JP2004176561A - Fuel control device for multi-cylinder internal combustion engine - Google Patents

Fuel control device for multi-cylinder internal combustion engine Download PDF

Info

Publication number
JP2004176561A
JP2004176561A JP2002340794A JP2002340794A JP2004176561A JP 2004176561 A JP2004176561 A JP 2004176561A JP 2002340794 A JP2002340794 A JP 2002340794A JP 2002340794 A JP2002340794 A JP 2002340794A JP 2004176561 A JP2004176561 A JP 2004176561A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
fuel
cylinder internal
mixer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002340794A
Other languages
Japanese (ja)
Inventor
Yuji Kondo
裕二 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2002340794A priority Critical patent/JP2004176561A/en
Publication of JP2004176561A publication Critical patent/JP2004176561A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel control device for a multi-cylinder internal combustion engine capable of equalizing air-fuel ratios between cylinders even though operating conditions are changed. <P>SOLUTION: Gaseous fuel supplied to a mixer 3 through a fuel supply pipe 4 fills an annular fuel chamber 14, is supplied from the pair of fuel supply openings 13 of an annular member 11 into an intake air passage 10, and sucked into two or more air cylinders of an gas engine as a fuel/air mixture. The operating conditions of the gas engine are grasped based on the engine speed N of the gas engine detected by an engine speed sensor and intake air pressure P in an intake pipe 2 detected by a pressure sensor, the annular member 11 is rotated by a motor 5 so that the air-fuel ratios between two or more air cylinders of the gas engine are equalized according to the operating conditions of the gas engine, and the positions of the pair of fuel supply openings 13 to the intake air passage 10 are moved and controlled. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、多気筒内燃機関の燃料制御装置に係り、特に各気筒の空燃比の均等化に関する。
【0002】
【従来の技術】
吸入空気通路にキャブレタ及びミキサが配設された多気筒内燃機関における各気筒の空燃比は、気筒間で均等化されることが好ましいが、吸入空気通路の形状、キャブレタ及びミキサの配設位置等に影響を受けて不均等になる場合がある。気筒間の空燃比が不均等になると、排出ガス中のNOx、CO等の増加や燃費の悪化を招くこととなる。特に、希薄燃焼を行う内燃機関にあっては、空燃比の不均等により希薄燃焼限界が低下し、NOx、CO等の低減及び低燃費という希薄燃焼本来の目的を達成することができなくなってしまう。また、空燃比が均等でないと、特定の気筒の燃焼温度が上昇して気筒間のバルブシート摩耗形態に差が生じるため、バルブシートの材質として高硬度なものを採用する等の対策が必要となり、コストアップを来すことにもなる。
【0003】
そこで、例えば特許文献1に開示されているように、内燃機関の吸気系を形成するインテークマニホルドの形状を工夫することにより各気筒の空燃比を均等化しようとする技術が提案されている。
【0004】
【特許文献1】
特開平7−208285号公報
【0005】
【発明が解決しようとする課題】
しかしながら、気筒間の空燃比の不均等は、吸入空気量やスロットル開度によっても引き起こされることが知られており、上記の特許文献1のようにインテークマニホルドの形状を工夫しても、内燃機関の運転条件が変わると空燃比の不均等が発生するという問題があった。
この発明はこのような問題点を解消するためになされたもので、運転条件が変化しても気筒間の空燃比の均等化を図ることができる多気筒内燃機関の燃料制御装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
この発明に係る多気筒内燃機関の燃料制御装置は、多気筒内燃機関の運転状態を検出する運転状態検出手段と、多気筒内燃機関に接続された吸入空気通路に対して移動自在に配設された燃料供給口を有すると共にこの燃料供給口から吸入空気通路内に燃料を供給して混合気を生成するミキサと、ミキサの燃料供給口を移動させる駆動手段と、運転状態検出手段で検出された多気筒内燃機関の運転状態に基づいて多気筒内燃機関の気筒間の空燃比が均等になるように駆動手段によりミキサの燃料供給口を移動させる制御手段とを備えたものである。運転状態検出手段で検出された多気筒内燃機関の運転状態に応じて駆動手段によりミキサの燃料供給口が移動され、これにより多気筒内燃機関の気筒間の空燃比が均等化される。
【0007】
なお、ミキサは、管状の吸入空気通路が形成されたミキサ本体と、吸入空気通路の管壁の一部を形成すると共に互いに対向する一対の燃料供給口が形成された環状部材と、ミキサ本体に形成され且つ環状部材をその中心軸の回りに回転自在に支持する案内支持部とを有するように構成することができる。案内支持部に支持された環状部材が回転することにより吸入空気通路に対する燃料供給口の位置が移動する。
また、駆動手段としては、環状部材を回転駆動するモータあるいは負圧アクチュエータを使用することができる。
さらに、運転状態検出手段は、多気筒内燃機関の回転数を検出する回転数センサと、吸入空気通路内の圧力を検出する圧力センサあるいは吸入空気通路内の空気流量を検出するエアフローメータあるいは吸入空気通路内に設けられたスロットル弁の開度を検出するスロットルセンサとから構成することができる。
【0008】
【発明の実施の形態】
以下、この発明の実施の形態を添付図面に基づいて説明する。
図1にガスエンジンに適用された、この発明の実施の形態に係る燃料制御装置の全体構成を示す。多気筒のガスエンジン1の各気筒に吸気管2が接続され、この吸気管2にミキサ3が配設されている。ミキサ3には燃料供給管4を介して図示しないガス燃料源が接続されている。また、ミキサ3は、後述する燃料供給口が形成された環状部材を内蔵すると共にこの環状部材を回転駆動するためのモータ5を具備している。さらに、ガスエンジン1にはその回転数Nを検出する回転数センサ6が配設されると共に吸気管2に吸気圧力Pを検出する圧力センサ7が取り付けられており、モータ5、回転数センサ6及び圧力センサ7にECU(エンジン制御ユニット)8が接続されている。
【0009】
ミキサ3の内部構造を図2に示す。ミキサ3は、吸気管2に接続される管状の吸入空気通路10が形成されたミキサ本体9を備えており、ミキサ本体9内の吸入空気通路10上に環状部材11が配置されている。環状部材11は、吸入空気通路10の管壁の一部をなすと共にベンチュリ12を形成する内周面を有し、この内周面に互いに対向する一対の燃料供給口13が開口している。ミキサ本体9内には、環状部材11の外周部に環状の燃料チャンバ14が形成され、この燃料チャンバ14に燃料供給管4が接続されている。
【0010】
また、環状部材11の軸方向を向いた双方の面にはそれぞれ環状の凸部15が形成され、これらの凸部15がミキサ本体9に形成された環状溝からなる案内支持部16に遊嵌されている。さらに、環状部材11は、側方へ突出すると共にその外縁部に多数の歯が配列形成された半円状の円板部17を有し、この円板部17の歯がモータ5の駆動軸に取り付けられた歯車18に噛合している。
さらに、ミキサ本体9の吸入空気通路10の内部には、ベンチュリ12の下流側にスロットル弁19が配設されている。
【0011】
図3に示されるように、環状部材11の半円状の円板部17は環状の凸部15と同心円状に形成されており、モータ5を駆動することにより歯車18、円板部17を介して環状部材11がその中心軸の回りに回転し、これにより互いに対向する一対の燃料供給口13の位置も回転移動するように構成されている。
【0012】
次に、この実施の形態に係る燃料制御装置の動作について説明する。図示しないガス燃料源からガス燃料が燃料供給管4を介してミキサ3へ供給されると、ガス燃料はまず環状の燃料チャンバ14を充填し、環状部材11の一対の燃料供給口13から吸入空気通路10内に供給される。このガス燃料は吸気管2を介してミキサ3に取り入れられた空気と混合されて混合気となり、複数に分岐された吸気管2を通ってガスエンジン1の複数の気筒へ吸入され、これによりガスエンジン1が回転駆動される。
【0013】
このとき、ガスエンジン1の回転数Nが回転数センサ6により検出されると共に吸気管2内の吸気圧力Pが圧力センサ7により検出され、それぞれECU8へ入力される。ECU8は、回転数N及び吸気圧力Pからガスエンジン1の運転状態を把握し、その運転状態に応じてガスエンジン1の複数の気筒間の空燃比が均等になるようにモータ5により環状部材11を回転させて吸入空気通路10に対する一対の燃料供給口13の位置を移動制御する。
【0014】
具体的には、例えば図4に示されるように、回転数N1及び吸気圧力P1の運転条件では位置α、回転数N2及び吸気圧力P2の運転条件では位置β、回転数N3及び吸気圧力P3の運転条件では位置γ・・・というような回転数N及び吸気圧力Pのそれぞれの運転条件において複数の気筒間の空燃比が最も均等になる燃料供給口13の位置を予め実験により求めてECU8内に記憶させておき、回転数センサ6及び圧力センサ7により検出された回転数N及び吸気圧力Pに応じて燃料供給口13の最適な位置を読み出し、モータ5の駆動により環状部材11を回転させる。
【0015】
ガス燃料は、環状部材11の内周面に開口している燃料供給口13から吸入空気通路10内に向かって径方向に供給され、吸入空気通路10内の上流側から取り入れられた空気と混合されるため、ここで生成される混合気の空燃比は吸入空気通路10内における燃料供給口13の周方向の位置に応じた不均等な分布を有している。この不均等な空燃比分布は、燃料供給口13が形成されている環状部材11の回転に対応して吸入空気通路10内の周方向に移動し、ミキサ3の下流側で分岐される複数の吸気管2のそれぞれに流入する混合気の空燃比に影響を与えることとなる。そこで、環状部材11を回転させてミキサ3内の混合気の空燃比分布を調整することにより、従来は吸入空気通路10の形状、キャブレタ及びミキサ3の配設位置、ガスエンジン1の運転条件等に起因して生じていた複数の吸気管2内の混合気の空燃比不均等を相殺し、空燃比を均等化することが可能となる。
【0016】
4気筒のガスエンジン1にこの実施の形態の燃料制御装置を適用し、回転数2200rpm、吸気圧力−20kPaの条件で運転した場合の各気筒の空気過剰率を図5に示す。比較のために、燃料供給口の位置を移動することのできない従来のミキサを用いた場合の各気筒の空気過剰率も併せて図5に示されている。各気筒間で空気過剰率λに大きなバラツキが現れた従来品に比べて、この実施の形態の燃料制御装置を用いると、各気筒間の空気過剰率λのバラツキが著しく小さくなり、空燃比の均等化が良好になされることが分かる。
【0017】
また、図6に示されるように、空気過剰率λが高くて燃料がリーンになる希薄燃焼においては、熱効率が向上すなわち燃費が低減し、NOx発生量が低下するが、この実施の形態の燃料制御装置を適用すれば、ガスエンジン1の運転領域全域で空燃比の均等化をなすことができるため、広い回転数領域で希薄燃焼限界が向上し、従来よりも低燃費、低NOxの運転が可能となる。
【0018】
なお、上記の実施の形態では、モータ5によりミキサ3の環状部材11を回転させたが、モータ5の代わりに負圧アクチュエータを用いて環状部材11を回転駆動することもできる。
【0019】
上記の実施の形態においては、回転数センサ6により検出されたガスエンジン1の回転数Nと圧力センサ7により検出された吸気管2内の吸気圧力Pとに基づいてガスエンジン1の運転状態を把握したが、これに限るものではない。例えば、図7に示されるように、圧力センサ7の代わりに吸気管2にエアフローメータ20を配設し、このエアフローメータ20により検出された吸気管2内の空気流量と回転数センサ6により検出された回転数Nとに基づいてECU8がガスエンジン1の運転状態を把握し、その運転状態に応じてガスエンジン1の複数の気筒間の空燃比が均等になるように環状部材11を回転させて燃料供給口13の位置を移動制御することもでき、上記の実施の形態と同様の効果が得られる。
【0020】
また、図8に示されるように、圧力センサ7の代わりにスロットルセンサ21を取り付け、このスロットルセンサ21により検出されたスロットル弁19の開度と回転数センサ6により検出された回転数Nとに基づいてガスエンジン1の運転状態を把握することもできる。この構成によっても、燃料供給口13の位置の移動制御による気筒間の空燃比の均等化が可能であり、上記の実施の形態と同様の効果が得られる。
【0021】
なお、環状部材11が互いに対向する一対の燃料供給口13を有する場合について述べたが、燃料供給口13の数は2つに限定されるものではなく、例えば3つ以上の燃料供給口を環状部材11に形成してもよい。
上記の実施の形態では、ガスエンジン1を対象として燃料制御を行ったが、この発明は、各種の多気筒内燃機関の燃料制御に適用することができる。
【0022】
【発明の効果】
以上説明したように、この発明によれば、運転状態検出手段で検出された多気筒内燃機関の運転状態に基づいて駆動手段によりミキサの燃料供給口を移動させるので、運転条件が変化しても気筒間の空燃比の均等化を図ることができる。
【図面の簡単な説明】
【図1】この発明の実施の形態に係る多気筒内燃機関の燃料制御装置の全体構成を示す図である。
【図2】実施の形態で用いられたミキサの内部構造を示す断面図である。
【図3】ミキサに用いられた環状部材を示す平面図である。
【図4】環状部材に形成された燃料供給口の移動の様子を示す図である。
【図5】この発明に係る燃料制御装置と従来の燃料制御装置における気筒間の空気過剰率のバラツキをそれぞれ示すグラフである。
【図6】空気過剰率に対する熱効率及びNOx発生量の関係を示すグラフである。
【図7】他の実施の形態に係る多気筒内燃機関の燃料制御装置の全体構成を示す図である。
【図8】さらに他の実施の形態に係る多気筒内燃機関の燃料制御装置の全体構成を示す図である。
【符号の説明】
1 ガスエンジン、2 吸気管、3 ミキサ、4 燃料供給管、5 モータ、6 回転数センサ、7 圧力センサ、8 ECU、9 ミキサ本体、10 吸入空気通路、11 環状部材、12 ベンチュリ、13 燃料供給口、14 燃料チャンバ、15 凸部、16 案内支持部、17 円板部、18 歯車、19 スロットル弁、20 エアフローメータ、21 スロットルセンサ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel control device for a multi-cylinder internal combustion engine, and more particularly to equalizing the air-fuel ratio of each cylinder.
[0002]
[Prior art]
The air-fuel ratio of each cylinder in a multi-cylinder internal combustion engine in which a carburetor and a mixer are arranged in an intake air passage is preferably equalized among the cylinders, but the shape of the intake air passage, the arrangement position of the carburetor and the mixer, and the like are preferable. May be uneven due to the If the air-fuel ratio between the cylinders becomes uneven, NOx, CO, etc. in the exhaust gas will increase and fuel efficiency will deteriorate. In particular, in the case of an internal combustion engine that performs lean combustion, the lean combustion limit is reduced due to the uneven air-fuel ratio, and the original purpose of lean combustion such as reduction of NOx and CO and low fuel consumption cannot be achieved. . In addition, if the air-fuel ratio is not uniform, the combustion temperature of a specific cylinder rises, causing a difference in the form of valve seat wear between cylinders.Therefore, it is necessary to take measures such as adopting a material with high hardness as the material of the valve seat. , Which leads to higher costs.
[0003]
Therefore, as disclosed in Patent Document 1, for example, a technique has been proposed in which an air-fuel ratio of each cylinder is equalized by devising the shape of an intake manifold forming an intake system of an internal combustion engine.
[0004]
[Patent Document 1]
JP-A-7-208285
[Problems to be solved by the invention]
However, it is known that the non-uniform air-fuel ratio between the cylinders is also caused by the intake air amount and the throttle opening, and even if the shape of the intake manifold is devised as in Patent Document 1, the internal combustion engine is not There is a problem that the air-fuel ratio becomes uneven when the operating conditions change.
The present invention has been made in order to solve such a problem, and provides a fuel control device for a multi-cylinder internal combustion engine that can equalize the air-fuel ratio between cylinders even when operating conditions change. With the goal.
[0006]
[Means for Solving the Problems]
A fuel control device for a multi-cylinder internal combustion engine according to the present invention is provided with operating state detecting means for detecting an operating state of the multi-cylinder internal combustion engine, and movably disposed in an intake air passage connected to the multi-cylinder internal combustion engine. A mixer having a fuel supply port and supplying fuel into the intake air passage from the fuel supply port to generate an air-fuel mixture; a driving means for moving the fuel supply port of the mixer; and an operating state detection means. Control means for moving the fuel supply port of the mixer by the driving means so that the air-fuel ratio between the cylinders of the multi-cylinder internal combustion engine becomes equal based on the operating state of the multi-cylinder internal combustion engine. The fuel supply port of the mixer is moved by the driving means in accordance with the operating state of the multi-cylinder internal combustion engine detected by the operating state detecting means, whereby the air-fuel ratio between the cylinders of the multi-cylinder internal combustion engine is equalized.
[0007]
The mixer includes a mixer main body having a tubular intake air passage formed therein, an annular member forming a part of a pipe wall of the intake air passage and having a pair of fuel supply ports opposed to each other formed therein, and a mixer main body. And a guide supporting portion formed and rotatably supporting the annular member around its central axis. As the annular member supported by the guide support rotates, the position of the fuel supply port relative to the intake air passage moves.
Further, as the driving means, a motor or a negative pressure actuator for driving the annular member to rotate can be used.
Further, the operating state detecting means includes a rotational speed sensor for detecting the rotational speed of the multi-cylinder internal combustion engine, a pressure sensor for detecting the pressure in the intake air passage, an air flow meter for detecting the air flow rate in the intake air passage, or an intake air And a throttle sensor for detecting the opening of a throttle valve provided in the passage.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 shows an overall configuration of a fuel control apparatus according to an embodiment of the present invention applied to a gas engine. An intake pipe 2 is connected to each cylinder of the multi-cylinder gas engine 1, and a mixer 3 is provided in the intake pipe 2. A gas fuel source (not shown) is connected to the mixer 3 via a fuel supply pipe 4. Further, the mixer 3 has a built-in annular member having a fuel supply port to be described later and a motor 5 for rotating the annular member. Further, the gas engine 1 is provided with a rotation speed sensor 6 for detecting the rotation speed N and a pressure sensor 7 for detecting the intake pressure P in the intake pipe 2. An ECU (engine control unit) 8 is connected to the pressure sensor 7.
[0009]
FIG. 2 shows the internal structure of the mixer 3. The mixer 3 includes a mixer main body 9 in which a tubular intake air passage 10 connected to the intake pipe 2 is formed, and an annular member 11 is disposed on the intake air passage 10 in the mixer main body 9. The annular member 11 forms a part of a pipe wall of the intake air passage 10 and has an inner peripheral surface forming a venturi 12, and a pair of fuel supply ports 13 facing each other is opened in the inner peripheral surface. In the mixer main body 9, an annular fuel chamber 14 is formed around the outer periphery of the annular member 11, and the fuel supply pipe 4 is connected to the fuel chamber 14.
[0010]
In addition, annular convex portions 15 are formed on both surfaces of the annular member 11 facing in the axial direction, and these convex portions 15 are loosely fitted to guide support portions 16 formed of an annular groove formed in the mixer body 9. Have been. Further, the annular member 11 has a semi-circular disk portion 17 protruding sideways and having a large number of teeth arrayed on the outer edge thereof, and the teeth of the disk portion 17 serve as the drive shaft of the motor 5. And meshes with a gear 18 attached to the gear.
Further, a throttle valve 19 is disposed downstream of the venturi 12 inside the intake air passage 10 of the mixer body 9.
[0011]
As shown in FIG. 3, the semicircular disk portion 17 of the annular member 11 is formed concentrically with the annular convex portion 15, and the gear 5 and the disk portion 17 are formed by driving the motor 5. The annular member 11 is rotated around its central axis, so that the positions of the pair of fuel supply ports 13 facing each other are also rotated.
[0012]
Next, the operation of the fuel control device according to this embodiment will be described. When gas fuel is supplied from a gas fuel source (not shown) to the mixer 3 through the fuel supply pipe 4, the gas fuel first fills the annular fuel chamber 14, and the intake air flows through the pair of fuel supply ports 13 of the annular member 11. It is supplied into the passage 10. This gas fuel is mixed with air introduced into the mixer 3 via the intake pipe 2 to form an air-fuel mixture, and is drawn into a plurality of cylinders of the gas engine 1 through the plurality of branched intake pipes 2, whereby the gas The engine 1 is driven to rotate.
[0013]
At this time, the rotational speed N of the gas engine 1 is detected by the rotational speed sensor 6 and the intake pressure P in the intake pipe 2 is detected by the pressure sensor 7 and input to the ECU 8. The ECU 8 grasps the operating state of the gas engine 1 from the rotational speed N and the intake pressure P, and according to the operating state, controls the annular member 11 by the motor 5 so that the air-fuel ratio among the plurality of cylinders of the gas engine 1 becomes equal. Is rotated to control the movement of the position of the pair of fuel supply ports 13 with respect to the intake air passage 10.
[0014]
Specifically, for example, as shown in FIG. 4, the position α, the rotational speed N3, and the intake pressure P3 under the operating conditions of the rotational speed N1 and the intake pressure P2 are obtained under the operating conditions of the rotational speed N1 and the intake pressure P1. In the operating conditions, the position of the fuel supply port 13 at which the air-fuel ratio between the plurality of cylinders is the most uniform under the respective operating conditions of the rotational speed N and the intake pressure P such as the position γ. The optimal position of the fuel supply port 13 is read out according to the rotational speed N and the intake pressure P detected by the rotational speed sensor 6 and the pressure sensor 7, and the annular member 11 is rotated by driving the motor 5. .
[0015]
The gas fuel is supplied in a radial direction from the fuel supply port 13 opened in the inner peripheral surface of the annular member 11 into the intake air passage 10, and mixed with air taken in from the upstream side in the intake air passage 10. Therefore, the air-fuel ratio of the air-fuel mixture generated here has an uneven distribution according to the circumferential position of the fuel supply port 13 in the intake air passage 10. This uneven air-fuel ratio distribution causes a plurality of air-fuel ratio distributions that move in the circumferential direction in the intake air passage 10 in response to the rotation of the annular member 11 in which the fuel supply port 13 is formed, and branch off downstream of the mixer 3. This will affect the air-fuel ratio of the air-fuel mixture flowing into each of the intake pipes 2. Therefore, by adjusting the air-fuel ratio distribution of the air-fuel mixture in the mixer 3 by rotating the annular member 11, conventionally, the shape of the intake air passage 10, the arrangement positions of the carburetor and the mixer 3, the operating conditions of the gas engine 1, and the like. Thus, the air-fuel ratio inequality of the air-fuel mixture in the plurality of intake pipes 2 caused by the air-fuel ratio can be canceled, and the air-fuel ratio can be equalized.
[0016]
FIG. 5 shows the excess air ratio of each cylinder when the fuel control device of this embodiment is applied to the four-cylinder gas engine 1 and operated under the conditions of a rotation speed of 2200 rpm and an intake pressure of −20 kPa. For comparison, FIG. 5 also shows the excess air ratio of each cylinder when a conventional mixer in which the position of the fuel supply port cannot be moved is used. Compared with the conventional product in which a large variation in the excess air ratio λ between the cylinders is used, the use of the fuel control device of the present embodiment significantly reduces the variation in the excess air ratio λ between the cylinders, and reduces the air-fuel ratio. It can be seen that equalization is favorably performed.
[0017]
Further, as shown in FIG. 6, in the lean combustion in which the excess air ratio λ is high and the fuel is lean, the thermal efficiency is improved, that is, the fuel consumption is reduced, and the NOx generation amount is reduced. If the control device is applied, the air-fuel ratio can be equalized over the entire operation range of the gas engine 1, so that the lean burn limit is improved over a wide rotation speed range, and operation with lower fuel consumption and lower NOx than before can be performed. It becomes possible.
[0018]
In the above embodiment, the annular member 11 of the mixer 3 is rotated by the motor 5, but the annular member 11 may be driven to rotate by using a negative pressure actuator instead of the motor 5.
[0019]
In the above embodiment, the operating state of the gas engine 1 is determined based on the rotational speed N of the gas engine 1 detected by the rotational speed sensor 6 and the intake pressure P in the intake pipe 2 detected by the pressure sensor 7. I understand, but it is not limited to this. For example, as shown in FIG. 7, an air flow meter 20 is provided in the intake pipe 2 instead of the pressure sensor 7, and the air flow rate in the intake pipe 2 detected by the air flow meter 20 and the detection by the rotation speed sensor 6 are performed. The ECU 8 grasps the operating state of the gas engine 1 based on the rotation speed N and rotates the annular member 11 so that the air-fuel ratio among the plurality of cylinders of the gas engine 1 becomes equal according to the operating state. Thus, the position of the fuel supply port 13 can be controlled to move, and the same effect as in the above embodiment can be obtained.
[0020]
As shown in FIG. 8, a throttle sensor 21 is attached in place of the pressure sensor 7, and the opening degree of the throttle valve 19 detected by the throttle sensor 21 and the rotation speed N detected by the rotation speed sensor 6 are determined. The operating state of the gas engine 1 can also be grasped based on this. Also with this configuration, the air-fuel ratio between the cylinders can be equalized by controlling the movement of the position of the fuel supply port 13, and the same effect as in the above embodiment can be obtained.
[0021]
Although the case where the annular member 11 has a pair of fuel supply ports 13 facing each other has been described, the number of the fuel supply ports 13 is not limited to two, and for example, three or more fuel supply ports It may be formed on the member 11.
In the above embodiment, the fuel control is performed for the gas engine 1, but the present invention can be applied to the fuel control of various multi-cylinder internal combustion engines.
[0022]
【The invention's effect】
As described above, according to the present invention, the fuel supply port of the mixer is moved by the drive means based on the operation state of the multi-cylinder internal combustion engine detected by the operation state detection means. The air-fuel ratio between the cylinders can be equalized.
[Brief description of the drawings]
FIG. 1 is a diagram showing an overall configuration of a fuel control device for a multi-cylinder internal combustion engine according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing an internal structure of a mixer used in the embodiment.
FIG. 3 is a plan view showing an annular member used for the mixer.
FIG. 4 is a view showing a state of movement of a fuel supply port formed in an annular member.
FIG. 5 is a graph showing variations in the excess air ratio between cylinders in the fuel control device according to the present invention and the conventional fuel control device.
FIG. 6 is a graph showing the relationship between the excess air ratio and the thermal efficiency and the NOx generation amount.
FIG. 7 is a diagram showing an overall configuration of a fuel control device for a multi-cylinder internal combustion engine according to another embodiment.
FIG. 8 is a diagram showing an overall configuration of a fuel control device for a multi-cylinder internal combustion engine according to still another embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Gas engine, 2 intake pipes, 3 mixers, 4 fuel supply pipes, 5 motors, 6 rotation speed sensors, 7 pressure sensors, 8 ECUs, 9 mixer bodies, 10 intake air passages, 11 annular members, 12 venturis, 13 fuel supply Mouth, 14 fuel chamber, 15 protrusion, 16 guide support, 17 disk, 18 gear, 19 throttle valve, 20 air flow meter, 21 throttle sensor.

Claims (6)

多気筒内燃機関の運転状態を検出する運転状態検出手段と、
多気筒内燃機関に接続された吸入空気通路に対して移動自在に配設された燃料供給口を有すると共にこの燃料供給口から吸入空気通路内に燃料を供給して混合気を生成するミキサと、
前記ミキサの燃料供給口を移動させる駆動手段と、
前記運転状態検出手段で検出された多気筒内燃機関の運転状態に基づいて多気筒内燃機関の気筒間の空燃比が均等になるように前記駆動手段により前記ミキサの燃料供給口を移動させる制御手段と
を備えたことを特徴とする多気筒内燃機関の燃料制御装置。
Operating state detecting means for detecting an operating state of the multi-cylinder internal combustion engine,
A mixer having a fuel supply port movably disposed with respect to an intake air passage connected to the multi-cylinder internal combustion engine and supplying fuel from the fuel supply port into the intake air passage to generate a mixture;
Driving means for moving a fuel supply port of the mixer;
Control means for moving the fuel supply port of the mixer by the driving means such that the air-fuel ratio between the cylinders of the multi-cylinder internal combustion engine is equalized based on the operating state of the multi-cylinder internal combustion engine detected by the operating state detection means And a fuel control device for a multi-cylinder internal combustion engine.
前記ミキサは、
管状の吸入空気通路が形成されたミキサ本体と、
吸入空気通路の管壁の一部を形成すると共に互いに対向する一対の燃料供給口が形成された環状部材と、
前記ミキサ本体に形成され且つ前記環状部材をその中心軸の回りに回転自在に支持する案内支持部と
を有する請求項1に記載の多気筒内燃機関の燃料制御装置。
The mixer,
A mixer body having a tubular intake air passage formed therein,
An annular member forming a part of the pipe wall of the intake air passage and having a pair of fuel supply ports opposed to each other formed;
2. The fuel control device for a multi-cylinder internal combustion engine according to claim 1, further comprising: a guide support formed on the mixer main body and rotatably supporting the annular member around a center axis thereof.
前記駆動手段は、前記環状部材を回転駆動するモータあるいは負圧アクチュエータからなる請求項1または2に記載の多気筒内燃機関の燃料制御装置。The fuel control device for a multi-cylinder internal combustion engine according to claim 1 or 2, wherein the driving means comprises a motor or a negative pressure actuator that rotationally drives the annular member. 前記運転状態検出手段は、多気筒内燃機関の回転数を検出する回転数センサと、吸入空気通路内の圧力を検出する圧力センサとからなる請求項1〜3のいずれか一項に記載の多気筒内燃機関の燃料制御装置。The multi-cylinder internal combustion engine according to any one of claims 1 to 3, wherein the operating state detecting means includes a rotational speed sensor for detecting a rotational speed of the multi-cylinder internal combustion engine, and a pressure sensor for detecting a pressure in the intake air passage. Fuel control device for a cylinder internal combustion engine. 前記運転状態検出手段は、多気筒内燃機関の回転数を検出する回転数センサと、吸入空気通路内の空気流量を検出するエアフローメータとからなる請求項1〜3のいずれか一項に記載の多気筒内燃機関の燃料制御装置。4. The operation state detection unit according to claim 1, wherein the operation state detection unit includes a rotation speed sensor that detects a rotation speed of the multi-cylinder internal combustion engine, and an air flow meter that detects an air flow rate in the intake air passage. 5. Fuel control device for a multi-cylinder internal combustion engine. 前記運転状態検出手段は、多気筒内燃機関の回転数を検出する回転数センサと、吸入空気通路内に設けられたスロットル弁の開度を検出するスロットルセンサとからなる請求項1〜3のいずれか一項に記載の多気筒内燃機関の燃料制御装置。4. The engine according to claim 1, wherein the operating state detecting means includes a rotational speed sensor for detecting a rotational speed of the multi-cylinder internal combustion engine, and a throttle sensor for detecting an opening degree of a throttle valve provided in the intake air passage. A fuel control device for a multi-cylinder internal combustion engine according to any one of the preceding claims.
JP2002340794A 2002-11-25 2002-11-25 Fuel control device for multi-cylinder internal combustion engine Withdrawn JP2004176561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002340794A JP2004176561A (en) 2002-11-25 2002-11-25 Fuel control device for multi-cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002340794A JP2004176561A (en) 2002-11-25 2002-11-25 Fuel control device for multi-cylinder internal combustion engine

Publications (1)

Publication Number Publication Date
JP2004176561A true JP2004176561A (en) 2004-06-24

Family

ID=32703326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002340794A Withdrawn JP2004176561A (en) 2002-11-25 2002-11-25 Fuel control device for multi-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JP2004176561A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102926892A (en) * 2012-09-26 2013-02-13 山东汉菱电气有限公司 Cylindrical gas jetting valve
CN115045766A (en) * 2022-05-20 2022-09-13 四川中能西控低碳动力装备有限公司 Device and method for controlling proportional pressure of inlet and outlet gases supplied by engine fuel gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102926892A (en) * 2012-09-26 2013-02-13 山东汉菱电气有限公司 Cylindrical gas jetting valve
CN115045766A (en) * 2022-05-20 2022-09-13 四川中能西控低碳动力装备有限公司 Device and method for controlling proportional pressure of inlet and outlet gases supplied by engine fuel gas
CN115045766B (en) * 2022-05-20 2023-10-27 四川中能西控低碳动力装备有限公司 Device and method for controlling proportional pressure of air inlet and exhaust of engine gas supply

Similar Documents

Publication Publication Date Title
JP5380522B2 (en) Multiport valve
JP4318522B2 (en) Multi-cylinder internal combustion engine
JPH07332119A (en) Variable cylinder device
CN101117912B (en) Variable geometry intake manifold for an internal combustion engine
WO2008099282A3 (en) Intake system for internal combustion engine and control method of the same
JPH08254115A (en) Air-pollution discharged substance reducer in car
JP2004176561A (en) Fuel control device for multi-cylinder internal combustion engine
JP2004108221A (en) Gas engine
JP2007040488A (en) Flow control valve
JP2006029300A (en) Throttle valve
JP2009156205A (en) Intake system of internal combustion engine
JP2008180167A (en) Engine intake device
JP2013007270A (en) Port for internal combustion engine
JPH03202626A (en) Suction controller for individual cylinder of engine
JP2010053776A (en) Operation control device in general purpose engine
JP2004301064A (en) Throttle valve gear for internal-combustion engine
JP2004232554A (en) Device for feeding gas fuel to engine
JP2018003810A (en) Internal combustion engine fuel injection system
KR20110062589A (en) Intake system of engine
JP2908457B2 (en) Gas engine mixture supply system
JP2008025357A (en) Fuel supply device for gas engine
JP2007255301A (en) Intake device and intake controlling device
JP2009102994A (en) Intake control device of internal combustion engine
JP5610217B2 (en) Intake device for internal combustion engine
JP2004124738A (en) Intake system for multiple cylinder engine

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060207