JP2004177378A - Fixing method of biopolymer - Google Patents

Fixing method of biopolymer Download PDF

Info

Publication number
JP2004177378A
JP2004177378A JP2002347207A JP2002347207A JP2004177378A JP 2004177378 A JP2004177378 A JP 2004177378A JP 2002347207 A JP2002347207 A JP 2002347207A JP 2002347207 A JP2002347207 A JP 2002347207A JP 2004177378 A JP2004177378 A JP 2004177378A
Authority
JP
Japan
Prior art keywords
group
biopolymer
functional group
solid phase
functional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002347207A
Other languages
Japanese (ja)
Inventor
Atsushi Teramae
敦司 寺前
Tetsuo Takada
哲生 高田
Takanori Anazawa
孝典 穴澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
Original Assignee
Kawamura Institute of Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research filed Critical Kawamura Institute of Chemical Research
Priority to JP2002347207A priority Critical patent/JP2004177378A/en
Publication of JP2004177378A publication Critical patent/JP2004177378A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for fixing a biopolymer onto a solid phase surface with high density. <P>SOLUTION: The biopolymer having a functional group (A) is allowed to react with a multifunctional compound having at least three functional groups (B) having reaction activity to the functional group (A) in one molecule for bonding the biopolymer and the multifunctional compound; at least one unreacted functional group (B) is allowed to survive in one molecule of the multifunctional compound; and the unreacted functional group (B) surviving in the multifunctional compound is allowed to react to the solid phase surface having a functional group (C) having the reaction activity to the functional group (B), thus fixing the biopolymer onto the solid phase surface. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、生体高分子を固相表面へ固定する方法に関する。本発明の生体物質の固定方法は、例えば免疫診断用のイムノアッセイ、DNAマイクロアレイ、いわゆるプロテインチップなどの用途に使用できる。
【0002】
【従来の技術】
例えば免疫診断用のイムノアッセイやDNAマイクロアレイなどの用途に使用するために、生体高分子を基板などの固相表面に固定化する方法としては、例えば疎水性表面の固相に生体高分子を触れさせることによって非特異的に表面に吸着させて固定化する方法、マイナスに帯電している物質ならばプラス荷電を持つ表面に対して静電的に固定化する方法、抗原抗体反応のように結合の高い特異性を利用して固定化する方法、例えばホルミル基とアミノ基との反応で形成されるような共有結合を利用し固定化する方法等が知られている。
【0003】
いずれの固相表面への固定化方法においても、固定化される生体高分子の量を多くするために、固相表面に導入されるアンカーとなる官能基の量を増やすか、または表面を多孔質化する方法やビーズ表面への結合方法の様に、生体高分子が結合する固相の表面積を増大させる方法が採られていた。
【0004】
しかしながら、固相表面と溶液との反応であるために、固相表面のアンカーとなる官能基の量を増やしても、同じ反応を溶液中で行う反応と比較すると反応効率は低く、その効果が生体高分子の固定量とその密度に反映されにくい。そのため、固定密度の増加には限界があった。
【0005】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、固相表面に高密度に生体高分子を固定化する方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、多官能化合物に生体高分子を複数個結合させたのち、該多官能化合物を固相表面上に固定化することによって、生体高分子を高密度に固相表面上へ固定化することができること
を見出し本発明を完成するに至った。
【0007】
即ち、本発明は、固相表面に生体高分子を固定する方法であって、官能基(A)を有する生体高分子と、一分子中に該官能基(A)に対して反応活性を有する官能基(B)を少なくとも三つもつ多官能化合物とを反応させて、前記生体高分子と前記多官能化合物とを結合させ、かつ未反応の官能基(B)を該多官能化合物の一分子中に少なくとも一つ残存させ、次いで該多官能化合物中に残存する未反応の官能基(B)を、官能基(B)に対して反応活性を有する官能基(C)をもつ固相表面に反応させて結合させることを特徴とする生体高分子の固定方法を提供する。
【0008】
【発明の実施の形態】
生体高分子は該分子の固定に関わる官能基(A)を有し、多官能化合物は前記官能基(A)に対して反応活性な官能基(B)を1分子内に3個以上有し、固相表面は官能基(B)に対して反応活性を有する官能基(C)を有する。ここで言う「反応活性な」とは、反応して共有結合することを言う。官能基(A)と官能基(C)は同じ官能基であっても良い。
【0009】
これらの官能基及びその組み合わせとしては公知慣用の方法を使用することが可能であるが、生体高分子を扱う反応であるために、マイナス20℃〜100℃、好ましくは0℃〜70℃、さらに好ましくは0℃〜50℃の温度範囲の中で、効率的に反応する官能基およびその組み合わせが望ましい。また、生体高分子の機能が失活するような溶媒中でしか反応が進行しない官能基及びその組み合わせは好ましくない。生体高分子の機能が失活しないということを考慮すると、水中においても活性を有する官能基およびその組み合わせを用いることが好ましい。そのような組み合わせとしてはアミノ基とアミノ基が反応する官能基との組み合わせが好ましい。
【0010】
アミノ基が反応する官能基としては、エポキシ基、ハロホルミル基、イソシアナト基、カルボン酸基、酸無水物、マレイミド基、およびホルミル基が好ましく、これらの中で、アミノ基と反応する官能基の反応性、安定性を考慮すると、ホルミル基、とエポキシ基が好ましい。生体高分子が37℃〜100℃の範囲で安定に存在するのであるならば、エポキシ基を使用することが好ましい。
【0011】
上記の条件を満たす好ましい組み合わせとしては、例えば、(1)官能基(A)としてホルミル基、官能基(B)としてアミノ基、官能基(C)としてエポキシ基、(2)官能基(A)としてアミノ基、官能基(B)としてカルボキシル基、官能基(C)としてアミノ基、(3)官能基(A)としてホルミル基、官能基(B)としてアミノ基、官能基(C)として酸無水物等の組み合わせが挙げられる。
【0012】
官能基(A)を有する生体高分子は任意であり、例えば、DNA、RNA、ペプチド、タンパク質、糖タンパク質等である。生体高分子に官能基(A)を導入する方法も任意であり、公知慣用の方法を使用できる。例えば、生体高分子がオリゴヌクレオチドである場合、塩基中にあるアミノ基、または5‘または3’末端をアミノ化したオリゴヌクレオチド中の末端アミノ基を介することによって、様々な官能基を官能基(A)をとして導入することが可能である。また例えば、生体高分子がペプチドである場合、アミノ末端とリジン中のアミノ基を介することによって、様々な官能基を官能基(A)として導入することが可能である。さらに官能基(A)を含有するアジド化合物などの光化学反応によりペプチドを修飾することが出来る。
【0013】
官能基(B)を分子内に3つ以上有する多官能化合物は任意であり、例えば、ポリアリルアミン、ポリ−L−リジン、ポリグルタール、ポリカルボン酸等が挙げられる。該多官能化合物は、水溶性であることが好ましい。
【0014】
前記多官能化合物は官能基(B)を一分子内に3つ以上有することが必要である。前記多官能化合物が官能基(B)を2つしか有していなければ、該多官能化合物の一分子は生体高分子を一分子しか固相に固定することが出来ず、従来法の、生体高分子を修飾し固定化する方法と違いが無く、高密度に生体高分子を固定化することができない。また、前記多官能化合物が官能基(B)を1つしか有していなければ、該官能基(B)は前記生体高分子の官能基(A)と反応すると、固相が有する官能基(C)と反応することが出来ない。
【0015】
前記多官能化合物が一分子内に有する官能基(B)の数は5以上が好ましく、10以上が更に好ましく、30以上が最も好ましい。該官能基数は、多いことそれ自体による不都合はないため、上限を設ける必要はないが、過剰に多いと、該多官能化合物の分子量が過度に高くなりがちであり、後述の鎖状ポリマーの部分で述べるようなデメリットが発生する。
【0016】
前記多官能化合物は鎖状ポリマーであることが好ましい。鎖状ポリマーとすることによって、前記多官能化合物は多くの官能基(B)を分子内に有することが出来、また、フレキシブルな主鎖が固相と生体高分子の間のスペーサーとなるため、該生体高分子のアフィニティーなどの機能が高まる。なお、ここで言う鎖状ポリマーとは、架橋ポリマーでないポリマーを言い、直鎖状ポリマー、分岐ポリマー、星形ポリマー等であり得る。
【0017】
前記鎖状ポリマーの平均分子量は任意であるが、1000000以下が好ましく、100000以下が更に好ましい。前記鎖状ポリマーの分子量が過剰に高いと、ゲル化し易く成ったり、溶解度が低下したり、該多官能化合物によって生体高分子がオフクルードされて表面に出なくなるなどの問題が生じる。
【0018】
前記鎖状ポリマーの平均分子量の下限は前記のように官能基(B)を一分子内に3個以上有しさえすればよく、例えば200程度、或いは500程度といったオリゴマー領域の分子量であっても良い。鎖状ポリマーにフレキシブルなスペーサーとしての機能を発揮させるためには、平均分子量は1000以上であることが好ましい。
【0019】
前記多官能化合物の合成方法も任意であり、官能基(B)を有するモノマーの重合又は共重合、鎖状の天然ポリマーや合成ポリマーへの官能基(B)の導入であり得る。
【0020】
本発明の方法は、前記生体高分子と前記多官能化合物とを反応させることによって、前記生体高分子を多官能化合物と結合させ、かつ未反応の官能基(B)を該多官能化合物の一分子中に少なくとも一つ残存させる。残存数の上限は、前記多官能化合物が有する官能基(B)数から2を引いた値である。該残存させる量が過大ならば、生体高分子の固定量が減少し従来法とかわりなくなる上、該生体高分子が該多官能化合物によって包埋される確率が高くなる。該残存させる量1未満即ちゼロであると生体高分子は固相に固定されない。前記多官能化合物中に残存する官能基(B)の数は、公知慣用の方法、例えばNMRにより測定できる。最適値は使用する反応系において簡単な実験で求めることが出来る。
【0021】
前記生体高分子を前記多官能化合物と反応させて結合させ、かつ未反応の官能基(B)を該多官能化合物の一分子中に平均して少なくとも一つ残存させる方法は任意であり、例えば、官能基(A)に対して官能基(B)が過剰となる条件下で反応させる方法、或いは、官能基(A)に対して官能基(B)を当モル以下の量だけ仕込んだ場合であっても、反応が完結しない時点で反応を中断させる方法を採ることが出来る。これらのうちで、後者は反応速度に勝るが、前者が、再現性が良く好ましい。
【0022】
本発明における生体高分子を固定する固相の形状は任意であり、例えば板状、シート状、マイクロウェルの内面、エッペンドルフチューブの内面、ビーズ状、多孔質体であってよい。また固相表面の形状も任意であり、平滑面、凹凸面、多孔質形状であってもよい。
【0023】
本発明の固相への官能基(C)の導入方法も任意であり、公知慣用の方法を使用できる。例えば、官能基(C)を有するシランカップリング剤による表面処理、官能基(C)を有するモノマーの重合または共重合、官能基(C)を有するアジド化合物などの光反応による導入などを挙げることができる。
【0024】
【実施例】
以下、実施例及び比較例を用いて本発明を更に詳しく説明するが、本発明は、以下の実施例の範囲に限定されるものではない。なお、以下の実施例及び比較例における「部」は「質量部」である。
【0025】
[エネルギー線照射装置]
エネルギー線照射装置としてアイグラフィックス株式会社製のUE031型露光装置を使用し、その光源としてMOS−L31型ランプを用いた。紫外線強度は、記載の無い限り50mw/cmである。
【0026】
[蛍光強度測定方法]
ライカ株式会社製の共焦点レーザー顕微鏡TCS−NTを用いて測定した。測定条件はPMT感度449V、ピンホール0.65である。
【0027】
[実施例1]
〔エネルギー線硬化性組成物(i)の調製〕
活性エネルギー線架橋重合性化合物として、平均分子量約2000の3官能ウレタンアクリレートオリゴマー(大日本インキ化学工業株式会社製の「ユニディックV−4263」)を80部、及び1,6−ヘキサンジオールジアクリレート(第一工業製薬株式会社製の「ニューフロンティアHDDA」)を20部、光重合開始剤として1−ヒドロキシシクロヘキシルフェニルケトン(チバガイギー社製の「イルガキュア184」)を5部を均一に混合して組成物(i)を調製した。
【0028】
〔エネルギー線硬化性組成物(ii)の調製〕
活性エネルギー線架橋重合性化合物として、平均分子量約2000の3官能ウレタンアクリレートオリゴマー(大日本インキ化学工業株式会社製の「ユニディックV−4263」)を60部、及び1,6−ヘキサンジオールジアクリレート(第一工業製薬株式会社製の「ニューフロンティアHDDA」)を30部、メタクリル酸グリシジル(和光純薬工業株式会社製)を10部、及び光重合開始剤として1−ヒドロキシシクロヘキシルフェニルケトン(チバガイギー社製の「イルガキュア184」)5部を均一に混合して組成物(ii)を調製した。
【0029】
〔生体高分子固定用固相の作製〕
基材(1)としてポリアクリレート(三菱レイヨン社製の「アクリライトL 000番」)製の板を用い、これに2000rpm、50秒条件のスピンコーターを用いて組成物(i)を塗布し、50mw/cmの紫外線を窒素雰囲気中で3秒間照射して、塗膜(2)を半硬化させた。
【0030】
この半硬化状態の塗膜(2)の上に、2000rpm、50秒条件のスピンコーターを用いて組成物(ii)を塗布し、50mw/cmの紫外線を窒素雰囲気中で60秒間照射して、塗膜(2)を硬化させ
、生体高分子固定用固相(A)とした。
【0031】
〔生体高分子の調製〕
5‘末端にアミノ基を、3’末端にFITC(フルオレセインイソチオシアネート)修飾した遺伝子鎖A(5’−GTTCGACGTCATCGTCTCGATCTCG−3’)を1μl、該遺伝子鎖Aの遺伝子配列に相補的な遺伝子鎖B(5’−CGAGATCGAGACGATGACGTCGAAC−3’)を1μl、PCR用10X緩衝液(宝酒造株式会社製の10X Ex Taq Buffer)を1μl、滅菌水を7μl加えたPCR用反応チューブを、PCR反応用サーマルサイクラーを用いて95℃2分、80℃2分、70℃2分、60℃2分、50℃2分、40℃2分、30℃2分、4℃2分の温度変化を与えることにより、遺伝子鎖AとBをハイブリダイゼーションさせ、生体高分子溶液(iii)を調製した。
【0032】
〔固定化用生体高分子の調製〕
調製した生体高分子溶液(iii)に、25%グルタルアルデヒド溶液(和光純薬工業製の25%グルタルアルデヒド溶液)をリン酸緩衝液(和光純薬製の)にて10倍希釈して作製した2.5%グルタルアルデヒド溶液を2μl加え、37℃水槽中にて2時間反応させ、これに100%エタノールを加えて遺伝子鎖を沈殿させることによって、遺伝子鎖中のアミノ基をアルデヒド修飾した遺伝子鎖を得た。これに、10%ポリアリルアミン溶液(日東紡製のPAA−10C)をリン酸緩衝液(和光純薬工業製の「りん酸緩衝剤粉末」を1リットルの滅菌水に溶かしたもの)にて2倍希釈して作製した5%ポリアリルアミン溶液を4μl加え、37℃水槽中にて2時間反応させ、ポリアリルアミンにアルデヒド修飾した遺伝子鎖が結合した固定化用生体高分子(α)を調製した。
【0033】
[生体高分子の固定化]
調製した固定化用生体高分子にマイクロスポッティングソリューション(アレイット社製)を4μl加えたものを生体高分子固定用固相(A)に約0.5μlずつスポットした後、湿度100%、温度50℃にて12時間保持した。
【0034】
[固定化した生体高分子の洗浄]
12時間保持した該固相Aを0.2XSSC/0.1%SDS(ラウリル硫酸ナトリウム)溶液にて室温で5分間洗浄した後、0.2XSSC溶液にて室温で5分間洗浄することを3回繰り返し、測定用サンプルとした。
【0035】
[比較例1]
〔生体高分子固定用固相の作製〕
基材(1)としてポリアクリレート(三菱レイヨン社製の「アクリライトL 000番」)製の板を用い、これに2000rpm、50秒条件のスピンコーターを用いて組成物(i)を塗布し、50mw/cmの紫外線を窒素雰囲気中で3秒間照射して、塗膜(2)を半硬化させた。
【0036】
この半硬化状態の塗膜(2)の上に、2000rpm、50秒条件のスピンコーターを用いて組成物(ii)を塗布し、50mw/cmの紫外線を窒素雰囲気中で60秒間照射して、塗膜(2)を硬化させた。硬化した固相を、10%ポリアリルアミン溶液(日東紡製のPAA−10C)をリン酸緩衝液(和光純薬工業製の「りん酸緩衝剤粉末」を1リットルの滅菌水に溶かしたもの)にて2倍希釈して作製した5%ポリアリルアミン溶液中に浸し、37℃水槽中にて2時間反応させ、表面にポリアリルアミンが結合した生体高分子固定用固相(B)を作製した。
【0037】
〔固定化用生体高分子の調製〕
調製した生体高分子溶液(iii)に、25%グルタルアルデヒド溶液(和光純薬工業製の25%グルタルアルデヒド溶液)をリン酸緩衝液(和光純薬工業製の「りん酸緩衝剤粉末」を1リットルの滅菌水に溶かしたもの)にて10倍希釈して作製した2.5%グルタルアルデヒド溶液を2μl加え、37℃水槽中にて2時間反応させ、これに100%エタノールを加えて遺伝子鎖を沈殿させることによって、遺伝子鎖中のアミノ基をアルデヒド修飾した遺伝子鎖を得た。これに、リン酸緩衝液(和光純薬工業製の「りん酸緩衝剤粉末」を1リットルの滅菌水に溶かしたもの)を4μl加え、37℃水槽中にて2時間反応させ、ポリアリルアミンにアルデヒド修飾した遺伝子鎖が結合した固定化用生体高分子(β)を調製した。
【0038】
[生体高分子の固定化]
調製した固定化用生体高分子(β)にマイクロスポッティングソリューション(アレイット社製)を4μl加えたものを生体高分子固定用固相(B)に約0.5μlずつスポットした後、湿度100%、温度50℃にて12時間保持した。
【0039】
[固定化した生体高分子の洗浄]
12時間保持した該固相Bを0.2XSSC/0.1%SDS(ラウリル硫酸ナトリウム)溶液にて室温で5分間洗浄した後、0.2XSSC溶液にて室温で5分間洗浄することを3回繰り返し、測定用サンプルとした。
【0040】
[比較例2]
〔生体高分子固定用固相の作製〕
基材(1)としてポリアクリレート(三菱レイヨン社製の「アクリライトL 000番」)製の板を用い、これに2000rpm、50秒条件のスピンコーターを用いて組成物(i)を塗布し、50mw/cmの紫外線を窒素雰囲気中で3秒間照射して、塗膜(2)を半硬化させた。
【0041】
この半硬化状態の塗膜(2)の上に、2000rpm、50秒条件のスピンコーターを用いて組成物(ii)を塗布し、50mw/cmの紫外線を窒素雰囲気中で60秒間照射して、塗膜(2)を硬化させた。硬化した固相を、10%ポリアリルアミン溶液(日東紡製のPAA−10C)をリン酸緩衝液(和光純薬工業製の「りん酸緩衝剤粉末」を1リットルの滅菌水に溶かしたもの)にて2倍希釈して作製した5%ポリアリルアミン溶液中に浸し、37℃水槽中にて2時間反応させ、さらに25%グルタルアルデヒド溶液(和光純薬工業製の25%グルタルアルデヒド溶液)をリン酸緩衝液(和光純薬工業製の「りん酸緩衝剤粉末」を1リットルの滅菌水に溶かしたもの)にて10倍希釈して作製した2.5%グルタルアルデヒド溶液中に浸し、37℃水槽中にて2時間反応させ、表面にグルタルアルデヒドが結合した生体高分子固定用固相(C)を作製した。
【0042】
〔固定化用生体高分子の調製〕
調製した生体高分子溶液(iii)に100%エタノールを加えて遺伝子鎖を沈殿させ、これに、リン酸緩衝液(和光純薬工業製の「りん酸緩衝剤粉末」を1リットルの滅菌水に溶かしたもの)を4μl加えて37℃水槽中にて2時間保持することによって、固定化用生体高分子(γ)を調製した。
【0043】
[生体高分子の固定化]
調製した固定化用生体高分子(γ)にマイクロスポッティングソリューション(アレイット社製)を4μl加えたものを生体高分子固定用固相(C)に約0.5μlずつスポットした後、湿度100%、温度50℃にて12時間保持した。
【0044】
[固定化した生体高分子の洗浄]
12時間保持した該固相Cを0.2XSSC/0.1%SDS(ラウリル硫酸ナトリウム)溶液にて室温で5分間洗浄した後、0.2XSSC溶液にて室温で5分間洗浄することを3回繰り返し、測定用サンプルとした。
【0045】
これらの結果、実施例では十分に観測可能であったが、比較例1,2では観測することができなかった。
【0046】
【発明の効果】
本発明の生体高分子の固相表面への固定化方法は、目的とする生体高分子を壁面上の官能基へ直接固定する従来の方法よりも、生体高分子を高密度に固定することができる。そのため、より高感度に生体高分子を検出することを可能とする。また、サンプル量が非常に少量である場合、または固定化の効率が低いサンプルである場合において、この高密度に固定化する方法を用いることによって、従来の固定方法よりもより高感度に検出することが可能となる。本発明方法を用いることによって、DNAマイクロアレイや、マイクロタイタープレートを使用するエライザ法などの生体高分子を固定化する実験においてより高感度に検出することが可能となる。
【図面の簡単な説明】
【図1】実施例1、比較例1及び2で使用した生体高分子固定用固相(A),(B)及び(C)の断面方向の模式図である。
【符号の説明】
1 基材(ポリアクリレート板)
2 塗膜、樹脂層、エネルギー線硬化性組成物(i)
3 塗膜、樹脂層、エネルギー線硬化性組成物(ii)
4 ポリアリルアミン層
5 グルタルアルデヒド層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for immobilizing a biopolymer on a solid phase surface. The method for immobilizing a biological material of the present invention can be used for, for example, immunoassays for immunodiagnosis, DNA microarrays, and so-called protein chips.
[0002]
[Prior art]
For example, a method for immobilizing a biopolymer on a solid phase surface such as a substrate for use in applications such as immunoassays for immunodiagnosis and DNA microarrays includes, for example, contacting the biopolymer with a solid phase on a hydrophobic surface. Immobilization by non-specifically adsorbing on the surface, immobilizing electrostatically on the positively charged surface if it is a negatively charged substance, binding such as antigen-antibody reaction A method for immobilization using high specificity, for example, a method for immobilization using a covalent bond formed by a reaction between a formyl group and an amino group, and the like are known.
[0003]
Regardless of the method of immobilization on any solid phase surface, in order to increase the amount of biopolymer to be immobilized, increase the amount of functional groups serving as anchors to be introduced to the solid phase surface, or make the surface porous. A method of increasing the surface area of a solid phase to which a biopolymer binds has been adopted, such as a method of denaturation and a method of binding to a bead surface.
[0004]
However, because the reaction is between the solid phase surface and the solution, even if the amount of the functional group that serves as the anchor on the solid phase surface is increased, the reaction efficiency is lower than the reaction in which the same reaction is performed in a solution, and the effect is low. It is hardly reflected on the fixed amount of biopolymer and its density. Therefore, there is a limit to the increase in the fixed density.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for immobilizing a biopolymer at a high density on a solid phase surface.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, after binding a plurality of biopolymers to a polyfunctional compound, immobilize the polyfunctional compound on a solid phase surface, The present inventors have found that a polymer can be immobilized on a solid phase surface at high density, and have completed the present invention.
[0007]
That is, the present invention relates to a method for immobilizing a biopolymer on a surface of a solid phase, wherein the biopolymer having a functional group (A) has a reaction activity for the functional group (A) in one molecule. Reacting a polyfunctional compound having at least three functional groups (B) to bind the biopolymer and the polyfunctional compound, and to convert an unreacted functional group (B) to one molecule of the polyfunctional compound; At least one unreacted functional group (B) remaining in the polyfunctional compound on the solid-phase surface having a functional group (C) having a reaction activity with respect to the functional group (B). Provided is a method for immobilizing a biopolymer, which comprises reacting and binding.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The biopolymer has a functional group (A) involved in immobilization of the molecule, and the polyfunctional compound has three or more functional groups (B) reactive to the functional group (A) in one molecule. The solid surface has a functional group (C) having a reaction activity with respect to the functional group (B). As used herein, “reactive” means reacting and covalently bonding. The functional group (A) and the functional group (C) may be the same functional group.
[0009]
As these functional groups and combinations thereof, known and commonly used methods can be used. However, since the reaction involves treatment of a biopolymer, minus 20 ° C. to 100 ° C., preferably 0 ° C. to 70 ° C., and furthermore Preferably, a functional group that efficiently reacts in a temperature range of 0 ° C to 50 ° C and a combination thereof are desirable. Further, a functional group whose reaction proceeds only in a solvent in which the function of the biopolymer is inactivated and a combination thereof are not preferable. Considering that the function of the biopolymer is not inactivated, it is preferable to use a functional group having activity even in water and a combination thereof. As such a combination, a combination of an amino group and a functional group that reacts with the amino group is preferable.
[0010]
As the functional group that reacts with the amino group, an epoxy group, a haloformyl group, an isocyanato group, a carboxylic acid group, an acid anhydride, a maleimide group, and a formyl group are preferable. Among these, the reaction of the functional group that reacts with the amino group is preferred. Considering properties and stability, a formyl group and an epoxy group are preferred. If the biopolymer is stably present in the range of 37 ° C to 100 ° C, it is preferable to use an epoxy group.
[0011]
Preferred combinations satisfying the above conditions include, for example, (1) a formyl group as the functional group (A), an amino group as the functional group (B), an epoxy group as the functional group (C), and (2) a functional group (A). An amino group, a carboxyl group as the functional group (B), an amino group as the functional group (C), (3) a formyl group as the functional group (A), an amino group as the functional group (B), and an acid as the functional group (C). Combinations such as anhydrides are exemplified.
[0012]
The biopolymer having the functional group (A) is optional, and is, for example, DNA, RNA, peptide, protein, glycoprotein and the like. The method for introducing the functional group (A) into the biopolymer is also arbitrary, and a known and commonly used method can be used. For example, when the biopolymer is an oligonucleotide, various functional groups can be converted into functional groups (through an amino group in a base or a terminal amino group in an oligonucleotide having an aminated 5 ′ or 3 ′ end). A) can be introduced as Further, for example, when the biopolymer is a peptide, it is possible to introduce various functional groups as the functional group (A) via the amino terminal and the amino group in lysine. Further, the peptide can be modified by a photochemical reaction such as an azide compound containing the functional group (A).
[0013]
The polyfunctional compound having three or more functional groups (B) in the molecule is arbitrary, and examples thereof include polyallylamine, poly-L-lysine, polyglutal, and polycarboxylic acid. The polyfunctional compound is preferably water-soluble.
[0014]
The polyfunctional compound needs to have three or more functional groups (B) in one molecule. If the polyfunctional compound has only two functional groups (B), only one molecule of the polyfunctional compound can immobilize one biomolecule on a solid phase. There is no difference from the method of modifying and immobilizing polymers, and it is not possible to immobilize biopolymers at high density. When the polyfunctional compound has only one functional group (B), the functional group (B) reacts with the functional group (A) of the biopolymer to form a functional group ( Cannot react with C).
[0015]
The number of functional groups (B) in one molecule of the polyfunctional compound is preferably 5 or more, more preferably 10 or more, and most preferably 30 or more. Since the number of functional groups is large and there is no inconvenience due to itself, it is not necessary to set an upper limit.However, if the number is excessive, the molecular weight of the polyfunctional compound tends to be excessively high, and a portion of the chain polymer described later The disadvantages described below occur.
[0016]
The polyfunctional compound is preferably a chain polymer. By using a chain polymer, the polyfunctional compound can have many functional groups (B) in the molecule, and the flexible main chain serves as a spacer between the solid phase and the biopolymer. Functions such as affinity of the biopolymer are enhanced. Here, the chain polymer refers to a polymer that is not a crosslinked polymer, and may be a linear polymer, a branched polymer, a star polymer, or the like.
[0017]
The average molecular weight of the chain polymer is arbitrary, but is preferably 1,000,000 or less, more preferably 100,000 or less. If the molecular weight of the chain polymer is excessively high, problems such as easy gelation, a decrease in solubility, and a biopolymer being off-cladded by the polyfunctional compound and not appearing on the surface arise.
[0018]
The lower limit of the average molecular weight of the chain polymer is only required to have three or more functional groups (B) in one molecule as described above. For example, the molecular weight of an oligomer region such as about 200 or about 500 may be used. good. In order for the chain polymer to exhibit a function as a flexible spacer, the average molecular weight is preferably 1,000 or more.
[0019]
The method for synthesizing the polyfunctional compound is also arbitrary, and may be polymerization or copolymerization of a monomer having a functional group (B), or introduction of the functional group (B) into a chain natural polymer or synthetic polymer.
[0020]
The method of the present invention comprises the step of reacting the biopolymer with the polyfunctional compound to bind the biopolymer to the polyfunctional compound and to allow the unreacted functional group (B) to react with the polyfunctional compound. Leave at least one in the molecule. The upper limit of the remaining number is a value obtained by subtracting 2 from the number of functional groups (B) of the polyfunctional compound. If the remaining amount is excessive, the fixed amount of the biopolymer decreases and the conventional method is not changed, and the probability that the biopolymer is embedded by the polyfunctional compound increases. When the remaining amount is less than 1 or zero, the biopolymer is not fixed to the solid phase. The number of functional groups (B) remaining in the polyfunctional compound can be measured by a known and commonly used method, for example, NMR. The optimum value can be determined by a simple experiment in the reaction system used.
[0021]
Any method may be used for reacting the biopolymer with the polyfunctional compound to bond the same, and leaving at least one unreacted functional group (B) on average in one molecule of the polyfunctional compound. A method in which the reaction is carried out under conditions in which the functional group (B) is excessive with respect to the functional group (A), or when the functional group (B) is charged in an amount equal to or less than an equimolar amount relative to the functional group (A). Even in this case, a method of interrupting the reaction when the reaction is not completed can be adopted. Among these, the latter is superior to the reaction speed, but the former is preferable because of good reproducibility.
[0022]
The shape of the solid phase for immobilizing the biopolymer in the present invention is arbitrary, and may be, for example, a plate, a sheet, an inner surface of a microwell, an inner surface of an Eppendorf tube, a bead, or a porous body. The shape of the solid phase surface is also arbitrary, and may be a smooth surface, an uneven surface, or a porous shape.
[0023]
The method for introducing the functional group (C) into the solid phase of the present invention is also arbitrary, and a known and commonly used method can be used. Examples include surface treatment with a silane coupling agent having a functional group (C), polymerization or copolymerization of a monomer having a functional group (C), introduction of an azide compound having a functional group (C) by a photoreaction, and the like. Can be.
[0024]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to the scope of the following examples. In the following examples and comparative examples, “parts” is “parts by mass”.
[0025]
[Energy beam irradiation device]
A UE031 type exposure apparatus manufactured by Eye Graphics Co., Ltd. was used as an energy ray irradiation apparatus, and a MOS-L31 type lamp was used as a light source. The ultraviolet intensity is 50 mw / cm 2 unless otherwise stated.
[0026]
[Fluorescence intensity measurement method]
The measurement was performed using a confocal laser microscope TCS-NT manufactured by Leica Corporation. The measurement conditions are a PMT sensitivity of 449 V and a pinhole of 0.65.
[0027]
[Example 1]
[Preparation of energy ray-curable composition (i)]
80 parts of a trifunctional urethane acrylate oligomer having an average molecular weight of about 2000 (“Unidick V-4263” manufactured by Dainippon Ink and Chemicals, Inc.) as an active energy ray crosslinkable polymerizable compound, and 1,6-hexanediol diacrylate 20 parts of “New Frontier HDDA” manufactured by Daiichi Kogyo Seiyaku Co., Ltd. and 5 parts of 1-hydroxycyclohexylphenyl ketone (“Irgacure 184” manufactured by Ciba Geigy) as a photopolymerization initiator are uniformly mixed and composed. The product (i) was prepared.
[0028]
[Preparation of energy ray-curable composition (ii)]
As the active energy ray crosslinkable polymerizable compound, 60 parts of a trifunctional urethane acrylate oligomer having an average molecular weight of about 2000 (“Unidick V-4263” manufactured by Dainippon Ink and Chemicals, Inc.), and 1,6-hexanediol diacrylate 30 parts of "New Frontier HDDA" manufactured by Daiichi Kogyo Seiyaku Co., Ltd., 10 parts of glycidyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.), and 1-hydroxycyclohexyl phenyl ketone (Ciba Geigy) as a photopolymerization initiator. (“Irgacure 184”) manufactured by Nissan Co., Ltd. was uniformly mixed to prepare composition (ii).
[0029]
(Preparation of solid phase for fixing biopolymer)
A composition (i) was applied to a plate made of polyacrylate ("Acrylite L 000" manufactured by Mitsubishi Rayon Co., Ltd.) as a substrate (1) using a spin coater at 2,000 rpm for 50 seconds. The coating film (2) was semi-cured by irradiating 50 mw / cm 2 of ultraviolet light in a nitrogen atmosphere for 3 seconds.
[0030]
The composition (ii) was applied on the semi-cured coating film (2) using a spin coater at 2000 rpm for 50 seconds, and irradiated with ultraviolet rays of 50 mw / cm 2 in a nitrogen atmosphere for 60 seconds. Then, the coating film (2) was cured to obtain a solid phase (A) for immobilizing a biopolymer.
[0031]
(Preparation of biopolymer)
1 μl of a gene chain A (5′-GTTCGACGGTCATCGTCTCGATCTCCG-3 ′) modified with an amino group at the 5 ′ end and an FITC (fluorescein isothiocyanate) at the 3 ′ end, and a gene chain B complementary to the gene sequence of the gene chain A ( A PCR reaction tube containing 1 μl of 5′-CGAGATCGAGCGATGACGTCGAAC-3 ′), 1 μl of 10 × buffer for PCR (10 × Ex Taq Buffer manufactured by Takara Shuzo Co., Ltd.), and 7 μl of sterilized water was added to the PCR reaction cycler using a thermal cycler for PCR reaction. By giving a temperature change of 95 ° C for 2 minutes, 80 ° C for 2 minutes, 70 ° C for 2 minutes, 60 ° C for 2 minutes, 50 ° C for 2 minutes, 40 ° C for 2 minutes, 30 ° C for 2 minutes and 4 ° C for 2 minutes, the gene chain A And B were hybridized to prepare a biopolymer solution (iii).
[0032]
(Preparation of biopolymer for immobilization)
The prepared biopolymer solution (iii) was prepared by diluting a 25% glutaraldehyde solution (a 25% glutaraldehyde solution manufactured by Wako Pure Chemical Industries) with a phosphate buffer solution (manufactured by Wako Pure Chemical Industries) 10-fold. 2 μl of a 2.5% glutaraldehyde solution was added, and the mixture was reacted in a water bath at 37 ° C. for 2 hours. Then, 100% ethanol was added thereto to precipitate the gene chain. Got. A 10% polyallylamine solution (PAA-10C manufactured by Nitto Bo) was added to a phosphate buffer (a solution prepared by dissolving “phosphate buffer powder” manufactured by Wako Pure Chemical Industries in 1 liter of sterilized water). 4 μl of a 5% polyallylamine solution prepared by double dilution was added and reacted in a water bath at 37 ° C. for 2 hours to prepare an immobilized biopolymer (α) in which polyallylamine was bonded to an aldehyde-modified gene chain.
[0033]
[Immobilization of biopolymer]
The prepared biopolymer for immobilization and 4 μl of microspotting solution (manufactured by Alliatt) were spotted on the solid phase for biopolymer immobilization (A) in an amount of about 0.5 μl, and then the humidity was 100% and the temperature was 50 ° C. For 12 hours.
[0034]
[Washing of immobilized biopolymer]
After washing the solid phase A held for 12 hours with a 0.2 × SSC / 0.1% SDS (sodium lauryl sulfate) solution at room temperature for 5 minutes, washing with a 0.2 × SSC solution at room temperature for 5 minutes three times. This was repeatedly used as a measurement sample.
[0035]
[Comparative Example 1]
(Preparation of solid phase for fixing biopolymer)
A composition (i) was applied to a plate made of polyacrylate ("Acrylite L 000" manufactured by Mitsubishi Rayon Co., Ltd.) as a substrate (1) using a spin coater at 2,000 rpm for 50 seconds. The coating film (2) was semi-cured by irradiating 50 mw / cm 2 of ultraviolet light in a nitrogen atmosphere for 3 seconds.
[0036]
The composition (ii) was applied on the semi-cured coating film (2) using a spin coater at 2000 rpm for 50 seconds, and irradiated with ultraviolet rays of 50 mw / cm 2 in a nitrogen atmosphere for 60 seconds. Then, the coating film (2) was cured. A 10% polyallylamine solution (Nittobo PAA-10C) was dissolved in a phosphate buffer (a solution of "phosphate buffer powder" manufactured by Wako Pure Chemical Industries, Ltd. in 1 liter of sterilized water). Then, it was immersed in a 5% polyallylamine solution prepared by diluting with 2 times and reacted in a 37 ° C. water bath for 2 hours to prepare a solid phase (B) for immobilizing a biopolymer having polyallylamine bonded to the surface.
[0037]
(Preparation of biopolymer for immobilization)
A 25% glutaraldehyde solution (25% glutaraldehyde solution manufactured by Wako Pure Chemical Industries, Ltd.) was added to the prepared biopolymer solution (iii) by adding a phosphate buffer solution (“phosphate buffer powder” manufactured by Wako Pure Chemical Industries, Ltd.) to 1 part. 2 μl of a 2.5% glutaraldehyde solution prepared by diluting 10-fold with a solution dissolved in 1 liter of sterilized water), and allowed to react in a 37 ° C. water bath for 2 hours. Was precipitated to obtain a gene chain in which the amino group in the gene chain was modified with aldehyde. To this, 4 μl of a phosphate buffer (a solution of “phosphate buffer powder” manufactured by Wako Pure Chemical Industries, Ltd., dissolved in 1 liter of sterilized water) was added, and the mixture was reacted in a 37 ° C. water bath for 2 hours. An immobilized biopolymer (β) to which an aldehyde-modified gene chain was bonded was prepared.
[0038]
[Immobilization of biopolymer]
4 μl of the prepared biopolymer for immobilization (β) and 4 μl of microspotting solution (manufactured by Alliatt) were spotted on the solid phase for biopolymer immobilization (B) in an amount of about 0.5 μl each. The temperature was kept at 50 ° C. for 12 hours.
[0039]
[Washing of immobilized biopolymer]
The solid phase B held for 12 hours is washed with 0.2 × SSC / 0.1% SDS (sodium lauryl sulfate) solution at room temperature for 5 minutes, and then washed with 0.2 × SSC solution at room temperature for 5 minutes three times. This was repeatedly used as a measurement sample.
[0040]
[Comparative Example 2]
(Preparation of solid phase for fixing biopolymer)
A composition (i) was applied to a plate made of polyacrylate ("Acrylite L 000" manufactured by Mitsubishi Rayon Co., Ltd.) as a substrate (1) using a spin coater at 2,000 rpm for 50 seconds. The coating film (2) was semi-cured by irradiating 50 mw / cm 2 of ultraviolet light in a nitrogen atmosphere for 3 seconds.
[0041]
The composition (ii) was applied on the semi-cured coating film (2) using a spin coater at 2000 rpm for 50 seconds, and irradiated with ultraviolet rays of 50 mw / cm 2 in a nitrogen atmosphere for 60 seconds. Then, the coating film (2) was cured. The cured solid phase was prepared by dissolving a 10% polyallylamine solution (Nittobo PAA-10C) in a phosphate buffer ("Phosphate buffer powder" manufactured by Wako Pure Chemical Industries, Ltd. dissolved in 1 liter of sterilized water). Immersed in a 5% polyallylamine solution prepared by diluting with 2 times, and reacted in a 37 ° C. water bath for 2 hours. Further, a 25% glutaraldehyde solution (a 25% glutaraldehyde solution manufactured by Wako Pure Chemical Industries) was phosphorylated. It was immersed in a 2.5% glutaraldehyde solution prepared by diluting 10-fold with an acid buffer ("Phosphate buffer powder" manufactured by Wako Pure Chemical Industries, Ltd. in 1 liter of sterilized water), and then immersed in a 37% solution. The reaction was carried out in a water tank for 2 hours to prepare a solid phase (C) for immobilizing a biopolymer having glutaraldehyde bonded to the surface.
[0042]
(Preparation of biopolymer for immobilization)
100% ethanol was added to the prepared biopolymer solution (iii) to precipitate the gene chain, and a phosphate buffer solution ("phosphate buffer powder" manufactured by Wako Pure Chemical Industries, Ltd.) was added to 1 liter of sterilized water. Was dissolved in a water bath at 37 ° C. for 2 hours to prepare a biopolymer (γ) for immobilization.
[0043]
[Immobilization of biopolymer]
The prepared biopolymer for immobilization (γ) and 4 μl of microspotting solution (manufactured by Araiat) were spotted on the solid phase for biopolymer immobilization (C) in an amount of about 0.5 μl. The temperature was kept at 50 ° C. for 12 hours.
[0044]
[Washing of immobilized biopolymer]
The solid phase C held for 12 hours is washed with 0.2 × SSC / 0.1% SDS (sodium lauryl sulfate) solution at room temperature for 5 minutes, and then washed with 0.2 × SSC solution at room temperature for 5 minutes three times. This was repeatedly used as a measurement sample.
[0045]
As a result, although observation was sufficiently possible in the examples, it was not possible to observe in comparative examples 1 and 2.
[0046]
【The invention's effect】
The method for immobilizing a biopolymer on a solid surface according to the present invention can fix the biopolymer at a higher density than the conventional method of directly immobilizing a target biopolymer on a functional group on a wall surface. it can. Therefore, it is possible to detect a biopolymer with higher sensitivity. In addition, when the sample amount is very small, or when the immobilization efficiency of the sample is low, by using the method of immobilizing at high density, detection is performed with higher sensitivity than the conventional immobilization method. It becomes possible. By using the method of the present invention, it is possible to detect with higher sensitivity in an experiment for immobilizing a biopolymer such as a DNA microarray or an ELISA method using a microtiter plate.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a solid phase for fixing a biopolymer (A), (B) and (C) used in Example 1, Comparative Examples 1 and 2.
[Explanation of symbols]
1 Substrate (polyacrylate plate)
2 Coating film, resin layer, energy ray-curable composition (i)
3. Coating film, resin layer, energy ray-curable composition (ii)
4 Polyallylamine layer 5 Glutaraldehyde layer

Claims (9)

固相表面に生体高分子を固定する方法であって、官能基(A)を有する生体高分子と、一分子中に該官能基(A)に対して反応活性を有する官能基(B)を少なくとも三つもつ多官能化合物とを反応させて、前記生体高分子と前記多官能化合物とを結合させ、かつ未反応の官能基(B)を該多官能化合物の一分子中に少なくとも一つ残存させ、次いで該多官能化合物中に残存する未反応の官能基(B)を、官能基(B)に対して反応活性を有する官能基(C)をもつ固相表面に反応させて結合させることを特徴とする生体高分子の固定方法。A method for immobilizing a biopolymer on a surface of a solid phase, comprising a biopolymer having a functional group (A) and a functional group (B) having a reaction activity with respect to the functional group (A) in one molecule. Reacting at least three polyfunctional compounds to bind the biopolymer and the polyfunctional compound, and leaving at least one unreacted functional group (B) in one molecule of the polyfunctional compound; And then reacting the unreacted functional group (B) remaining in the polyfunctional compound with a solid phase surface having a functional group (C) having a reaction activity with respect to the functional group (B) to bond it. A method for immobilizing a biopolymer. 前記官能基(A)がアミノ基である請求項1に記載の生体高分子の固定方法。The method for immobilizing a biopolymer according to claim 1, wherein the functional group (A) is an amino group. 前記官能基(A)が、エポキシ基、ハロホルミル基、イソシアナト基、カルボン酸基、酸無水物、スルホ基、ハロスルホニル基、マレイミド基、およびホルミル基からなる群から選ばれる少なくとも一種の官能基である請求項1に記載の生体高分子の固定方法。The functional group (A) is at least one functional group selected from the group consisting of an epoxy group, a haloformyl group, an isocyanato group, a carboxylic acid group, an acid anhydride, a sulfo group, a halosulfonyl group, a maleimide group, and a formyl group. The method for immobilizing a biopolymer according to claim 1. 前記官能基(B)が、エポキシ基、ハロホルミル基、イソシアナト基、カルボン酸基、酸無水物、マレイミド基、およびホルミル基からなる群から選ばれる少なくとも一種の官能基である請求項2に記載の生体高分子の固定方法。The functional group (B) according to claim 2, wherein the functional group (B) is at least one functional group selected from the group consisting of an epoxy group, a haloformyl group, an isocyanato group, a carboxylic acid group, an acid anhydride, a maleimide group, and a formyl group. How to fix biopolymers. 前記官能基(B)がアミノ基である請求項3に記載の生体高分子の固定方法。The method according to claim 3, wherein the functional group (B) is an amino group. 前記官能基(C)がアミノ基である請求項4に記載の生体高分子の固定方法。The method for immobilizing a biopolymer according to claim 4, wherein the functional group (C) is an amino group. 前記官能基(C)が、エポキシ基、ハロホルミル基、イソシアナト基、カルボン酸基、酸無水物、マレイミド基、およびホルミル基からなる群から選ばれる少なくとも一種の官能基である請求項5に記載の生体高分子の固定方法。The functional group according to claim 5, wherein the functional group (C) is at least one functional group selected from the group consisting of an epoxy group, a haloformyl group, an isocyanato group, a carboxylic acid group, an acid anhydride, a maleimide group, and a formyl group. How to fix biopolymers. 前記多官能化合物が分子量1000〜100000の鎖状ポリマーである請求項1に記載の生体高分子の固定方法。The method for fixing a biopolymer according to claim 1, wherein the polyfunctional compound is a chain polymer having a molecular weight of 1,000 to 100,000. 前記生体高分子がオリゴヌクレオチドである請求項1に記載の生体高分子の固定方法。The method according to claim 1, wherein the biopolymer is an oligonucleotide.
JP2002347207A 2002-11-29 2002-11-29 Fixing method of biopolymer Pending JP2004177378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002347207A JP2004177378A (en) 2002-11-29 2002-11-29 Fixing method of biopolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002347207A JP2004177378A (en) 2002-11-29 2002-11-29 Fixing method of biopolymer

Publications (1)

Publication Number Publication Date
JP2004177378A true JP2004177378A (en) 2004-06-24

Family

ID=32707882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002347207A Pending JP2004177378A (en) 2002-11-29 2002-11-29 Fixing method of biopolymer

Country Status (1)

Country Link
JP (1) JP2004177378A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212764A (en) * 2007-02-28 2008-09-18 Kawamura Inst Of Chem Res Transition metal-immobilized reactor and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212764A (en) * 2007-02-28 2008-09-18 Kawamura Inst Of Chem Res Transition metal-immobilized reactor and its manufacturing method

Similar Documents

Publication Publication Date Title
US10557846B2 (en) Encoded polymeric microparticles
US9857369B2 (en) Biochip substratum and method for production thereof
JP2002535013A (en) Replicatable probe array
JP2012078364A (en) Octenidine composition
GB2422335A (en) Biochip
US20150087555A1 (en) Method for immobilizing biologic molecules on solid surfaces
Shamansky et al. Immobilization and detection of DNA on microfluidic chips
AU2005257596B2 (en) PNA chip using plastic substrate coated with epoxy group-containing polymer, method of manufacturing the PNA chip, and method of detecting single nucleotide polymorphism using the PNA chip
CN103348244A (en) Oligopeptide sequence specifically bonding to phenylboronic acid group
CN1402796A (en) Molecular microarrays and methods for production and use thereof
US11149301B2 (en) Preparation of universal spin-coatable amine-reactive surface coatings for biomolecule array fabrication
JP2006322708A (en) Substance fixing method
JP2004177378A (en) Fixing method of biopolymer
JP5614179B2 (en) Polymer compound for medical material and biochip substrate using the polymer compound
US20060111517A1 (en) Recognition layers made of hydrogel based on polyacrylamide for use in biosensor technology
Mandal et al. Cytophobic surface modification of microfluidic arrays for in situ parallel peptide synthesis and cell adhesion assays
JP2006316010A (en) Substance-fixing agent, method for fixing substance and substrate for fixing substance
JP4887863B2 (en) Light immobilization method and structure
JP2006017458A (en) Substrate for biochip, and biochip
JP2003130879A (en) Dna chip
JP5326089B2 (en) Functional fine structure
WO2006024039A2 (en) Method for manufacturing of three dimensional composite surfaces for microarrays
JP2007178208A (en) Biological substance fixing carrier
JP4113349B2 (en) DNA chip and manufacturing method thereof
WO2021085526A1 (en) Biochip and detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051124

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081014