JP2004177208A - Failure detection system of voltage detection circuit - Google Patents

Failure detection system of voltage detection circuit Download PDF

Info

Publication number
JP2004177208A
JP2004177208A JP2002342215A JP2002342215A JP2004177208A JP 2004177208 A JP2004177208 A JP 2004177208A JP 2002342215 A JP2002342215 A JP 2002342215A JP 2002342215 A JP2002342215 A JP 2002342215A JP 2004177208 A JP2004177208 A JP 2004177208A
Authority
JP
Japan
Prior art keywords
voltage
cell
detection circuit
capacitor
failure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002342215A
Other languages
Japanese (ja)
Other versions
JP4056863B2 (en
Inventor
Shinji Kato
真志 加藤
Koichi Yamamoto
康一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002342215A priority Critical patent/JP4056863B2/en
Publication of JP2004177208A publication Critical patent/JP2004177208A/en
Application granted granted Critical
Publication of JP4056863B2 publication Critical patent/JP4056863B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To precisely determine the presence or absence of any failure on a voltage detection circuit while inhibiting that device configuration is complicated. <P>SOLUTION: When it is determined that a cell voltage of any capacitor cell exceeds a prescribed regenerative limit voltage VR, a control unit 17 anticipates the total voltage (release determination voltage SVL) when the cell voltage of the capacitor cell reaches a prescribed determination voltage VT below the regenerative limit voltage VR, based on a detected total voltage detection value SVE. When it is detected that the detection value SVE is below the voltage SVL in the state that it is continued that a cell voltage of any capacitor cell exceeds a prescribed voltage VR, a control unit 17 determines that the detection value of the cell voltage of the capacitor cell is abnormal, and determines that failure is generated in a cell voltage detection circuit of a protective device 16. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電圧検出回路の故障検知装置に関する。
【0002】
【従来の技術】
従来、例えば二次電池等からなる複数の単位セルを直列に接続してなる組電池(バッテリ)において、各単位セルに並列に接続されたセル電圧検出回路およびバイパス回路を備え、各セル電圧検出回路により検出される端子間電圧に応じて各単位セルが満充電状態か否かを判定し、満充電状態であると判定されたセルへの充電電流をバイパス回路へ通電させることで各単位セルの端子間電圧のばらつきを調整すると共に、検出される端子間電圧に応じて各単位セルへの充電電流を設定するバッテリの充電装置が知られている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開平4−299032号公報
【0004】
【発明が解決しようとする課題】
ところで、上記従来技術の一例に係るバッテリの充電装置において、セル電圧検出回路によって検出される端子間電圧に応じて各単位セルが満充電状態か否かを判定する際に、セル電圧検出回路に故障が生じていると、精度の良い判定が困難になるという問題が生じる。
本発明は上記事情に鑑みてなされたもので、例えば故障検知用の装置等を新たに備えることで装置構成が複雑化することを抑制しつつ、電圧検出回路の故障の有無を精度良く判定することが可能な電圧検出回路の故障検知装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記課題を解決して係る目的を達成するために、請求項1に記載の本発明の電圧検出回路の故障検知装置は、複数のセル(例えば、実施の形態におけるキャパシタセル)が直列に接続されてなる蓄電装置(例えば、実施の形態におけるキャパシタ13)の各前記セルの端子間電圧を検出するセル電圧検出手段(例えば、実施の形態におけるセル電圧検出回路)を具備する電圧検出回路の故障検知装置であって、前記複数のセルの端子間電圧の和である総電圧を検出する総電圧検出手段(例えば、実施の形態における電圧センサ22)と、前記複数のセルの何れかのセルの端子間電圧が所定電圧(例えば、実施の形態における回生制限電圧VR)を超えたことを判定するセル電圧判定手段(例えば、実施の形態におけるステップS02)と、前記何れかのセルの端子間電圧が前記所定電圧を超えたときに、前記総電圧検出手段で検出された前記総電圧に基づいて解除判定電圧(例えば、実施の形態における解除判定電圧SVL)を設定する解除判定電圧設定手段(例えば、実施の形態におけるステップS08)と、前記所定電圧を超えたと判定された前記セルの端子間電圧が、前記総電圧検出手段で検出された総電圧の検出値が前記解除判定電圧を下回ったときに(例えば、実施の形態におけるステップS10の「NO」側)、前記所定電圧を超えた状態が継続している場合に(例えば、実施の形態におけるステップS02の「YES」側)、前記電圧検出回路に故障があったと判定する故障判定手段(例えば、実施の形態におけるステップS07)とを備えることを特徴としている。
【0006】
上記構成の電圧検出回路の故障検知装置によれば、セル電圧判定手段は、何れかのセルの端子間電圧が所定電圧、例えば過充電の虞があるセルの放電を実行するか否かを判定するための判定値等を超えたことを判定する。解除判定電圧設定手段は、何れかのセルの端子間電圧が所定電圧を超えた場合に、総電圧検出手段で検出された総電圧に基づいて解除判定電圧、例えば所定電圧を超えたと判定されたセルの端子間電圧がセルの放電処理を解除するための判定値に到達するときの総電圧の予測値等を設定する。
故障判定手段は、所定電圧を超えたと判定されたセルの端子間電圧が、総電圧検出手段で検出された総電圧の検出値が解除判定電圧を下回ったときにおいても、所定電圧以上である状態が継続しているときに、セルの端子間電圧の検出値が異常であると判断し、電圧検出回路に故障が生じていると判定する。
【0007】
【発明の実施の形態】
以下、本発明の一実施形態に係る電圧検出回路の故障検知装置について添付図面を参照しながら説明する。
本実施の形態による電圧検出回路の故障検知装置10は、例えば燃料電池車両やハイブリッド車両等の車両に搭載されており、例えば図1に示すように、燃料電池11と、電流・電圧制御器12と、キャパシタ13と、出力制御器14と、走行用モータ15と、保護装置16と、制御装置17と、電流センサ21と、電圧センサ22と、キャパシタ温度センサ23と、アクセル開度センサ31と、ブレーキスイッチ32と、IGスイッチ33とを備えて構成される燃料電池車両においては、例えば、保護装置16と、制御装置17と、電圧センサ22とを備えて構成されている。
【0008】
燃料電池11は、陽イオン交換膜等からなる固体高分子電解質膜を、アノード触媒およびガス拡散層からなる燃料極(アノード)と、カソード触媒およびガス拡散層からなる酸素極(カソード)とで挟持してなる電解質電極構造体を、更に一対のセパレータで挟持してなる燃料電池セルを多数組積層して構成されている。
燃料電池11のアノードには、高圧の水素タンクによって水素からなる燃料ガス(反応ガス)が供給され、アノードのアノード触媒上で触媒反応によりイオン化された水素は、適度に加湿された固体高分子電解質膜を介してカソードへと移動し、この移動に伴って発生する電子が外部回路に取り出され、直流の電気エネルギーとして利用される。カソードには、例えば酸素を含む酸化剤ガス(反応ガス)である空気がエアーコンプレッサによって供給され、このカソードにおいて、水素イオン、電子及び酸素が反応して水が生成される。
【0009】
燃料電池11から取り出される発電電流は電流・電圧制御器12に入力されており、この電流・電圧制御器12には、蓄電装置をなす、例えば電気二重層コンデンサや電解コンデンサ等からなるキャパシタ13が接続されている。
そして、燃料電池11とキャパシタ13は、出力制御器14を介して、電気的負荷である走行用モータ15に対して並列に接続されている。
電流・電圧制御器12は、例えばDC−DCチョッパ等を備えて構成されており、制御装置17から出力される電流指令値つまり燃料電池11に対する発電指令に基づいて、燃料電池11から取り出される発電電流の電流値を制御する。
【0010】
出力制御器14は、例えばパルス幅変調(PWM)によるPWMインバータを備えており、制御装置17から出力される制御指令に応じて走行用モータ15の駆動および回生動作を制御する。例えば走行用モータ15の駆動時には、制御装置17から出力されるトルク指令に基づき、電流・電圧制御器12およびキャパシタ13から出力される直流電力を3相交流電力に変換して走行用モータ15へ供給する。一方、走行用モータ15の回生時には、走行用モータ15から出力される3相交流電力を直流電力に変換し、キャパシタ13を充電する。
なお、走行用モータ15は、例えば界磁として永久磁石を利用する永久磁石式の3相交流同期モータとされており、出力制御器14から供給される3相交流電力により駆動制御されると共に、車両の減速時に駆動輪側から走行用モータ15側に駆動力が伝達されると、走行用モータ15は発電機として機能していわゆる回生制動力を発生し、車体の運動エネルギーを電気エネルギーとして回収する。
【0011】
キャパシタ13は、例えば電気二重層コンデンサや電解コンデンサ等からなる複数のキャパシタセルが直列に接続されて構成されており、キャパシタ13には各キャパシタセルの入出力端子に接続された電圧検出線を介して保護装置16が接続されている。
保護装置16は、例えば、各キャパシタセルの端子間電圧(セル電圧)を検出するセル電圧検出回路と、各キャパシタセルへ通電される充電電流をバイパスし、各キャパシタセルを放電可能なバイパス回路と、バイパス制御部と、セル電圧判定部とを備えて構成され、セル電圧検出回路およびバイパス回路は、電圧検出線を介して各キャパシタセルに並列に接続されている。
【0012】
バイパス回路は、例えば、バイパス抵抗およびバイパス抵抗への通電のオン/オフを切替可能なスイッチング素子を備えて構成されている。
バイパス制御部は、バイパス回路のスイッチング素子のオン/オフ動作を制御しており、制御装置17から出力される制御指令や、キャパシタセルのセル電圧が所定の回生制限電圧VR(例えば、VR=2.5V)を超えたことを示す判定結果に応じて、スイッチング素子をオン状態に設定する論理「ハイ」レベルのオン信号を出力する。これにより、対応するキャパシタセルはバイパス抵抗を介して放電すると共に、このキャパシタセルへ通電される充電電流はバイパス抵抗へバイパスされるようになっている。
セル電圧判定部は、各セル電圧が、所定の回生制限電圧VR(例えば、VR=2.5V)や、回生制限電圧VRよりも大きな値の回生禁止電圧VU(例えば、VU=2.7V)等の各判定値を超えたか否かを判定し、各判定結果をバイパス制御部や制御装置17へ出力する。
【0013】
制御装置17は、例えば、車両の運転状態や、燃料電池11のアノードに供給される反応ガスに含まれる水素の濃度や、燃料電池11のアノードから排出される排出ガスに含まれる水素の濃度や、燃料電池11の発電状態、例えば各複数の燃料電池セルの出力電圧や、燃料電池11から取り出される発電電流等に基づき、エアーコンプレッサおよび水素タンクから燃料電池11へ供給される各反応ガスの流量に対する指令値を出力し、燃料電池11の発電状態を制御すると共に、燃料電池11に対する発電指令を電流・電圧制御器12へ出力し、燃料電池11から取り出される発電電流の電流値を制御する。
【0014】
また、制御装置17は、出力制御器14に具備されたPWMインバータの電力変換動作を制御しており、例えば走行用モータ15の駆動時においては、運転者によるアクセルペダルの踏み込み操作量等に係るアクセル開度の信号に基づいてトルク指令を算出する。そして、制御装置17が、このトルク指令を出力制御器14に入力することで、トルク指令に応じたパルス幅変調信号がPWMインバータに入力され、要求されたトルクを発生させるための各相電流が走行用モータ15の各相へと出力される。
さらに、制御装置17は、キャパシタ13の状態、例えば保護装置16の各セル電圧検出回路から出力される各キャパシタセルのセル電圧の検出結果や、例えばキャパシタ13の温度や、複数のキャパシタセルのセル電圧の和である総電圧の検出値に基づき、走行用モータ15の回生動作を制御する。
このため、制御装置17には、例えば、燃料電池11から取り出される発電電流の電流値を検出する電流センサ21から出力される検出信号と、セル電圧の総和である総電圧を検出する電圧センサ22から出力される検出信号と、キャパシタ13の温度を検出するキャパシタ温度センサ23から出力される検出信号と、アクセル開度センサ31から出力される検出信号と、運転者によるブレーキ操作の有無を検知するブレーキスイッチ32から出力される信号と、車両の作動を指示するIGスイッチ33から出力される信号とが入力されている。
【0015】
さらに、制御装置17は、保護装置16のセル電圧判定部から出力される各判定結果、つまり各セル電圧が、所定の回生制限電圧VRや回生禁止電圧VU等の各判定値を超えたか否かの判定結果と、キャパシタ13の状態、例えばキャパシタ13の温度や、複数のキャパシタセルのセル電圧の和である総電圧の検出値(総電圧検出値SVE)に基づき、走行用モータ15の回生動作を制御する。
さらに、制御装置17は、後述するように、何れかのキャパシタセルのセル電圧が所定の回生制限電圧VRを超えたと判定されたときに、このキャパシタセルのセル電圧が、回生制限電圧VR以下の所定の判定電圧VTに到達するときの総電圧(つまり、解除判定電圧SVL)を予測する。そして、制御装置17は、何れかのキャパシタセルのセル電圧が所定の回生制限電圧VRを超えた状態が継続される状態で、検出される総電圧検出値SVEが解除判定電圧SVL未満であることを検知したときに、キャパシタセルのセル電圧の検出値が異常であると判断し、保護装置16のセル電圧検出回路に故障が生じていると判定する。
【0016】
本実施の形態による電圧検出回路の故障検知装置10は上記構成を備えており、次に、この電圧検出回路の故障検知装置10の動作について添付図面を参照しながら説明する。
【0017】
先ず、例えば図2に示すステップS01においては、キャパシタ13の各キャパシタセルのセル電圧を検出する。
次に、ステップS02においては、何れかのセル電圧が所定の回生制限電圧VR(例えば、VR=2.5V)を超えたか否かを判定する。
この判定結果が「YES」の場合には、後述するステップS05に進む。
一方、この判定結果が「NO」の場合には、ステップS03に進む。
ステップS03においては、何れかのセル電圧が所定の回生制限電圧VRを超えた後に解除判定電圧SVLを設定したことを示すフラグFのフラグ値にゼロを設定して、フラグFをリセットする。
そして、ステップS04においては、保護装置16のセル電圧検出回路は正常であると判定し、一連の処理を終了する。
【0018】
また、ステップS05においては、フラグFのフラグ値がゼロか否かを判定する。
この判定結果が「NO」の場合には、後述するステップS10に進む。
一方、この判定結果が「YES」の場合には、ステップS06に進む。
【0019】
ステップS06においては、総電圧検出値SVEが所定の総電圧判定値よりも大きいか否かを判定する。ここで、所定の総電圧判定値とは、例えば、何れかのセル電圧が所定の回生制限電圧VR(例えば、VR=2.5V)を超えた場合に検出される総電圧検出値SVEの検出下限値等である。
この判定結果が「NO」の場合には、ステップS07に進み、キャパシタセルのセル電圧の検出値が異常であると判断し、保護装置16のセル電圧検出回路に故障が生じていると判定して、一連の処理を終了する。
一方、この判定結果が「YES」の場合には、ステップS08に進む。
ステップS08においては、解除判定電圧SVLを設定する。
ここでは、例えば、所定の回生制限電圧VRを超えたキャパシタセルのセル電圧が、回生制限電圧VR(例えば、VR=2.5V)以下の所定の判定電圧VT(例えば、VT=2.4V等)に到達するときの総電圧を予測し、この予測値を解除判定電圧SVLとして設定する。例えば、この時点で検出されるキャパシタ13の総電圧検出値SVEから、回生制限電圧VRと判定電圧VTとの差分のキャパシタセルの個数N分の総和((VR−VT)×N)を減算して得た値を、解除判定電圧SVLとして設定する。
【0020】
そして、ステップS09においては、何れかのセル電圧が所定の回生制限電圧VRを超えた後に解除判定電圧SVLを設定したことを示すフラグFのフラグ値に1を設定し、ステップS10に進む。
そして、ステップS10においては、総電圧検出値SVEが解除判定電圧SVLよりも大きいか否かを判定する。
この判定結果が「NO」の場合には、上述したステップS07に進み、キャパシタセルのセル電圧の検出値が異常であると判断し、保護装置16のセル電圧検出回路に故障が生じていると判定して、一連の処理を終了する。
一方、この判定結果が「YES」の場合には、上述したステップS04に進み、保護装置16のセル電圧検出回路は正常であると判定し、一連の処理を終了する。
【0021】
上述したように、本実施の形態による電圧検出回路の故障検知装置10によれば、各キャパシタセルのセル電圧の検出値と、総電圧検出値SVEとに基づき、例えば専用の検査装置等を新たに備える必要無しに、セル電圧を検出する電圧検出回路の故障の有無を精度良く容易に判定することができる。
【0022】
なお、上述した実施の形態においては、走行用モータ15と電気エネルギーの授受を行う蓄電装置をキャパシタ13としたが、これに限定されず、例えばリチウムイオン電池等の二次電池からなる複数のセルを直列に接続してなる組電池等であってもよい。
【0023】
【発明の効果】
以上説明したように、請求項1に記載の本発明の電圧検出回路の故障検知装置によれば、例えば装置構成が複雑化することを抑制しつつ、電圧検出回路の故障の有無を精度良く容易に判定することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る電圧検出回路の故障検知装置の構成図である。
【図2】図1に示す電圧検出回路の故障検知装置の動作を示すフローチャートである。
【符号の説明】
10 電圧検出回路の故障検知装置
13 キャパシタ(蓄電装置)
22 電圧センサ(電圧検出手段)
ステップS02 セル電圧判定手段
ステップS08 解除判定電圧設定手段
ステップS07 故障判定手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a failure detection device for a voltage detection circuit.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in a battery pack (battery) formed by connecting a plurality of unit cells including, for example, a secondary battery in series, a cell voltage detection circuit and a bypass circuit connected in parallel to each unit cell are provided. It is determined whether each unit cell is in a fully charged state according to a voltage between terminals detected by a circuit, and a charging current for a cell determined to be in a fully charged state is supplied to a bypass circuit to allow each unit cell to be charged. There is known a battery charger that adjusts the variation of the inter-terminal voltage and sets the charging current to each unit cell according to the detected inter-terminal voltage (for example, see Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. Hei 4-29932
[Problems to be solved by the invention]
By the way, in the battery charger according to the example of the related art, when determining whether each unit cell is in a fully charged state according to a terminal voltage detected by a cell voltage detection circuit, the cell voltage detection circuit If a failure occurs, there arises a problem that accurate determination becomes difficult.
The present invention has been made in view of the above circumstances. For example, it is possible to accurately determine the presence or absence of a failure in a voltage detection circuit while suppressing the complexity of the device configuration by newly providing a failure detection device or the like. It is an object of the present invention to provide a failure detection device for a voltage detection circuit that can perform the detection.
[0005]
[Means for Solving the Problems]
In order to solve the above-described problems and achieve the object, a failure detection device for a voltage detection circuit according to the present invention includes a plurality of cells (for example, capacitor cells in the embodiments) connected in series. Failure detection of a voltage detection circuit including cell voltage detection means (for example, a cell voltage detection circuit in the embodiment) for detecting a voltage between terminals of each of the cells of the power storage device (for example, the capacitor 13 in the embodiment). A total voltage detecting means (for example, the voltage sensor 22 in the embodiment) for detecting a total voltage which is a sum of voltages between terminals of the plurality of cells; and a terminal of any one of the plurality of cells. A cell voltage determination unit (for example, step S02 in the embodiment) for determining that the inter-voltage has exceeded a predetermined voltage (for example, the regeneration limit voltage VR in the embodiment); When the inter-terminal voltage of any of the cells exceeds the predetermined voltage, a release determination voltage (for example, a release determination voltage SVL in the embodiment) is set based on the total voltage detected by the total voltage detection means. And the voltage between terminals of the cell determined to have exceeded the predetermined voltage is determined by the total voltage detection value detected by the total voltage detection means. When the voltage is lower than the release determination voltage (for example, “NO” side in step S10 in the embodiment), when the state in which the voltage exceeds the predetermined voltage continues (for example, in step S02 in the embodiment). YES)), and a failure determination unit (for example, step S07 in the embodiment) that determines that the voltage detection circuit has a failure.
[0006]
According to the failure detection device for a voltage detection circuit having the above-described configuration, the cell voltage determination unit determines whether or not the voltage between the terminals of any of the cells performs a predetermined voltage, for example, whether or not to discharge a cell that may be overcharged. It is determined that the judgment value or the like has been exceeded. The release determination voltage setting means determines that the release determination voltage, for example, exceeds a predetermined voltage, based on the total voltage detected by the total voltage detection means when the voltage between the terminals of any of the cells exceeds a predetermined voltage. A predicted value of the total voltage when the voltage between the terminals of the cell reaches the determination value for canceling the discharge processing of the cell, and the like are set.
The failure determination means is configured to determine that the voltage between the terminals of the cells determined to exceed the predetermined voltage is equal to or higher than the predetermined voltage even when the detected value of the total voltage detected by the total voltage detection means falls below the release determination voltage. Is determined to be abnormal, it is determined that a failure has occurred in the voltage detection circuit.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a failure detection device for a voltage detection circuit according to an embodiment of the present invention will be described with reference to the accompanying drawings.
A failure detection device 10 for a voltage detection circuit according to the present embodiment is mounted on a vehicle such as a fuel cell vehicle or a hybrid vehicle, and for example, as shown in FIG. 1, a fuel cell 11 and a current / voltage controller 12 , A capacitor 13, an output controller 14, a traveling motor 15, a protection device 16, a control device 17, a current sensor 21, a voltage sensor 22, a capacitor temperature sensor 23, and an accelerator opening sensor 31. The fuel cell vehicle including the brake switch 32 and the IG switch 33 includes, for example, the protection device 16, the control device 17, and the voltage sensor 22.
[0008]
The fuel cell 11 sandwiches a solid polymer electrolyte membrane composed of a cation exchange membrane or the like between a fuel electrode (anode) composed of an anode catalyst and a gas diffusion layer and an oxygen electrode (cathode) composed of a cathode catalyst and a gas diffusion layer. The fuel cell is formed by laminating a large number of fuel cells each having the above-mentioned electrolyte electrode structure sandwiched between a pair of separators.
A fuel gas (reaction gas) composed of hydrogen is supplied to the anode of the fuel cell 11 from a high-pressure hydrogen tank, and hydrogen ionized by a catalytic reaction on the anode catalyst of the anode is converted into a moderately humidified solid polymer electrolyte. The electrons move to the cathode via the membrane, and electrons generated by the movement are taken out to an external circuit and used as DC electric energy. Air, which is an oxidizing gas containing oxygen (reactive gas), is supplied to the cathode by an air compressor. At the cathode, hydrogen ions, electrons, and oxygen react to generate water.
[0009]
The generated current taken out of the fuel cell 11 is input to a current / voltage controller 12, and the current / voltage controller 12 includes a capacitor 13 that constitutes a power storage device, such as an electric double layer capacitor or an electrolytic capacitor. It is connected.
The fuel cell 11 and the capacitor 13 are connected in parallel to a traveling motor 15 as an electric load via an output controller 14.
The current / voltage controller 12 includes, for example, a DC-DC chopper and the like. The current / voltage controller 12 generates electric power extracted from the fuel cell 11 based on a current command value output from the control device 17, that is, a power generation command for the fuel cell 11. Controls the current value of the current.
[0010]
The output controller 14 includes, for example, a PWM inverter based on pulse width modulation (PWM), and controls the driving and the regenerative operation of the traveling motor 15 according to a control command output from the control device 17. For example, at the time of driving the traveling motor 15, the DC power output from the current / voltage controller 12 and the capacitor 13 is converted into three-phase AC power based on the torque command output from the control device 17 to the traveling motor 15. Supply. On the other hand, during regeneration of the traveling motor 15, the three-phase AC power output from the traveling motor 15 is converted into DC power, and the capacitor 13 is charged.
The traveling motor 15 is, for example, a permanent magnet type three-phase AC synchronous motor using a permanent magnet as a field, and is driven and controlled by three-phase AC power supplied from the output controller 14. When the driving force is transmitted from the driving wheels to the traveling motor 15 when the vehicle decelerates, the traveling motor 15 functions as a generator to generate a so-called regenerative braking force, and recovers the kinetic energy of the vehicle body as electric energy. I do.
[0011]
The capacitor 13 is configured by connecting a plurality of capacitor cells, such as an electric double layer capacitor and an electrolytic capacitor, in series, and the capacitor 13 is connected to a voltage detection line connected to the input / output terminal of each capacitor cell. The protection device 16 is connected.
The protection device 16 includes, for example, a cell voltage detection circuit that detects a terminal voltage (cell voltage) of each capacitor cell, and a bypass circuit that can bypass a charging current that flows through each capacitor cell and discharge each capacitor cell. , A bypass control unit, and a cell voltage determination unit. The cell voltage detection circuit and the bypass circuit are connected in parallel to each capacitor cell via a voltage detection line.
[0012]
The bypass circuit includes, for example, a bypass resistor and a switching element capable of switching on / off of energization to the bypass resistor.
The bypass control unit controls the on / off operation of the switching element of the bypass circuit, and controls the control command output from the control device 17 or the cell voltage of the capacitor cell to a predetermined regenerative limiting voltage VR (for example, VR = 2). .5V), and outputs a logic "high" level ON signal for setting the switching element to the ON state in accordance with the determination result indicating that the switching element has exceeded the threshold value. Thereby, the corresponding capacitor cell is discharged via the bypass resistor, and the charging current supplied to the capacitor cell is bypassed to the bypass resistor.
The cell voltage determination unit determines that each cell voltage has a predetermined regenerative limit voltage VR (for example, VR = 2.5 V) or a regenerative inhibition voltage VU having a value larger than the regenerative limit voltage VR (for example, VU = 2.7 V). It is determined whether or not each determination value such as the above has been exceeded, and each determination result is output to the bypass control unit and the control device 17.
[0013]
The control device 17 may control, for example, the operating state of the vehicle, the concentration of hydrogen contained in the reaction gas supplied to the anode of the fuel cell 11, the concentration of hydrogen contained in the exhaust gas discharged from the anode of the fuel cell 11, and the like. The flow rate of each reaction gas supplied from the air compressor and the hydrogen tank to the fuel cell 11 based on the power generation state of the fuel cell 11, for example, the output voltage of each of the plurality of fuel cells, the power generation current extracted from the fuel cell 11, and the like. And outputs a command value to the current / voltage controller 12 to control the power generation state of the fuel cell 11, and controls the current value of the power generation current extracted from the fuel cell 11.
[0014]
In addition, the control device 17 controls the power conversion operation of the PWM inverter provided in the output controller 14, and for example, when the driving motor 15 is driven, the control device 17 relates to the amount of depression of the accelerator pedal by the driver. A torque command is calculated based on the accelerator opening signal. Then, the controller 17 inputs this torque command to the output controller 14, whereby a pulse width modulation signal corresponding to the torque command is input to the PWM inverter, and each phase current for generating the requested torque is generated. It is output to each phase of the traveling motor 15.
Further, the control device 17 detects the state of the capacitor 13, for example, the detection result of the cell voltage of each capacitor cell output from each cell voltage detection circuit of the protection device 16, the temperature of the capacitor 13, the cell of a plurality of capacitor cells, and the like. The regenerative operation of the traveling motor 15 is controlled based on the detected value of the total voltage which is the sum of the voltages.
For this reason, the control device 17 includes, for example, a detection signal output from a current sensor 21 for detecting a current value of a generated current extracted from the fuel cell 11 and a voltage sensor 22 for detecting a total voltage which is a sum of cell voltages. , A detection signal output from a capacitor temperature sensor 23 that detects the temperature of the capacitor 13, a detection signal output from an accelerator opening sensor 31, and the presence or absence of a brake operation by the driver. A signal output from the brake switch 32 and a signal output from the IG switch 33 instructing the operation of the vehicle are input.
[0015]
Further, the control device 17 determines whether each determination result output from the cell voltage determination unit of the protection device 16, that is, whether each cell voltage has exceeded each determination value such as a predetermined regenerative limit voltage VR or a regenerative inhibition voltage VU. And the state of the capacitor 13, for example, the temperature of the capacitor 13, and the detected value of the total voltage which is the sum of the cell voltages of the plurality of capacitor cells (total voltage detection value SVE), the regenerative operation of the traveling motor 15. Control.
Further, as will be described later, when it is determined that the cell voltage of any one of the capacitor cells has exceeded the predetermined regenerative limit voltage VR, the control device 17 sets the cell voltage of the capacitor cell to the regenerative limit voltage VR or lower. The total voltage (that is, the release determination voltage SVL) when reaching the predetermined determination voltage VT is predicted. The control device 17 determines that the total voltage detection value SVE detected is lower than the release determination voltage SVL in a state where the state in which the cell voltage of any one of the capacitor cells has exceeded the predetermined regenerative limit voltage VR is continued. Is detected, it is determined that the detected value of the cell voltage of the capacitor cell is abnormal, and it is determined that a failure has occurred in the cell voltage detection circuit of the protection device 16.
[0016]
The failure detection device 10 of the voltage detection circuit according to the present embodiment has the above-described configuration. Next, the operation of the failure detection device 10 of the voltage detection circuit will be described with reference to the accompanying drawings.
[0017]
First, for example, in step S01 shown in FIG. 2, the cell voltage of each capacitor cell of the capacitor 13 is detected.
Next, in step S02, it is determined whether or not any of the cell voltages has exceeded a predetermined regeneration limit voltage VR (for example, VR = 2.5V).
If this determination is "YES", the flow proceeds to step S05 described later.
On the other hand, if the result of this determination is "NO", the flow proceeds to step S03.
In step S03, the flag value of the flag F indicating that the release determination voltage SVL has been set after any one of the cell voltages has exceeded the predetermined regeneration limiting voltage VR is set to zero, and the flag F is reset.
Then, in step S04, it is determined that the cell voltage detection circuit of the protection device 16 is normal, and a series of processing ends.
[0018]
In step S05, it is determined whether the flag value of the flag F is zero.
If the result of this determination is "NO", the flow proceeds to step S10 described later.
On the other hand, when the result of this determination is “YES”, the flow proceeds to step S06.
[0019]
In step S06, it is determined whether or not total voltage detection value SVE is greater than a predetermined total voltage determination value. Here, the predetermined total voltage determination value is, for example, a detection of a total voltage detection value SVE detected when any cell voltage exceeds a predetermined regenerative limit voltage VR (for example, VR = 2.5 V). It is a lower limit value or the like.
If the result of this determination is “NO”, the flow proceeds to step S07, where it is determined that the detected value of the cell voltage of the capacitor cell is abnormal, and it is determined that a failure has occurred in the cell voltage detection circuit of the protection device 16. Then, a series of processing ends.
On the other hand, when the result of this determination is “YES”, the flow proceeds to step S08.
In step S08, the release determination voltage SVL is set.
Here, for example, the cell voltage of the capacitor cell that has exceeded the predetermined regenerative limit voltage VR is equal to or lower than the regenerative limit voltage VR (for example, VR = 2.5 V) and is equal to or less than the predetermined determination voltage VT (for example, VT = 2.4 V, etc.). ) Is predicted, and this predicted value is set as the release determination voltage SVL. For example, the sum ((VR−VT) × N) of the difference between the regeneration limit voltage VR and the determination voltage VT for the number N of capacitor cells is subtracted from the total voltage detection value SVE of the capacitor 13 detected at this time. The obtained value is set as the release determination voltage SVL.
[0020]
Then, in step S09, the flag value of the flag F indicating that the release determination voltage SVL has been set after any one of the cell voltages exceeds the predetermined regenerative limit voltage VR is set to 1, and the process proceeds to step S10.
Then, in step S10, it is determined whether the total voltage detection value SVE is higher than the release determination voltage SVL.
If the result of this determination is "NO", the flow proceeds to step S07 described above, where it is determined that the detected value of the cell voltage of the capacitor cell is abnormal, and that a failure has occurred in the cell voltage detection circuit of the protection device 16. After making the determination, the series of processing is terminated.
On the other hand, if the result of this determination is "YES", the flow proceeds to step S04 described above, where it is determined that the cell voltage detection circuit of the protection device 16 is normal, and a series of processing ends.
[0021]
As described above, according to the failure detection device 10 of the voltage detection circuit according to the present embodiment, for example, a dedicated inspection device or the like is newly added based on the detected value of the cell voltage of each capacitor cell and the total detected voltage value SVE. , It is possible to easily and accurately determine whether or not the voltage detection circuit for detecting the cell voltage has a failure.
[0022]
In the above-described embodiment, the power storage device that exchanges electric energy with the traveling motor 15 is the capacitor 13. However, the present invention is not limited to this. For example, a plurality of cells including a secondary battery such as a lithium ion battery may be used. May be connected in series.
[0023]
【The invention's effect】
As described above, according to the voltage detection circuit failure detection device of the present invention described in claim 1, for example, it is easy to accurately determine whether or not a failure has occurred in the voltage detection circuit while suppressing the device configuration from becoming complicated. Can be determined.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a failure detection device for a voltage detection circuit according to an embodiment of the present invention.
FIG. 2 is a flowchart showing an operation of the failure detection device for the voltage detection circuit shown in FIG.
[Explanation of symbols]
10 Voltage detection circuit failure detection device 13 Capacitor (power storage device)
22 Voltage sensor (voltage detection means)
Step S02 Cell voltage determination means Step S08 Release determination voltage setting means Step S07 Failure determination means

Claims (1)

複数のセルが直列に接続されてなる蓄電装置の各前記セルの端子間電圧を検出するセル電圧検出手段を具備する電圧検出回路の故障検知装置であって、
前記複数のセルの端子間電圧の和である前記蓄電装置の総電圧を検出する総電圧検出手段と、
前記複数のセルの何れかのセルの端子間電圧が所定電圧を超えたことを判定するセル電圧判定手段と、
前記何れかのセルの端子間電圧が前記所定電圧を超えたときに、前記総電圧検出手段で検出された前記総電圧に基づいて解除判定電圧を設定する解除判定電圧設定手段と、
前記所定電圧を超えたと判定された前記セルの端子間電圧が、前記総電圧検出手段で検出された総電圧の検出値が前記解除判定電圧を下回ったときに、前記所定電圧を超えた状態が継続している場合に、前記電圧検出回路に故障があったと判定する故障判定手段と
を備えることを特徴とする電圧検出回路の故障検知装置。
A failure detection device for a voltage detection circuit including cell voltage detection means for detecting a voltage between terminals of each of the cells of the power storage device in which a plurality of cells are connected in series,
Total voltage detection means for detecting a total voltage of the power storage device, which is a sum of voltages between terminals of the plurality of cells,
Cell voltage determining means for determining that the voltage between terminals of any of the plurality of cells has exceeded a predetermined voltage,
When the voltage between the terminals of any of the cells exceeds the predetermined voltage, a release determination voltage setting unit that sets a release determination voltage based on the total voltage detected by the total voltage detection unit,
When the inter-terminal voltage of the cell determined to have exceeded the predetermined voltage is lower than the release determination voltage when the detected value of the total voltage detected by the total voltage detecting means is lower than the predetermined voltage, A failure detection device for a voltage detection circuit, comprising: failure determination means for determining that a failure has occurred in the voltage detection circuit when the voltage detection circuit continues.
JP2002342215A 2002-11-26 2002-11-26 Fault detection device for voltage detection circuit Expired - Fee Related JP4056863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002342215A JP4056863B2 (en) 2002-11-26 2002-11-26 Fault detection device for voltage detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002342215A JP4056863B2 (en) 2002-11-26 2002-11-26 Fault detection device for voltage detection circuit

Publications (2)

Publication Number Publication Date
JP2004177208A true JP2004177208A (en) 2004-06-24
JP4056863B2 JP4056863B2 (en) 2008-03-05

Family

ID=32704334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002342215A Expired - Fee Related JP4056863B2 (en) 2002-11-26 2002-11-26 Fault detection device for voltage detection circuit

Country Status (1)

Country Link
JP (1) JP4056863B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183367A1 (en) * 2012-06-06 2013-12-12 富士電機株式会社 Power conversion system and voltage detection device therefor
WO2022052231A1 (en) * 2020-09-13 2022-03-17 南京宏泰半导体科技有限公司 Efficient real-time status detection device for test system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102269804A (en) * 2010-12-31 2011-12-07 北京谊安医疗系统股份有限公司 Method and device for detecting switching value detector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183367A1 (en) * 2012-06-06 2013-12-12 富士電機株式会社 Power conversion system and voltage detection device therefor
JP2013255340A (en) * 2012-06-06 2013-12-19 Fuji Electric Co Ltd Power conversion system, and voltage detector for the same
US9608534B2 (en) 2012-06-06 2017-03-28 Fuji Electric Co., Ltd. Power conversion system, and voltage detection device thereof
WO2022052231A1 (en) * 2020-09-13 2022-03-17 南京宏泰半导体科技有限公司 Efficient real-time status detection device for test system

Also Published As

Publication number Publication date
JP4056863B2 (en) 2008-03-05

Similar Documents

Publication Publication Date Title
JP3816436B2 (en) Control device for fuel cell vehicle
JP4397739B2 (en) Method for setting voltage state of fuel cell vehicle
JP5101583B2 (en) Fuel cell vehicle
US20070129859A1 (en) Control apparatus for fuel cell vehicle
US8027759B2 (en) Fuel cell vehicle system
JP3863092B2 (en) In-vehicle motor regeneration control device
JP2004248432A (en) Driving apparatus and automobile having the same
JP4554151B2 (en) Control device for fuel cell vehicle
JP3839397B2 (en) Device for detecting disconnection of voltage detection line of power storage device
JP2002231287A (en) Fuel cell device and its control method
JP4615379B2 (en) Fuel cell system
JP4847929B2 (en) Contactor failure detection method and apparatus in fuel cell system
CN107492919A (en) Power system and its control method
EP1953857B1 (en) Fuel cell system
JP4772391B2 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
JP2010003444A (en) Fuel cell vehicle
JP4056863B2 (en) Fault detection device for voltage detection circuit
JP2009043545A (en) Fuel cell system
JP4053410B2 (en) In-vehicle motor regeneration control device
JP4451056B2 (en) Control device for fuel cell vehicle
JP2004187332A (en) Controller for fuel cell vehicle
JP2021141668A (en) Electric vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071212

R150 Certificate of patent or registration of utility model

Ref document number: 4056863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees