystal display device in which the phase axis substantially coincides with the orientation direction of the liquid crystal and the birefringence value is set smaller than λ / 4. 液晶配向を平行配向とする半透過型液晶表示装置であって、液晶表示装置の観察者側のパネル表面に、観察者側から偏光板、光の波長λに対してほぼλ/2となる位相差フィルム、ほぼλ/4となる位相差フィルム、パネルのガラス基板となる構成を有する半透過型液晶表示素子において、パネル上のほぼλ/4となる位相差フィルムの遅相軸が液晶の配向方向とほぼ一致し、複屈折値がλ/4より小さく設定されている液晶表示装置。A transflective liquid crystal display device in which the liquid crystal alignment is parallel alignment, wherein a polarizing plate is arranged on the panel surface on the observer side of the liquid crystal display device from the observer side to be approximately λ / 2 with respect to the wavelength λ of light. In a transflective liquid crystal display device having a structure in which a retardation film, a retardation film having a wavelength of approximately λ / 4, and a glass substrate of a panel, the slow axis of the retardation film having a wavelength of approximately λ / 4 on the panel has a liquid crystal orientation. A liquid crystal display device substantially coincident with the direction and having a birefringence value set to be smaller than λ / 4. 液晶配向を平行配向とする半透過型液晶表示装置であって、液晶表示装置の観察者側のパネル表面に、観察者側から偏光板、光の波長λに対してほぼ1/4λとなる位相差フィルム、パネルのガラス基板となる構成を有する半透過型液晶表示装置において、パネル上のほぼ1/4λとなる位相差フィルムの遅相軸が液晶の配向方向とほぼ一致し、複屈折値が1/4λより小さく設定されていることを特徴とする液晶表示装置。A transflective liquid crystal display device in which the liquid crystal alignment is parallel alignment, wherein a polarizing plate is disposed on the panel surface on the observer side of the liquid crystal display device from the observer side so that the wavelength becomes approximately 1 / λ with respect to the wavelength λ of light. In a transflective liquid crystal display device having a structure that becomes a phase difference film and a glass substrate of a panel, the slow axis of the phase difference film, which is approximately 1 / 4λ on the panel, almost coincides with the orientation direction of the liquid crystal, and the birefringence value is increased. A liquid crystal display device characterized by being set to be smaller than 4λ. 前記液晶配向と前記位相差フィルムの遅相軸は±30度の範囲でほぼ一致する請求項1、2または3記載の液晶表示装置。4. The liquid crystal display device according to claim 1, wherein the liquid crystal alignment substantially coincides with the slow axis of the retardation film in a range of ± 30 degrees. 1枚または2枚で構成される前記位相差フィルムの複屈折値と、反射表示部分の液晶層の複屈折値を合わせてほぼλ/2とする請求項1、2または3記載の液晶表示装置。4. The liquid crystal display device according to claim 1, wherein a birefringence value of the retardation film composed of one or two sheets and a birefringence value of a liquid crystal layer in a reflective display portion are approximately λ / 2. . 2枚で構成される前記位相差フィルムのうち、パネルに接するほぼλ/4の複屈折を有する位相差フィルムの複屈折値と反射表示部分の液晶層の複屈折値を合わせてほぼλ/2とする請求項1、2または3記載の液晶表示装置。Of the two retardation films, the birefringence value of the retardation film in contact with the panel and having a birefringence of approximately λ / 4 and the birefringence value of the liquid crystal layer of the reflective display portion are approximately λ / 2. The liquid crystal display device according to claim 1, 2 or 3. 1枚または2枚で構成される前記位相差フィルムの複屈折値と、反射表示部分の液晶層の複屈折値を合わせてほぼ0.7×λ/2〜1.3×λ/2の範囲とする請求項5記載の液晶表示装置。The sum of the birefringence value of the retardation film composed of one or two sheets and the birefringence value of the liquid crystal layer in the reflective display portion is in a range of approximately 0.7 × λ / 2 to 1.3 × λ / 2. The liquid crystal display device according to claim 5, wherein 2枚で構成される前記位相差フィルムのうち、パネルに接するほぼλ/4の複屈折を有する位相差フィルムの複屈折値と、反射表示部分の液晶層の複屈折値を合わせてほぼ0.7×λ/2〜1.3×λ/2の範囲とする請求項6記載の液晶表示装置。Of the two retardation films, the birefringence value of the retardation film having a birefringence of approximately λ / 4, which is in contact with the panel, and the birefringence value of the liquid crystal layer in the reflective display portion are approximately 0.1. 7. The liquid crystal display device according to claim 6, wherein the range is 7 × λ / 2 to 1.3 × λ / 2.
JP2002346261A 2002-11-28 2002-11-28 Liquid crystal display Pending JP2004177823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002346261A JP2004177823A (en) 2002-11-28 2002-11-28 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002346261A JP2004177823A (en) 2002-11-28 2002-11-28 Liquid crystal display

Publications (1)

Publication Number Publication Date
JP2004177823A true JP2004177823A (en) 2004-06-24

Family

ID=32707226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002346261A Pending JP2004177823A (en) 2002-11-28 2002-11-28 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP2004177823A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006146012A (en) * 2004-11-24 2006-06-08 Mitsubishi Electric Corp Liquid crystal display panel
EP1674917A1 (en) * 2004-12-27 2006-06-28 Alps Electric Co., Ltd. Liquid crystal display device
KR100807609B1 (en) 2005-06-30 2008-02-28 엔이씨 엘씨디 테크놀로지스, 엘티디. Transflective liquid crystal display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006146012A (en) * 2004-11-24 2006-06-08 Mitsubishi Electric Corp Liquid crystal display panel
EP1674917A1 (en) * 2004-12-27 2006-06-28 Alps Electric Co., Ltd. Liquid crystal display device
KR100807609B1 (en) 2005-06-30 2008-02-28 엔이씨 엘씨디 테크놀로지스, 엘티디. Transflective liquid crystal display device
KR100885828B1 (en) * 2005-06-30 2009-02-26 엔이씨 엘씨디 테크놀로지스, 엘티디. Transflective liquid crystal display device

Similar Documents

Publication Publication Date Title
US7248311B2 (en) Liquid crystal display device and electronic apparatus
JP5131510B2 (en) Liquid crystal display device and terminal device
KR101299575B1 (en) Transflective liquid crystal displays, manufacturing method thereof, and computer
JP5081863B2 (en) Liquid crystal display
KR100439354B1 (en) Transflective LCD
US20120120328A1 (en) Transflective Liquid Crystal Displays Using Transverse Electric Field Effect
JP2007286141A (en) Circularly polarizing element, liquid crystal panel and electronic equipment
US20070126963A1 (en) Transflective liquid crystal display device
US20040207787A1 (en) Liquid crystal display device and multilayer phase plate
US7492424B2 (en) Liquid crystal display device
US6567142B1 (en) Reflective liquid crystal display device including a retardation film of two uniaxial films
CN110262133B (en) Low reflectivity LCD with COP retarder and COP matched RM
US7110071B2 (en) Liquid crystal display device and electronic apparatus
JPH10123505A (en) Reflection type liquid crystal display device
JP2004177823A (en) Liquid crystal display
US7359019B2 (en) Liquid crystal display device
JP2796212B2 (en) Liquid crystal display
KR100562174B1 (en) Transflective Liquid Crystal Display
JP3022477B2 (en) Reflective liquid crystal display
KR100671518B1 (en) Reflective type liquid crystal display
US20060038951A1 (en) Liquid crystal display device with a pretilt angle of liquid crystal molecules
US7298441B2 (en) Liquid crystal display device
JP2004219553A (en) Liquid crystal display device and electronic appliance
KR20060063027A (en) Single gap transflective liquid crystal display using fringe-field switching mode
KR100507284B1 (en) Reflective Liquid Crystal Display

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041029

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306