JP2004175778A - New cinnamic acid - Google Patents

New cinnamic acid Download PDF

Info

Publication number
JP2004175778A
JP2004175778A JP2003008994A JP2003008994A JP2004175778A JP 2004175778 A JP2004175778 A JP 2004175778A JP 2003008994 A JP2003008994 A JP 2003008994A JP 2003008994 A JP2003008994 A JP 2003008994A JP 2004175778 A JP2004175778 A JP 2004175778A
Authority
JP
Japan
Prior art keywords
mmol
group
dissolved
acid
lower alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003008994A
Other languages
Japanese (ja)
Other versions
JP2004175778A5 (en
Inventor
Makiko Anai
麻希子 穴井
Tomoyasu Tashiro
智康 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sogo Pharmaceutical Co Ltd
Original Assignee
Sogo Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sogo Pharmaceutical Co Ltd filed Critical Sogo Pharmaceutical Co Ltd
Priority to JP2003008994A priority Critical patent/JP2004175778A/en
Publication of JP2004175778A publication Critical patent/JP2004175778A/en
Publication of JP2004175778A5 publication Critical patent/JP2004175778A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Cosmetics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Anti-Oxidant Or Stabilizer Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultraviolet light-absorbing agent, beautifully whitening agent and antioxidant capable of being blended with a skin external agent. <P>SOLUTION: This cinnamic acid is expressed by general formula (1) [wherein, R<SP>1</SP>is hydrogen atom or a lower alkyl: R<SP>2</SP>, R<SP>3</SP>are the same or different and are each hydrogen, hydroxy or a lower alkoxy; A is expressed by formulae (2) or (3) (wherein, R<SP>4</SP>is a lower alkoxy, benzoyl which may be substituted by hydroxy, or a lower alkoxy; R<SP>5</SP>is H, a lower alkyl, benzyl or hydroxybenzyl: and R<SP>6</SP>is H or a lower alkyl)]. The ultraviolet light-absorbing agent, beautifully whitening agent and antioxidant contains the cinnamic acid as an active ingredient. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は優れた紫外線吸収作用、チロシナーゼ活性阻害作用及び抗酸化活性を有する桂皮酸類、これを有効成分とする紫外線吸収剤、美白剤、抗酸化剤及び皮膚外用剤に関する。
【0002】
【従来の技術】
紫外線は、急性の紅斑形成等の他、シミ、ソバカス等の色素沈着、さらにはしわの形成等にも深く関与することが知られており、紫外線吸収剤の開発が重要視されている。
【0003】
紫外線吸収剤としては、ジベンゾイルメタン誘導体(特許文献1)、5−アリール−2,4−ペンタジエン酸誘導体(特許文献2〜4)、シンナミリデンマロン酸誘導体(特許文献5)、5−アリール−2,4−ペンタジエノン類(特許文献6)などが報告されている。
【0004】
【特許文献1】
特公昭61−16258号公報
【特許文献2】
特開平6−336417号公報
【特許文献3】
特開平7−238275号公報
【特許文献4】
米国特許第5,320,833号明細書
【特許文献5】
特開平7−17912号公報
【特許文献6】
特開平7−17892号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記の紫外線吸収剤は、紫外線吸収能が十分でなかったり、基剤に対する溶解性が低いなどの欠点があり、必ずしも化粧料等の皮膚外用剤として有用であるとはいえなかった。
従って、皮膚外用剤に配合できる優れた紫外線吸収剤が望まれていた。
【0006】
【課題を解決するための手段】
そこで本発明者は、多くの化合物を合成し、その紫外線吸収作用と溶剤などへの溶解性を検討してきた結果、特定の構造を有する桂皮酸エステル及び桂皮酸アミド類が優れた紫外線吸収作用と基剤への溶解性を有し、皮膚外用剤成分として有用であることを見出した。また当該化合物の薬理作用を検討したところ、優れたチロシナーゼ活性阻害作用及び不飽和脂肪酸の抗酸化能を有することから、当該化合物は美白化剤、抗酸化剤としても有用であることを見出し、本発明を完成するに至った。
【0007】
すなわち、本発明は次の一般式(1)
【0008】
【化3】

Figure 2004175778
【0009】
(式中、R1は水素原子又は低級アルキル基を示し;R2及びR3は同一又は異なって水素原子、ヒドロキシ基又は低級アルコキシ基を示し;Aは次式(2)又は(3)
【0010】
【化4】
Figure 2004175778
【0011】
(式中、R4は低級アルコキシ基もしくはヒドロキシ基が置換していてもよいベンゾイル基、又は低級アルコキシ基を示し;R5は水素原子、低級アルキル基、ベンジル基又はヒドロキシベンジル基を示し;R6は水素原子又は低級アルキル基を示す)
で表される基を示す)
で表される桂皮酸類を提供するものである。
【0012】
また本発明は、当該桂皮酸類(1)を有効成分とする紫外線吸収剤、美白剤及び抗酸化剤、並びにこれを含有する皮膚外用剤を提供するものである。
【0013】
【発明の実施の形態】
一般式(1)中、R1、R5及びR6で示される低級アルキル基としては、炭素数1〜6の直鎖又は分岐鎖のアルキル基が好ましい。具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、n−ペンチル基、n−ヘキシル基等が挙げられる。このうち、メチル基、エチル基、n−プロピル基、イソプロピル基等の炭素数1〜4の直鎖又は分岐鎖のアルキル基が特に好ましい。
【0014】
2、R3及びR4で示される低級アルコキシ基としては、炭素数1〜6の直鎖又は分岐鎖のアルコキシ基、特に炭素数1〜4のアルコキシ基が好ましい。具体例としてはメトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基等が挙げられる。
【0015】
本発明桂皮酸類(1)のうち、Aが式(2)の基である場合は桂皮酸フェニルエステル類であり、Aが式(3)である場合は桂皮酸アミド類である。
【0016】
本発明化合物(1)は、例えば次の反応式に従って製造することができる。
【0017】
【化5】
Figure 2004175778
【0018】
(式中、R1、R2、R3及びAは前記と同じ)
【0019】
すなわち、桂皮酸(4)又はその反応性誘導体にフェノール類又はアミノ酸類(5)を反応させることにより本発明化合物(1)が得られる。
【0020】
桂皮酸(4)の反応性誘導体としては、酸ハライド、混合酸無水物等が挙げられる。桂皮酸(4)を直接反応させる場合にはN,N−ジシクロカルボジイミド等の縮合剤を用いるのが好ましい。反応は、4−ジメチルアミノピリジン、トリエチルアミン等の塩基の存在下、0〜100℃で行うのが好ましい。
【0021】
かくして得られた本発明化合物(1)は、後記実施例に示すように、優れたUV−A又はUV−B領域の紫外線吸収能を有し、かつ有機溶媒、基剤等に対する溶解性も良好である。従って、本発明化合物(1)は、単独で、又は二種以上を組み合せて紫外線吸収剤として使用することができる。また、本発明化合物(1)は優れたチロシナーゼ活性阻害作用及び不飽和脂肪酸の抗酸化能も有することから、これらを紫外線吸収剤、美白剤及び/又は抗酸化剤として配合し、化粧料等の皮膚外用剤とすることができる。
【0022】
本発明における皮膚外用剤としては、皮膚化粧料、薬用化粧料が挙げられ、その剤型としてはクリーム、化粧水、乳液、軟膏、ゲル、スプレー、スティック、ファンデーション等が挙げられる。皮膚外用剤中に本発明化合物(1)は、例えば0.001〜20重量%、特に0.1〜10重量%含有させるのが好ましい。
【0023】
皮膚外用剤には、他に水、エタノール、セチルアルコール、ステアリルアルコール等のアルコール類;グリセリン、プロピレングリコール等の多価アルコール;パルミチン酸、ステアリン酸、オレイン酸等の脂肪酸類;ミリスチン酸イソプロピル、モノステアリン酸プロピレングリコール、グリセリントリカプラート、グリセリントリミリスタート等のエステル類;ヒマシ油、オリーブ油、ヤシ油、ラノリン、スクワラン、鯨ろう等の植物性又は動物性油脂類;パラフィン、流動パラフィン、シリコーン油等の鉱物油類;エアゾール噴射剤として用いられる低沸点炭化水素又はハロゲン化炭化水素類;澱粉、タルク等を配合することができる。
【0024】
【実施例】
次に実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
【0025】
実施例1 2−(4−メトキシベンゾイル)フェニル 4−メトキシシンナメート
4−メトキシ桂皮酸(16.03g, 90.0mmol)、2−ヒドロキシ−4′−メトキシベンゾフェノン(11.4g, 50.0mmol)、4−ジメチルアミノピリジン(4.9g, 40.1mmol)をジクロロメタン(80mL)に分散させ、0℃まで冷却後、N,N−ジシクロヘキシルカルボジイミド(11.4g, 50.0mmol)をジクロロメタン(20mL)に溶解し、約0℃を保ちながら5分間で滴下した。0〜3℃で5分間撹拌した後、室温で一晩撹拌し、反応液を濾過、残渣をジクロロメタン(100mL)で洗浄した。濾液を0.5M HCl(25mL×2)、20%Na2CO3(25mL×2)で洗浄し、有機層にNa2SO4(20g)を加え、乾燥した。2時間後にNa2SO4を濾過し、濾液をロータリーエバポレーターで減圧濃縮、得られた濃縮残にエチル アセテート(100mL)を加え、60℃で加熱溶解、ごみ濾過した後、冷却した。析出した結晶を濾過し、14.1gの粗結晶を得た。このうち4.1gをメタノール(250mL)に65℃で溶解、再結晶を行い、2−(4−メトキシベンゾイル)フェニル 4−メトキシシンナメート(3.0g, 7.72mmol)を得た。
【0026】
収率53.1%, m.p. 131.0-131.9℃
1H-NMR(400MHz,CDCl3)δ:3.77(3H,s), 3.82(3H,s), 6.20(1H,d,J=15.87Hz), 6.88(2H,d,J=8.79Hz), 6.90(2H,d,J=8.79Hz), 7.28(1H,d,J=8.06Hz), 7.33(1H,t,J=7.57Hz), 7.37(2H,d,J=9.03Hz), 7.47(1H,d,J=15.62Hz), 7.51(1H,d,J=9.28Hz), 7.55(1H,t,J=7.81Hz), 7.79(2H,d,J=8.79Hz)
【0027】
実施例2 4′−ベンゾイルフェニル 4−メトキシシンナメート
4−ヒドロキシベンゾフェノン(9.9g, 50.0mmol)、4−メトキシ桂皮酸(8.9g,50.0mmol)、4−ジメチルアミノピリジン(4.9g, 40.0mmol)を用い、実施例1と同様の手順で反応、抽出を行い、13.5gの粗結晶を得た。このうち4.8gを用いて同様の手順で再結晶を行い、4′−ベンゾイルフェニル 4−メトキシシンナメート(4.2g, 11.7mmol)を得た。
【0028】
収率65.9%, m.p. 130.7-131.5℃
1H-NMR(400MHz,CDCl3)δ:3.88(3H,s), 6.49(1H,d,J=15.87Hz), 6.94(2H,d,J=8.79Hz), 7.29(2H,d,J=8.54Hz), 7.5(2H,t,J=7.32Hz), 7.55(2H,d,J=8.79Hz), 7.60(1H,t,J=7.57Hz), 7.805(1H,d,J=15.87Hz), 7.809(2H,d,J=7.81Hz), 7.87(2H,d,J=8.54Hz)
【0029】
実施例3 2′−ベンゾイルフェニル 4−メトキシシンナメート
2−ヒドロキシベンゾフェノン(9.9g, 50.0mmol)、4−メトキシ桂皮酸(8.9g,50.0mmol)、4−ジメチルアミノピリジン(4.9g, 40.0mmol)を用いて実施例1と同様の手順で反応、抽出を行い、13.1gの粗結晶を得た。このうち3.5gを用いて同様の手順で再結晶を行い、2′−ベンゾイルフェニル 4−メトキシシンナメート(2.7g, 7.5mmol)を得た。
【0030】
収率56.4%, m.p. 128.0-129.7℃
1H-NMR(400MHz,CDCl3)δ:3.83(3H,s), 6.13(1H,d,J=15.87Hz), 6.86(2H,d,J=8.79Hz), 7.29(1H,d,J=8.05Hz), 7.34(1H,t,J=7.81Hz), 7.36(2H,d,J=8.78Hz), 7.40(2H,t,J=7.82Hz), 7.45(1H,d,J=15.87Hz), 7.50(1H,t,J=7.57Hz), 7.55(1H,d,J=7.81Hz), 7.56(1H,t,J=7.57Hz), 7.80(2H,d,J=7.08Hz)
【0031】
実施例4 4′−エトキシフェニル 4−メトキシシンナメート
4−エトキシフェノール(11.0g, 163.6mmol)、4−メトキシ桂皮酸(16.03g, 163.6mmol)、4−ジメチルアミノピリジン(8.8g, 71.8mmol)を用いて実施例1と同様の手順で反応、抽出を行い、26.9gの粗結晶を得た。このうち7.0gをメタノール(300mL)に64℃で溶解、再結晶を行い、4′−エトキシフェニル4−メトキシシンナメート(5.9g, 19.8mmol)を得た。
【0032】
収率76.6%, m.p. 130.1-131.8℃
1H-NMR(400MHz,CDCl3)δ:1.41(3H,t,J=6.83Hz), 3.85(3H,s), 3.99(2H,q,J=6.84Hz), 6.46(1H,d,J=15.87Hz), 6.87(2H,d,J=7.32Hz), 6.92(2H,d,J=8.54Hz), 7.05(2H,d,J=8.3Hz), 7.52(2H,d,J=8.79Hz), 7.78(1H,d,J=15.87Hz)
【0033】
実施例5 4′−ブトキシフェニル 3,4,5−トリメトキシシンナメート
4−ブトキシフェノール(24.5g, 163.6mmol)、3,4,5−トリメトキシ桂皮酸(38.9g, 163.6mmol)、4−ジメチルアミノピリジン(8.8g, 71.8mmol)を用いて実施例1と同様の手順で反応、抽出を行い、25.0gの粗結晶を得た。このうち10.0gをメタノール(150mL)に64℃で溶解、再結晶を行い、4′−ブトキシフェニル 3,4,5−トリメトキシシンナメート(6.4g, 16.6mmol)を得た。
【0034】
収率50.0%, m.p. 80.1-82.7℃
1H-NMR(400MHz,CDCl3)δ:0.98(3H,t,J=7.32Hz), 1.47(2H,six,J=7.57Hz), 1.77(2H,qui,J=7.08Hz), 3.90(3H,s), 3.91(6H,s), 3.96(2H,t,J=6.35Hz), 6.50(1H,d,J=15.87Hz), 6.81(2H,s), 6.92(2H,d,J=9.03Hz), 7.04(2H,d,J=8.79Hz), 7.75(1H,d,J=15.87Hz)
【0035】
実施例6 4′−ブトキシフェニル 4−メトキシシンナメート
4−ブトキシフェノール(24.5g, 163.6mmol)、4−メトキシ桂皮酸(16.03g, 163.6mmol)、4−ジメチルアミノピリジン(8.8g, 71.8mmol)を用いて実施例1と同様の手順で反応、抽出を行い、26.5gの粗結晶を得た。このうち10.0gを用いて実施例4と同様の手順で再結晶を行い、4′−ブトキシフェニル 4−メトキシシンナメート(8.4g, 25.7mmol)を得た。
【0036】
収率68.2%, m.p. 93.3-100.4℃
1H-NMR(400MHz,CDCl3)δ:0.97(3H,t,J=7.32Hz), 1.48(2H,six,J=7.56Hz), 1.76(2H,qui,J=7.32Hz), 3.85(3H,s), 3.95(2H,t,J=6.59Hz), 6.46(1H,d,J=15.87Hz), 6.88(2H,d,J=9.03Hz), 6.91(2H,d,J=8.79Hz), 7.04(2H,d,J=8.79Hz), 7.51(2H,d,J=9.03Hz),7.78(1H,d,J=15.87Hz)
【0037】
実施例7 4′−エトキシフェニル 3,4,5−トリメトキシシンナメート
4−エトキシフェノール(11.0g, 163.6mmol)、3,4,5−トリメトキシ桂皮酸(38.9g, 163.6mmol)、4−ジメチルアミノピリジン(8.8g, 71.8mmol)を用いて実施例1と同様の手順で反応、抽出を行い、28.8gの粗結晶を得た。このうち10.0gを用いて実施例4と同様の手順で再結晶を行い、4′−エトキシフェニル 3,4,5−トリメトキシシンナメート(8.8g, 24.5mmol)を得た。
【0038】
収率70.4%, m.p. 131.75-132.4℃
1H-NMR(400MHz,CDCl3)δ:1.42(3H,t,J=6.83Hz), 3.90(3H,s), 3.91(6H,s), 4.02(2H,q,J=7.08Hz), 6.51(1H,d,J=15.87Hz), 6.81(2H,s), 6.88(2H,d,J=9.4Hz), 7.06(2H,d,J=8.79Hz), 7.75(1H,d,J=15.87Hz)
【0039】
実施例8 エチル 3,4,5−トリメトキシシンナミル−L−チロシン
L−チロシンエチルエステル塩酸塩(12.3g, 50.0mmol)、3,4,5−トリメトキシ桂皮酸(11.9g, 50.0mmol)をジクロロメタン(80mL)に溶解し、約0℃に保ちながらトリエチルアミン(5.1g, 50.0mmol)を滴下した。N,N−ジシクロヘキシルカルボジイミド(11.4g, 50.0mmol)をジクロロメタン(20mL)に溶解し、約0℃を保ちながら滴下した。室温で一晩撹拌した後、ロータリーエバポレーターで減圧濃縮し、エチル アセテート(200mL)に溶解し、10%クエン酸水溶液(300mL)、水(300mL)、1%Na2CO3(300mL)、水(300mL)、飽和食塩水(300mL)の順に洗浄し、Na2SO4(80g)を加えて乾燥させ、Na2SO4を濾過、濾液をロータリーエバポレーターで減圧濃縮し、18.1gの粗結晶を得た。このうち10.0gをカラムクロマトグラフィー(エチル アセテート)で精製し、エチル 3,4,5−トリメトキシシンナミル−L−チロシン(8.0g, 18.6mmol)を分取した。
【0040】
収率67.4%, m.p. 70.1-77.9℃
1H-NMR(400MHz,CDCl3)δ:1.28(3H,t,J=7.08Hz), 3.12(2H,d,J=7.32Hz), 3.87(3H,s), 3.88(6H,s), 4.20(2H,q,J=7.32Hz), 4.96(1H,q,J=7.81Hz), 6.11(1H,d,J=7.81Hz), 6.29(1H,d,J=15.38Hz), 6.71(2H,s), 6.73(2H,d,J=8.30Hz), 6.97(2H,d,J=8.30Hz), 7.51(1H,d,J=15.63Hz)
【0041】
実施例9 エチル フェルロイル−L−チロシン
フェルラ酸(9.7g, 50.0mmol)、L−チロシンエチルエステル塩酸塩(12.3g, 50.0mmol)、1−ヒドロキシ−1H−ベンゾトリアゾール(8.9g, 50.0mmol)をピリジン(100g)に溶解し、約0℃に保ちながらトリエチルアミン(5.1g, 50.0mmol)を滴下した。N,N−ジシクロヘキシルカルボジイミド(11.4g, 50.0mmol)をピリジン(45g)に溶解し、約0℃を保ちながら滴下した。室温で一晩撹拌した後、ロータリーエバポレーターで減圧濃縮し、エチル アセテート(200mL)に溶解し、実施例8と同様の手順で抽出、Na2SO4(80g)を加えて乾燥させ、Na2SO4を濾過、濾液をロータリーエバポレーターで減圧濃縮し、16.6gの粗結晶を得た。このうち7.2gをエチル アセテート(300mL)に溶解、濾過して不溶物を取り除き、ロータリーエバポレーターで減圧濃縮した後、残渣をイソプロピルアルコール(50mL)に72℃で溶解、再結晶を行い、エチル フェルロイル−L−チロシン(5.9g, 15.3mmol)を得た。
【0042】
収率70.5%, m.p. 176.6-180.4℃
1H-NMR(400MHz,DMSO-d6)δ:1.12(3H,t,J=7.32Hz), 2.82(2H,d,J=5.86Hz), 3.35(3H,s), 4.04(2H,q,J=7.08Hz), 4.48(1H,q,J=6.11Hz), 6.49(1H,d,J=15.62Hz), 6.64(2H,d,J=8.06Hz), 6.77(1H,d,J=8.06Hz), 6.97(1H,d,J=8.3Hz), 7.00(2H,d,J=8.3Hz), 7.11(1H,s), 7.27(1H,d,J=15.87Hz), 8.28(1H,d,J=7.82Hz), 9.21(1H,s), 9.44(1H,s),
【0043】
実施例10 エチル 4′−メトキシシンナミル−L−チロシン
4−メトキシ桂皮酸(8.9g, 50.0mmol)、L−チロシンエチルエステル塩酸塩(12.3g, 50.0mmol)、1−ヒドロキシ−1H−ベンゾトリアゾール(8.9g, 50.0mmol)を用いて実施例9と同様の手順で反応、抽出を行い、粗結晶(9.0g)を得た。そのうち6.9gをイソプロピルアルコール(40mL)に62℃で溶解、再結晶を行い、エチル 4′−メトキシシンナミル−L−チロシン(3.7g, 10.0mmol)を得た。
【0044】
収率39.2%, m.p. 143.3-144.3℃
1H-NMR(400MHz,CDCl3)δ:1.27(3H,t,J=7.08Hz), 3.09(2H,d,J=5.86Hz), 3.82(3H,s), 4.18(2H,q,J=7.08Hz), 4.96(1H,q,J=7.81Hz), 5.84(1H,s), 6.08(1H,d,J=7.81Hz), 6.24(1H,d,J=15.63Hz), 6.72(2H,d,J=8.54Hz), 6.86(2H,d,J=8.79Hz), 6.96(2H,d,J=8.30Hz), 7.41(2H,d,J=8.79Hz), 7.55(1H,d,J=15.63Hz)
【0045】
実施例11 エチル 4−メトキシシンナミル−L−バリン
L−バリンエチルエステル塩酸塩(9.1g, 50.0mmol)、4−メトキシ桂皮酸(8.9g, 50.0mmol)、トリエチルアミン(5.1g, 50.0mmol)を用いて実施例8と同様の手順で反応、抽出を行い、13.3gの粗結晶を得た。このうち10.7gをカラムクロマトグラフィー(エチル アセテート)で精製し、エチル 4−メトキシシンナミル−L−バリン(9.0g, 29.5mmol)を分取した。
【0046】
収率76.0%, m.p. 61.5-69.7℃
1H-NMR(400MHz,CDCl3)δ:0.94(3H,d,J=6.83Hz), 0.96(3H,d,J=7.08Hz), 0.98(3H,t,J=7.08Hz), 2.22(1H,oct,J=6.84Hz), 3.85(3H,s), 4.21(2H,q,J=7.32Hz),4.69(1H,d,J=8.78Hz), 6.11(1H,d,J=8.78Hz), 6.33(1H,d,J=15.63Hz), 6.88(2H,d,J=8.78Hz), 7.45(2H,d,J=8.78Hz), 7.57(1H,d,J=15.63Hz)
【0047】
実施例12 エチル 4−メトキシシンナミルグリシン
グリシンエチルエステル塩酸塩(7.0g, 50.0mmol)、4−メトキシ桂皮酸(8.9g,50.0mmol)、トリエチルアミン(5.1g, 50.0mmol)を用いて実施例8と同様の手順で反応、抽出を行い、9.2gの粗結晶を得た。このうち8.3gをイソプロピルアルコール(40mL)に79℃で溶解、再結晶を行い、エチル 4−メトキシシンナミルグリシン(5.8g, 22.0mmol)を得た。
【0048】
収率74.4%, m.p. 124.5-126.1℃
1H-NMR(400MHz,CDCl3)δ:1.30(3H,t,J=7.32Hz),3.83(3H,s), 4.16(2H,d,J=4.88Hz), 4.23(2H,q,J=7.08Hz), 6.14(1H,s), 6.32(1H,d,J=15.63Hz), 6.88(2H,d,J=8.78Hz), 7.44(2H,d,J=8.78Hz), 7.58(1H,d,J=15.38Hz)
【0049】
実施例13 4−メトキシシンナミルグリシン
実施例12で得られたエチル 4−メトキシシンナミルグリシン(3.0g, 11.4mmol)を1N NaOH(14mL)に溶解し、室温で一晩撹拌した。反応液を5%HClで中和し、エチル アセテート(200mL)で洗浄、水層を5%HClで酸性(pH4)にした後、エチル アセテート(200mL)で抽出、有機層を、水(200mL)、飽和食塩水(200mL)で洗浄、Na2SO4で一晩乾燥させた。Na2SO4を濾過、濾液をロータリーエバポレーターで減圧濃縮し、4−メトキシシンナミルグリシン(1.5g, 6.4mmol)を得た。
【0050】
収率56.2%, m.p. 162.3-164.4℃
1H-NMR(400MHz,DMSO-d6)δ:3.78(3H,s), 3.87(2H,d,J=5.86Hz), 6.55(1H,d,J=15.6Hz), 6.96(2H,d,J=8.54Hz), 7.37(1H,d,J=15.9Hz), 7.51(2H,d,J=8.78Hz),8.29(1H,d,J=5.85Hz)
【0051】
実施例14 エチル カフェオイル−L−チロシン
3,4−ジヒドロキシ桂皮酸(9.0g, 50.0mmol)、L−チロシンエチルエステル塩酸塩(12.3g, 50.0mmol)、1−ヒドロキシ−1H−ベンゾトリアゾール(8.9g, 50.0mmol)を用いて実施例1と同様の手順で反応を行い、粗結晶(12.0g)を得た。そのうち2.0gをイソプロピルアルコール(10mL)に溶解し、水(30mL)を徐々に加え、一晩冷却、析出した結晶を濾過で取り除き、母液をロータリーエバポレーターで減圧濃縮し、エチル カフェオイル−L−チロシン(1.5g, 4.0mmol)を得た。
【0052】
収率44.4%, m.p. 75.2-77.0℃
1H-NMR(400MHz,CD3OD)δ:1.21(3H,t,J=7.32Hz), 2.94(1H,d,J=8.3Hz), 3.03(1H,d,J=6.34Hz), 4.14(2H,d,J=7.08Hz), 4.67(1H,d,J=8.06Hz), 6.38(1H,d,J=15.8Hz), 6.68(2H,d,J=8.79Hz), 6.74(1H,d,J=8.3Hz), 6.89(1H,d,J=8.3Hz), 7.02(2H,d,J=8.55Hz), 7.34(1H,d,J=15.6Hz)
【0053】
実施例15 フェルロイル−L−チロシン
実施例9で得られたエチル フェルロイル−L−チロシン(5.0g, 13.0mmol)を2N NaOH(100mL)に溶解、室温で一晩撹拌し、実施例13と同様の手順で粗結晶(3.8g)を得た。結晶を少量のエチル アセテートに溶解し、カラムクロマトグラフィー(エチル アセテート)でフェルロイル−L−チロシン(1.3g, 3.6mmol)を分取した。
【0054】
収率28.1%, m.p. 108.3-111.0℃
1H-NMR(400MHz,DMSO-d6)δ:3.56(2H,d,J=7.08Hz), 4.6(1H,s), 4.83(1H,q,J=8.3Hz), 5.27(1H,d,J=15.62Hz), 7.30(2H,d,J=8.06Hz), 7.43(1H,d,J=8.3Hz), 7.57(1H,d,J=8.05Hz), 7.76(2H,d,J=8.3Hz), 7.81(1H,s), 8.05(1H,d,J=15.86Hz), 8.92(1H,d,J=7.81Hz), 9.99(1H,s), 10.23(1H,s)
【0055】
実施例16 カフェオイル−L−チロシン
実施例14で得られたエチル カフェオイル−L−チロシン(9.0g, 26.2mmol)を2N NaOH(100mL)に溶解、室温で一晩撹拌し、実施例13と同様の手順で粗結晶(7.1g)を得た。結晶を少量のエチル アセテートに溶解し、カラムクロマトグラフィー(エチル アセテート)でカフェオイル−L−チロシン(1.5g, 4.36mmol)を分取した。
【0056】
収率16.7%, m.p. 67.3-72.4℃
1H-NMR(400MHz,DMSO-d6)δ:2.79(2H,d,J=9.03Hz), 4.20(1H,q,J=7.32Hz), 6.38(1H,d,J=15.38Hz), 6.63(2H,d,J=7.81Hz), 6.72(1H,d,J=8.06Hz), 6.81(1H,d,J=7.33Hz), 6.93(1H,s), 7.01(2H,d,J=7.82Hz), 7.16(1H,d,J=15.87Hz), 8.17(1H,d,J=7.32Hz),9.09(1H,s), 9.17(1H,s), 9.33(1H,s)
【0057】
試験例1
前記実施例で得た化合物の紫外線に対するモル吸光係数を測定した。すなわち、被験化合物をエタノールに溶解し、分光光度計(島津自記分光光度計:UV−2100S)で190〜450nmにおける吸光度(A)を測定し、下記式(6)よりモル吸光係数(ε)を算出した。化合物濃度は吸光度が1.0以下になるようにそれぞれ調節した。結果を表1に示す。
【0058】
A=εC×1 (6)
【0059】
A:吸光度
ε:モル吸光係数(mol-1cm-1L)
C:化合物濃度(mol/L)
【0060】
試験例2
実施例で得た化合物の各種溶剤に対する溶解性を評価した。
被験化合物0.1gを量り取り、溶媒(水、エタノール、酢酸エチル)10mLに室温で溶解させた。溶解性は、完全に溶解したもの(>1%:○)、溶け残りが認められたもの(<1%:△)、全く溶解しなかったもの(insol.:×)の3つに分類し、評価した。結果を表1に示す。
【0061】
【表1】
Figure 2004175778
【0062】
試験例3
実施例で得た化合物のチロシナーゼ活性阻害作用を検討した。
0.066Mリン酸緩衝液(pH6.8)1.0mL、L−チロシン(1.66μM)1.0mL、各試料溶液〔各試験化合物を0.066Mリン酸緩衝液(pH6.8)に溶解し、1mM、0.5mM、0.1mMとしたもの〕0.9mLを混合し、37℃で5分間インキュベートした。次いで、酵素溶液〔シグマ社製、3620unit/mgのチロシナーゼを0.066Mリン酸緩衝液(pH6.8)に溶解し、2000unit/mLに希釈したもの〕0.1mLを加え、混合し、温度を37℃に保ちながら、475nmにおける吸光度(ODS)を分光光度計(島津自記分光光度計:UV-2100S)で10分間測定した。
同様に、加熱失活させた前記酵素を用いて反応させたときの吸光度(ODHE)及び試料無添加時の吸光度(ODB)を測定し、次式(7)よりチロシナーゼ活性の阻害率を算出した。得られた阻害率から50%阻害濃度(IC50)を求めた。結果を表2に示す。
【0063】
【数1】
Figure 2004175778
【0064】
ODS:試料添加時の吸光度
ODB:試料無添加時の吸光度
ODHE:酵素不活性時の吸光度
【0065】
【表2】
Figure 2004175778
【0066】
試験例4
実施例で得た化合物の抗酸化活性を測定した。
リノール酸を終濃度が5%W/Vになるようにエタノールに溶解した。このエタノール溶液10mLに終濃度が5.0mMになるように各試験化合物を溶解し、リン酸緩衝液(pH7.0)15mLを加えて各試料溶液とした。このとき化合物を加えずに調製したものをブランクとした。各試料溶液をサンプル瓶に入れ密栓し、振とうしながら50℃で144時間加温した。加温後、反応液(0.3mL)に0.05N HCl(3.0mL)、0.67%チオバルビツール酸水溶液(1.0mL)、5.0mM塩化第一鉄水溶液(1.0mL)を加え密栓し、95℃の沸騰水浴中で正確に30分間加熱した。氷浴で冷却後、85%ブタノール溶液(BuOH:MeOH=85:15、4.0mL)を加え抽出し、2500rpmで10分間遠心分離した。上澄みのブタノール層の535nmにおける吸光度(ODB)を分光光度計(島津自記分光光度計:UV-2100S)で測定し、(式8)より、リノール酸の酸化に対する各化合物の抗酸化活性(%)を算出した。結果を表3に示す。
【0067】
【数2】
Figure 2004175778
【0068】
ODS:試料添加時の吸光度
ODB:試料無添加時の吸光度
【0069】
【表3】
Figure 2004175778
【0070】
表1、表2及び表3から明らかなように、本発明化合物(1)は優れた紫外線吸収能、チロシナーゼ活性阻害作用及び抗酸化活性を有し、有機溶媒にも溶解するので、紫外線吸収剤、美白剤及び/又は抗酸化剤として皮膚外用剤、特に化粧料に使用できることがわかる。
【0071】
【発明の効果】
本発明化合物(1)は、優れた紫外線吸収能、チロシナーゼ活性阻害作用及び抗酸化活性を有し、また基剤への溶解性も良好であり、紫外線吸収剤、美白剤及び/又は抗酸化剤として皮膚外用剤に利用できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to cinnamic acids having excellent ultraviolet absorbing action, tyrosinase activity inhibiting action and antioxidant activity, and ultraviolet absorbents, whitening agents, antioxidants and skin external preparations containing these as active ingredients.
[0002]
[Prior art]
Ultraviolet rays are known to be deeply involved in pigmentation of spots, freckles and the like, as well as in the formation of wrinkles, in addition to acute erythema formation and the like, and development of ultraviolet absorbers is regarded as important.
[0003]
Examples of the ultraviolet absorber include dibenzoylmethane derivatives (Patent Document 1), 5-aryl-2,4-pentadienoic acid derivatives (Patent Documents 2 to 4), cinnamylidenemalonic acid derivatives (Patent Document 5), and 5-aryl -2,4-pentadienones (Patent Document 6) and the like have been reported.
[0004]
[Patent Document 1]
JP-B-61-16258 [Patent Document 2]
JP-A-6-336417 [Patent Document 3]
JP-A-7-238275 [Patent Document 4]
US Pat. No. 5,320,833 [Patent Document 5]
JP-A-7-17912 [Patent Document 6]
JP-A-7-17892 [0005]
[Problems to be solved by the invention]
However, the above-mentioned ultraviolet absorber has drawbacks such as insufficient ultraviolet absorption ability and low solubility in a base, and thus cannot always be said to be useful as an external preparation for skin such as cosmetics.
Therefore, there has been a demand for an excellent ultraviolet absorber which can be added to a skin external preparation.
[0006]
[Means for Solving the Problems]
Therefore, the present inventors have synthesized a number of compounds, and have studied the ultraviolet absorbing action and solubility in solvents and the like.As a result, cinnamic acid esters and cinnamic amides having a specific structure have excellent ultraviolet absorbing action. It has solubility in a base and was found to be useful as a skin external preparation component. In addition, when the pharmacological action of the compound was examined, it was found that the compound is also useful as a whitening agent and an antioxidant because it has an excellent tyrosinase activity inhibitory action and an antioxidant ability of unsaturated fatty acids. The invention has been completed.
[0007]
That is, the present invention provides the following general formula (1)
[0008]
Embedded image
Figure 2004175778
[0009]
(Wherein, R 1 represents a hydrogen atom or a lower alkyl group; R 2 and R 3 are the same or different and represent a hydrogen atom, a hydroxy group or a lower alkoxy group; A represents the following formula (2) or (3)
[0010]
Embedded image
Figure 2004175778
[0011]
(Wherein, R 4 represents a benzoyl group which may be substituted with a lower alkoxy group or a hydroxy group, or a lower alkoxy group; R 5 represents a hydrogen atom, a lower alkyl group, a benzyl group or a hydroxybenzyl group; 6 represents a hydrogen atom or a lower alkyl group)
Represents a group represented by)
And a cinnamic acid represented by the formula:
[0012]
The present invention also provides an ultraviolet absorber, a whitening agent and an antioxidant containing the cinnamic acid (1) as an active ingredient, and an external preparation for skin containing the same.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
In the general formula (1), the lower alkyl group represented by R 1 , R 5 and R 6 is preferably a linear or branched alkyl group having 1 to 6 carbon atoms. Specific examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, an n-pentyl group, and an n-hexyl group. Among them, a linear or branched alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, an n-propyl group and an isopropyl group is particularly preferred.
[0014]
As the lower alkoxy group represented by R 2 , R 3 and R 4 , a linear or branched alkoxy group having 1 to 6 carbon atoms, particularly an alkoxy group having 1 to 4 carbon atoms is preferable. Specific examples include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, and an n-butoxy group.
[0015]
Among the cinnamic acids (1) of the present invention, when A is a group of the formula (2), they are cinnamate phenyl esters, and when A is the formula (3), they are cinnamic amides.
[0016]
The compound (1) of the present invention can be produced, for example, according to the following reaction formula.
[0017]
Embedded image
Figure 2004175778
[0018]
(Wherein R 1 , R 2 , R 3 and A are the same as described above)
[0019]
That is, the compound (1) of the present invention can be obtained by reacting a phenol or an amino acid (5) with cinnamic acid (4) or a reactive derivative thereof.
[0020]
Examples of the reactive derivative of cinnamic acid (4) include an acid halide and a mixed acid anhydride. When cinnamic acid (4) is directly reacted, it is preferable to use a condensing agent such as N, N-dicyclocarbodiimide. The reaction is preferably performed at 0 to 100 ° C. in the presence of a base such as 4-dimethylaminopyridine and triethylamine.
[0021]
The thus-obtained compound (1) of the present invention has excellent UV-A or UV-B absorption capacity in the UV-A region and good solubility in organic solvents, bases, and the like, as described in Examples below. It is. Therefore, the compound (1) of the present invention can be used alone or in combination of two or more as an ultraviolet absorber. Further, since the compound (1) of the present invention also has an excellent tyrosinase activity inhibitory activity and an antioxidant ability of unsaturated fatty acids, these compounds are blended as an ultraviolet absorber, a whitening agent and / or an antioxidant, and are used for cosmetics and the like. It can be a skin external preparation.
[0022]
Examples of the external preparation for skin in the present invention include skin cosmetics and medicinal cosmetics, and examples of the dosage form include creams, lotions, emulsions, ointments, gels, sprays, sticks, foundations and the like. The compound (1) of the present invention is preferably contained in the external preparation for skin, for example, in an amount of 0.001 to 20% by weight, particularly preferably 0.1 to 10% by weight.
[0023]
Other skin external preparations include alcohols such as water, ethanol, cetyl alcohol, and stearyl alcohol; polyhydric alcohols such as glycerin and propylene glycol; fatty acids such as palmitic acid, stearic acid, and oleic acid; isopropyl myristate; Esters such as propylene glycol stearate, glycerin tricaprate, and glycerin trimyristate; vegetable or animal fats and oils such as castor oil, olive oil, coconut oil, lanolin, squalane, and spermaceti; paraffin, liquid paraffin, and silicone oil Mineral oils; low-boiling hydrocarbons or halogenated hydrocarbons used as aerosol propellants; starch, talc and the like.
[0024]
【Example】
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[0025]
Example 1 2- (4-methoxybenzoyl) phenyl 4-methoxycinnamate 4-methoxycinnamic acid (16.03 g, 90.0 mmol), 2-hydroxy-4'-methoxybenzophenone (11.4 g, 50.0 mmol), 4-dimethyl Aminopyridine (4.9 g, 40.1 mmol) was dispersed in dichloromethane (80 mL), cooled to 0 ° C., and N, N-dicyclohexylcarbodiimide (11.4 g, 50.0 mmol) was dissolved in dichloromethane (20 mL). The solution was dropped for 5 minutes while keeping the temperature. After stirring at 0 to 3 ° C for 5 minutes, the mixture was stirred at room temperature overnight, the reaction solution was filtered, and the residue was washed with dichloromethane (100 mL). The filtrate was washed with 0.5 M HCl (25 mL × 2), 20% Na 2 CO 3 (25 mL × 2), Na 2 SO 4 (20 g) was added to the organic layer, and the organic layer was dried. Two hours later, Na 2 SO 4 was filtered, the filtrate was concentrated under reduced pressure by a rotary evaporator, ethyl acetate (100 mL) was added to the obtained concentrated residue, and the mixture was heated and dissolved at 60 ° C., refuse-filtered, and then cooled. The precipitated crystals were filtered to obtain 14.1 g of crude crystals. Of these, 4.1 g was dissolved in methanol (250 mL) at 65 ° C. and recrystallized to obtain 2- (4-methoxybenzoyl) phenyl 4-methoxycinnamate (3.0 g, 7.72 mmol).
[0026]
Yield 53.1%, mp 131.0-131.9 ° C
1 H-NMR (400 MHz, CDCl 3 ) δ: 3.77 (3H, s), 3.82 (3H, s), 6.20 (1 H, d, J = 15.87 Hz), 6.88 (2H, d, J = 8.79 Hz), 6.90 (2H, d, J = 8.79Hz), 7.28 (1H, d, J = 8.06Hz), 7.33 (1H, t, J = 7.57Hz), 7.37 (2H, d, J = 9.03Hz), 7.47 ( 1H, d, J = 15.62Hz), 7.51 (1H, d, J = 9.28Hz), 7.55 (1H, t, J = 7.81Hz), 7.79 (2H, d, J = 8.79Hz)
[0027]
Example 2 4'-benzoylphenyl 4-methoxycinnamate 4-hydroxybenzophenone (9.9 g, 50.0 mmol), 4-methoxycinnamic acid (8.9 g, 50.0 mmol), 4-dimethylaminopyridine (4.9 g, 40.0 mmol) The reaction and extraction were carried out in the same manner as in Example 1 to obtain 13.5 g of crude crystals. Using 4.8 g of these, recrystallization was performed in the same procedure to obtain 4'-benzoylphenyl 4-methoxycinnamate (4.2 g, 11.7 mmol).
[0028]
65.9% yield, mp 130.7-131.5 ° C
1 H-NMR (400 MHz, CDCl 3 ) δ: 3.88 (3H, s), 6.49 (1H, d, J = 15.87 Hz), 6.94 (2H, d, J = 8.79 Hz), 7.29 (2H, d, J = 8.54Hz), 7.5 (2H, t, J = 7.32Hz), 7.55 (2H, d, J = 8.79Hz), 7.60 (1H, t, J = 7.57Hz), 7.805 (1H, d, J = 15.87 Hz), 7.809 (2H, d, J = 7.81Hz), 7.87 (2H, d, J = 8.54Hz)
[0029]
Example 3 2'-benzoylphenyl 4-methoxycinnamate 2-hydroxybenzophenone (9.9 g, 50.0 mmol), 4-methoxycinnamic acid (8.9 g, 50.0 mmol), 4-dimethylaminopyridine (4.9 g, 40.0 mmol) Was used to carry out a reaction and extraction in the same manner as in Example 1 to obtain 13.1 g of crude crystals. Using 3.5 g of these, recrystallization was performed in the same procedure to obtain 2'-benzoylphenyl 4-methoxycinnamate (2.7 g, 7.5 mmol).
[0030]
Yield 56.4%, mp 128.0-129.7 ° C
1 H-NMR (400 MHz, CDCl 3 ) δ: 3.83 (3H, s), 6.13 (1H, d, J = 15.87 Hz), 6.86 (2H, d, J = 8.79 Hz), 7.29 (1H, d, J = 8.05Hz), 7.34 (1H, t, J = 7.81Hz), 7.36 (2H, d, J = 8.78Hz), 7.40 (2H, t, J = 7.82Hz), 7.45 (1H, d, J = 15.87) Hz), 7.50 (1H, t, J = 7.57Hz), 7.55 (1H, d, J = 7.81Hz), 7.56 (1H, t, J = 7.57Hz), 7.80 (2H, d, J = 7.08Hz)
[0031]
Example 4 4'-ethoxyphenyl 4-methoxycinnamate 4-ethoxyphenol (11.0 g, 163.6 mmol), 4-methoxycinnamic acid (16.03 g, 163.6 mmol), 4-dimethylaminopyridine (8.8 g, 71.8 mmol) The reaction and extraction were carried out in the same manner as in Example 1 using, to obtain 26.9 g of crude crystals. Of these, 7.0 g was dissolved in methanol (300 mL) at 64 ° C. and recrystallized to obtain 4′-ethoxyphenyl 4-methoxycinnamate (5.9 g, 19.8 mmol).
[0032]
76.6% yield, mp 130.1-131.8 ° C
1 H-NMR (400 MHz, CDCl 3 ) δ: 1.41 (3H, t, J = 6.83 Hz), 3.85 (3H, s), 3.99 (2H, q, J = 6.84 Hz), 6.46 (1H, d, J = 15.87Hz), 6.87 (2H, d, J = 7.32Hz), 6.92 (2H, d, J = 8.54Hz), 7.05 (2H, d, J = 8.3Hz), 7.52 (2H, d, J = 8.79 Hz), 7.78 (1H, d, J = 15.87Hz)
[0033]
Example 5 4'-butoxyphenyl 3,4,5-trimethoxycinnamate 4-butoxyphenol (24.5 g, 163.6 mmol), 3,4,5-trimethoxycinnamic acid (38.9 g, 163.6 mmol), 4-dimethyl Reaction and extraction were carried out in the same manner as in Example 1 using aminopyridine (8.8 g, 71.8 mmol) to obtain 25.0 g of crude crystals. Of these, 10.0 g was dissolved in methanol (150 mL) at 64 ° C. and recrystallized to obtain 4′-butoxyphenyl 3,4,5-trimethoxycinnamate (6.4 g, 16.6 mmol).
[0034]
Yield 50.0%, mp 80.1-82.7 ° C
1 H-NMR (400 MHz, CDCl 3 ) δ: 0.98 (3H, t, J = 7.32 Hz), 1.47 (2H, six, J = 7.57 Hz), 1.77 (2H, qui, J = 7.08 Hz), 3.90 ( 3H, s), 3.91 (6H, s), 3.96 (2H, t, J = 6.35Hz), 6.50 (1H, d, J = 15.87Hz), 6.81 (2H, s), 6.92 (2H, d, J = 9.03Hz), 7.04 (2H, d, J = 8.79Hz), 7.75 (1H, d, J = 15.87Hz)
[0035]
Example 6 4'-butoxyphenyl 4-methoxycinnamate 4-butoxyphenol (24.5 g, 163.6 mmol), 4-methoxycinnamic acid (16.03 g, 163.6 mmol), 4-dimethylaminopyridine (8.8 g, 71.8 mmol) The reaction and extraction were carried out in the same manner as in Example 1 by using, to obtain 26.5 g of crude crystals. Of these, 10.0 g was recrystallized in the same manner as in Example 4 to obtain 4'-butoxyphenyl 4-methoxycinnamate (8.4 g, 25.7 mmol).
[0036]
68.2% yield, mp 93.3-100.4 ° C
1 H-NMR (400 MHz, CDCl 3 ) δ: 0.97 (3H, t, J = 7.32 Hz), 1.48 (2H, six, J = 7.56 Hz), 1.76 (2H, qui, J = 7.32 Hz), 3.85 ( 3H, s), 3.95 (2H, t, J = 6.59Hz), 6.46 (1H, d, J = 15.87Hz), 6.88 (2H, d, J = 9.03Hz), 6.91 (2H, d, J = 8.79 Hz), 7.04 (2H, d, J = 8.79Hz), 7.51 (2H, d, J = 9.03Hz), 7.78 (1H, d, J = 15.87Hz)
[0037]
Example 7 4'-ethoxyphenyl 3,4,5-trimethoxycinnamate 4-ethoxyphenol (11.0 g, 163.6 mmol), 3,4,5-trimethoxycinnamic acid (38.9 g, 163.6 mmol), 4-dimethyl The reaction and extraction were carried out in the same manner as in Example 1 using aminopyridine (8.8 g, 71.8 mmol) to obtain 28.8 g of crude crystals. Of these, 10.0 g was recrystallized in the same procedure as in Example 4 to obtain 4'-ethoxyphenyl 3,4,5-trimethoxycinnamate (8.8 g, 24.5 mmol).
[0038]
70.4% yield, mp 131.75-132.4 ° C
1 H-NMR (400 MHz, CDCl 3 ) δ: 1.42 (3H, t, J = 6.83 Hz), 3.90 (3H, s), 3.91 (6H, s), 4.02 (2H, q, J = 7.08 Hz), 6.51 (1H, d, J = 15.87Hz), 6.81 (2H, s), 6.88 (2H, d, J = 9.4Hz), 7.06 (2H, d, J = 8.79Hz), 7.75 (1H, d, J = 15.87Hz)
[0039]
Example 8 Ethyl 3,4,5-trimethoxycinnamyl-L-tyrosine L-tyrosine ethyl ester hydrochloride (12.3 g, 50.0 mmol) and 3,4,5-trimethoxycinnamic acid (11.9 g, 50.0 mmol) It was dissolved in dichloromethane (80 mL), and triethylamine (5.1 g, 50.0 mmol) was added dropwise while maintaining the temperature at about 0 ° C. N, N-dicyclohexylcarbodiimide (11.4 g, 50.0 mmol) was dissolved in dichloromethane (20 mL) and added dropwise while maintaining the temperature at about 0 ° C. After stirring at room temperature overnight, the mixture was concentrated under reduced pressure using a rotary evaporator, dissolved in ethyl acetate (200 mL), and a 10% aqueous citric acid solution (300 mL), water (300 mL), 1% Na 2 CO 3 (300 mL), water ( (300 mL) and saturated saline (300 mL) in that order, Na 2 SO 4 (80 g) was added and dried, Na 2 SO 4 was filtered, and the filtrate was concentrated under reduced pressure with a rotary evaporator to obtain 18.1 g of crude crystals. Obtained. Of these, 10.0 g was purified by column chromatography (ethyl acetate) to separate ethyl 3,4,5-trimethoxycinnamyl-L-tyrosine (8.0 g, 18.6 mmol).
[0040]
67.4% yield, mp 70.1-77.9 ° C
1 H-NMR (400 MHz, CDCl 3 ) δ: 1.28 (3H, t, J = 7.08 Hz), 3.12 (2H, d, J = 7.32 Hz), 3.87 (3H, s), 3.88 (6H, s), 4.20 (2H, q, J = 7.32Hz), 4.96 (1H, q, J = 7.81Hz), 6.11 (1H, d, J = 7.81Hz), 6.29 (1H, d, J = 15.38Hz), 6.71 ( 2H, s), 6.73 (2H, d, J = 8.30Hz), 6.97 (2H, d, J = 8.30Hz), 7.51 (1H, d, J = 15.63Hz)
[0041]
Example 9 Ethyl feruloyl-L-tyrosine ferulic acid (9.7 g, 50.0 mmol), L-tyrosine ethyl ester hydrochloride (12.3 g, 50.0 mmol), 1-hydroxy-1H-benzotriazole (8.9 g, 50.0 mmol) It was dissolved in pyridine (100 g), and triethylamine (5.1 g, 50.0 mmol) was added dropwise while maintaining the temperature at about 0 ° C. N, N-dicyclohexylcarbodiimide (11.4 g, 50.0 mmol) was dissolved in pyridine (45 g) and added dropwise while maintaining the temperature at about 0 ° C. After stirring at room temperature overnight, the mixture was concentrated under reduced pressure using a rotary evaporator, dissolved in ethyl acetate (200 mL), extracted in the same manner as in Example 8, dried by adding Na 2 SO 4 (80 g), and dried with Na 2 SO 4. 4 was filtered, and the filtrate was concentrated under reduced pressure using a rotary evaporator to obtain 16.6 g of crude crystals. Of these, 7.2 g was dissolved in ethyl acetate (300 mL), filtered to remove insolubles, concentrated under reduced pressure by a rotary evaporator, and the residue was dissolved in isopropyl alcohol (50 mL) at 72 ° C and recrystallized. -L-tyrosine (5.9 g, 15.3 mmol) was obtained.
[0042]
70.5% yield, mp 176.6-180.4 ° C
1 H-NMR (400 MHz, DMSO-d 6 ) δ: 1.12 (3H, t, J = 7.32 Hz), 2.82 (2H, d, J = 5.86 Hz), 3.35 (3H, s), 4.04 (2H, q , J = 7.08Hz), 4.48 (1H, q, J = 6.11Hz), 6.49 (1H, d, J = 15.62Hz), 6.64 (2H, d, J = 8.06Hz), 6.77 (1H, d, J = 8.06Hz), 6.97 (1H, d, J = 8.3Hz), 7.00 (2H, d, J = 8.3Hz), 7.11 (1H, s), 7.27 (1H, d, J = 15.87Hz), 8.28 ( 1H, d, J = 7.82Hz), 9.21 (1H, s), 9.44 (1H, s),
[0043]
Example 10 Ethyl 4'-methoxycinnamyl-L-tyrosine 4-methoxycinnamic acid (8.9 g, 50.0 mmol), L-tyrosine ethyl ester hydrochloride (12.3 g, 50.0 mmol), 1-hydroxy-1H-benzotriazole Using 8.9 g (50.0 mmol), the reaction and extraction were carried out in the same manner as in Example 9 to obtain crude crystals (9.0 g). 6.9 g thereof was dissolved in isopropyl alcohol (40 mL) at 62 ° C. and recrystallized to obtain ethyl 4′-methoxycinnamyl-L-tyrosine (3.7 g, 10.0 mmol).
[0044]
39.2% yield, mp 143.3-144.3 ° C
1 H-NMR (400 MHz, CDCl 3 ) δ: 1.27 (3H, t, J = 7.08 Hz), 3.09 (2H, d, J = 5.86 Hz), 3.82 (3H, s), 4.18 (2H, q, J = 7.08Hz), 4.96 (1H, q, J = 7.81Hz), 5.84 (1H, s), 6.08 (1H, d, J = 7.81Hz), 6.24 (1H, d, J = 15.63Hz), 6.72 ( 2H, d, J = 8.54Hz), 6.86 (2H, d, J = 8.79Hz), 6.96 (2H, d, J = 8.30Hz), 7.41 (2H, d, J = 8.79Hz), 7.55 (1H, d, J = 15.63Hz)
[0045]
Example 11 Ethyl 4-methoxycinnamyl-L-valine L-valine ethyl ester hydrochloride (9.1 g, 50.0 mmol), 4-methoxycinnamic acid (8.9 g, 50.0 mmol), and triethylamine (5.1 g, 50.0 mmol) The reaction and extraction were carried out in the same manner as in Example 8 to obtain 13.3 g of crude crystals. Of these, 10.7 g was purified by column chromatography (ethyl acetate), and ethyl 4-methoxycinnamyl-L-valine (9.0 g, 29.5 mmol) was separated.
[0046]
76.0% yield, mp 61.5-69.7 ℃
1 H-NMR (400 MHz, CDCl 3 ) δ: 0.94 (3H, d, J = 6.83 Hz), 0.96 (3H, d, J = 7.08 Hz), 0.98 (3H, t, J = 7.08 Hz), 2.22 ( 1H, oct, J = 6.84Hz), 3.85 (3H, s), 4.21 (2H, q, J = 7.32Hz), 4.69 (1H, d, J = 8.78Hz), 6.11 (1H, d, J = 8.78 Hz), 6.33 (1H, d, J = 15.63Hz), 6.88 (2H, d, J = 8.78Hz), 7.45 (2H, d, J = 8.78Hz), 7.57 (1H, d, J = 15.63Hz)
[0047]
Example 12 Example 8 using ethyl 4-methoxycinnamylglycine lysine ethyl ester hydrochloride (7.0 g, 50.0 mmol), 4-methoxycinnamic acid (8.9 g, 50.0 mmol), and triethylamine (5.1 g, 50.0 mmol). Reaction and extraction were carried out in the same manner as in the above to obtain 9.2 g of crude crystals. Of these, 8.3 g was dissolved in isopropyl alcohol (40 mL) at 79 ° C. and recrystallized to obtain ethyl 4-methoxycinnamylglycine (5.8 g, 22.0 mmol).
[0048]
74.4% yield, mp 124.5-126.1 ° C
1 H-NMR (400 MHz, CDCl 3 ) δ: 1.30 (3H, t, J = 7.32 Hz), 3.83 (3H, s), 4.16 (2H, d, J = 4.88 Hz), 4.23 (2H, q, J = 7.08Hz), 6.14 (1H, s), 6.32 (1H, d, J = 15.63Hz), 6.88 (2H, d, J = 8.78Hz), 7.44 (2H, d, J = 8.78Hz), 7.58 ( (1H, d, J = 15.38Hz)
[0049]
Example 13 4-Methoxycinnamylglycine Ethyl 4-methoxycinnamylglycine (3.0 g, 11.4 mmol) obtained in Example 12 was dissolved in 1N NaOH (14 mL) and stirred at room temperature overnight. The reaction solution was neutralized with 5% HCl, washed with ethyl acetate (200 mL), the aqueous layer was made acidic (pH 4) with 5% HCl, and extracted with ethyl acetate (200 mL), and the organic layer was washed with water (200 mL). , Washed with saturated saline (200 mL) and dried over Na 2 SO 4 overnight. Na 2 SO 4 was filtered, and the filtrate was concentrated under reduced pressure using a rotary evaporator to obtain 4-methoxycinnamylglycine (1.5 g, 6.4 mmol).
[0050]
Yield 56.2%, mp 162.3-164.4 ° C
1 H-NMR (400MHz, DMSO -d 6) δ: 3.78 (3H, s), 3.87 (2H, d, J = 5.86Hz), 6.55 (1H, d, J = 15.6Hz), 6.96 (2H, d , J = 8.54Hz), 7.37 (1H, d, J = 15.9Hz), 7.51 (2H, d, J = 8.78Hz), 8.29 (1H, d, J = 5.85Hz)
[0051]
Example 14 Ethyl caffeoyl-L-tyrosine 3,4-dihydroxycinnamic acid (9.0 g, 50.0 mmol), L-tyrosine ethyl ester hydrochloride (12.3 g, 50.0 mmol), 1-hydroxy-1H-benzotriazole (8.9 g, 50.0 mmol) to carry out a reaction in the same manner as in Example 1 to obtain crude crystals (12.0 g). 2.0 g thereof was dissolved in isopropyl alcohol (10 mL), water (30 mL) was gradually added, the mixture was cooled overnight, the precipitated crystals were removed by filtration, and the mother liquor was concentrated under reduced pressure with a rotary evaporator to give ethylcaffeoyl-L-. Tyrosine (1.5 g, 4.0 mmol) was obtained.
[0052]
Yield 44.4%, mp 75.2-77.0 ° C
1 H-NMR (400 MHz, CD 3 OD) δ: 1.21 (3 H, t, J = 7.32 Hz), 2.94 (1 H, d, J = 8.3 Hz), 3.03 (1 H, d, J = 6.34 Hz), 4.14 (2H, d, J = 7.08Hz), 4.67 (1H, d, J = 8.06Hz), 6.38 (1H, d, J = 15.8Hz), 6.68 (2H, d, J = 8.79Hz), 6.74 (1H , d, J = 8.3Hz), 6.89 (1H, d, J = 8.3Hz), 7.02 (2H, d, J = 8.55Hz), 7.34 (1H, d, J = 15.6Hz)
[0053]
Example 15 Feruloyl-L-tyrosine Ethyl feruloyl-L-tyrosine (5.0 g, 13.0 mmol) obtained in Example 9 was dissolved in 2N NaOH (100 mL), stirred at room temperature overnight, and treated in the same manner as in Example 13. The procedure yielded crude crystals (3.8 g). The crystals were dissolved in a small amount of ethyl acetate, and feruloyl-L-tyrosine (1.3 g, 3.6 mmol) was separated by column chromatography (ethyl acetate).
[0054]
Yield 28.1%, mp 108.3-111.0 ° C
1 H-NMR (400 MHz, DMSO-d 6 ) δ: 3.56 (2 H, d, J = 7.08 Hz), 4.6 (1 H, s), 4.83 (1 H, q, J = 8.3 Hz), 5.27 (1 H, d , J = 15.62Hz), 7.30 (2H, d, J = 8.06Hz), 7.43 (1H, d, J = 8.3Hz), 7.57 (1H, d, J = 8.05Hz), 7.76 (2H, d, J = 8.3Hz), 7.81 (1H, s), 8.05 (1H, d, J = 15.86Hz), 8.92 (1H, d, J = 7.81Hz), 9.99 (1H, s), 10.23 (1H, s)
[0055]
Example 16 Caffeoyl-L-tyrosine Ethyl caffeoyl-L-tyrosine (9.0 g, 26.2 mmol) obtained in Example 14 was dissolved in 2N NaOH (100 mL), and the mixture was stirred at room temperature overnight. Crude crystals (7.1 g) were obtained by the same procedure. The crystals were dissolved in a small amount of ethyl acetate, and caffeoyl-L-tyrosine (1.5 g, 4.36 mmol) was separated by column chromatography (ethyl acetate).
[0056]
Yield 16.7%, mp 67.3-72.4 ° C
1 H-NMR (400 MHz, DMSO-d 6 ) δ: 2.79 (2 H, d, J = 9.03 Hz), 4.20 (1 H, q, J = 7.32 Hz), 6.38 (1 H, d, J = 15.38 Hz), 6.63 (2H, d, J = 7.81Hz), 6.72 (1H, d, J = 8.06Hz), 6.81 (1H, d, J = 7.33Hz), 6.93 (1H, s), 7.01 (2H, d, J = 7.82Hz), 7.16 (1H, d, J = 15.87Hz), 8.17 (1H, d, J = 7.32Hz), 9.09 (1H, s), 9.17 (1H, s), 9.33 (1H, s)
[0057]
Test example 1
The molar extinction coefficient of the compound obtained in the above example with respect to ultraviolet light was measured. That is, the test compound is dissolved in ethanol, and the absorbance (A) at 190 to 450 nm is measured with a spectrophotometer (Shimadzu self-recording spectrophotometer: UV-2100S). Calculated. The compound concentrations were adjusted so that the absorbance was 1.0 or less. Table 1 shows the results.
[0058]
A = εC × 1 (6)
[0059]
A: absorbance ε: molar extinction coefficient (mol -1 cm -1 L)
C: Compound concentration (mol / L)
[0060]
Test example 2
The solubility of the compounds obtained in the examples in various solvents was evaluated.
0.1 g of the test compound was weighed out and dissolved in 10 mL of a solvent (water, ethanol, ethyl acetate) at room temperature. Solubility was classified into three types: completely dissolved (> 1%: ○), undissolved (<1%: Δ), and completely undissolved (insol .: ×). ,evaluated. Table 1 shows the results.
[0061]
[Table 1]
Figure 2004175778
[0062]
Test example 3
The tyrosinase activity inhibitory effect of the compounds obtained in the examples was examined.
1.0 mL of 0.066 M phosphate buffer (pH 6.8), 1.0 mL of L-tyrosine (1.66 μM), each sample solution (each test compound was dissolved in 0.066 M phosphate buffer (pH 6.8), 0.9 mM], and the mixture was incubated at 37 ° C for 5 minutes. Then, 0.1 mL of an enzyme solution (manufactured by Sigma, 3620 unit / mg tyrosinase dissolved in 0.066 M phosphate buffer (pH 6.8) and diluted to 2000 unit / mL) was added, mixed, and the temperature was adjusted to 37. While maintaining the temperature at ° C., the absorbance (OD S ) at 475 nm was measured with a spectrophotometer (Shimadzu self-recording spectrophotometer: UV-2100S) for 10 minutes.
Similarly, the absorbance (OD HE ) and the absorbance (OD B ) when the reaction was carried out using the enzyme inactivated by heating and when no sample was added were measured, and the inhibition rate of tyrosinase activity was determined from the following equation (7). Calculated. A 50% inhibitory concentration (IC 50 ) was determined from the obtained inhibition rate. Table 2 shows the results.
[0063]
(Equation 1)
Figure 2004175778
[0064]
OD S : Absorbance when sample is added OD B : Absorbance when sample is not added OD HE : Absorbance when enzyme is inactive
[Table 2]
Figure 2004175778
[0066]
Test example 4
The antioxidant activity of the compounds obtained in the examples was measured.
Linoleic acid was dissolved in ethanol to a final concentration of 5% W / V. Each test compound was dissolved in 10 mL of this ethanol solution to a final concentration of 5.0 mM, and 15 mL of a phosphate buffer (pH 7.0) was added to prepare each sample solution. At this time, one prepared without adding the compound was used as a blank. Each sample solution was placed in a sample bottle, sealed, and heated at 50 ° C. for 144 hours with shaking. After warming, add 0.05N HCl (3.0 mL), 0.67% thiobarbituric acid aqueous solution (1.0 mL) and 5.0 mM ferrous chloride aqueous solution (1.0 mL) to the reaction solution (0.3 mL), and seal the mixture. And heated in a boiling water bath at 95 ° C. for exactly 30 minutes. After cooling in an ice bath, an 85% butanol solution (BuOH: MeOH = 85: 15, 4.0 mL) was added for extraction, followed by centrifugation at 2500 rpm for 10 minutes. The absorbance (OD B ) of the supernatant butanol layer at 535 nm was measured with a spectrophotometer (Shimadzu self-recording spectrophotometer: UV-2100S). ) Was calculated. Table 3 shows the results.
[0067]
(Equation 2)
Figure 2004175778
[0068]
OD S : Absorbance when sample is added OD B : Absorbance when sample is not added
[Table 3]
Figure 2004175778
[0070]
As is clear from Tables 1, 2 and 3, the compound (1) of the present invention has excellent ultraviolet absorbing ability, tyrosinase activity inhibiting action and antioxidant activity, and is soluble in an organic solvent. It can be seen that it can be used as a skin lightening agent and / or antioxidant in skin external preparations, especially cosmetics.
[0071]
【The invention's effect】
The compound (1) of the present invention has excellent ultraviolet absorbing ability, tyrosinase activity inhibitory action and antioxidant activity, and has good solubility in a base, and has an ultraviolet absorber, a whitening agent and / or an antioxidant. It can be used as an external preparation for skin.

Claims (5)

一般式(1)
Figure 2004175778
(式中、R1は水素原子又は低級アルキル基を示し;R2及びR3は同一又は異なって水素原子、ヒドロキシ基又は低級アルコキシ基を示し;Aは次式(2)又は(3)
Figure 2004175778
(式中、R4は低級アルコキシ基もしくはヒドロキシ基が置換していてもよいベンゾイル基、又は低級アルコキシ基を示し;R5は水素原子、低級アルキル基、ベンジル基又はヒドロキシベンジル基を示し;R6は水素原子又は低級アルキル基を示す)
で表される基を示す)
で表される桂皮酸類。
General formula (1)
Figure 2004175778
(Wherein, R 1 represents a hydrogen atom or a lower alkyl group; R 2 and R 3 are the same or different and represent a hydrogen atom, a hydroxy group or a lower alkoxy group; A represents the following formula (2) or (3)
Figure 2004175778
(Wherein, R 4 represents a benzoyl group which may be substituted with a lower alkoxy group or a hydroxy group, or a lower alkoxy group; R 5 represents a hydrogen atom, a lower alkyl group, a benzyl group or a hydroxybenzyl group; 6 represents a hydrogen atom or a lower alkyl group)
Represents a group represented by)
Cinnamic acids represented by
請求項1記載の桂皮酸類を有効成分とする紫外線吸収剤。An ultraviolet absorber comprising the cinnamic acids according to claim 1 as an active ingredient. 請求項1記載の桂皮酸類を有効成分とする美白剤。A whitening agent comprising the cinnamic acids according to claim 1 as an active ingredient. 請求項1記載の桂皮酸類を有効成分とする抗酸化剤。An antioxidant comprising the cinnamic acids according to claim 1 as an active ingredient. 請求項1記載の桂皮酸類を含有する皮膚外用剤。An external preparation for skin containing the cinnamic acids according to claim 1.
JP2003008994A 2002-10-03 2003-01-17 New cinnamic acid Pending JP2004175778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003008994A JP2004175778A (en) 2002-10-03 2003-01-17 New cinnamic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002291311 2002-10-03
JP2003008994A JP2004175778A (en) 2002-10-03 2003-01-17 New cinnamic acid

Publications (2)

Publication Number Publication Date
JP2004175778A true JP2004175778A (en) 2004-06-24
JP2004175778A5 JP2004175778A5 (en) 2005-12-15

Family

ID=32715659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003008994A Pending JP2004175778A (en) 2002-10-03 2003-01-17 New cinnamic acid

Country Status (1)

Country Link
JP (1) JP2004175778A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006232685A (en) * 2005-02-23 2006-09-07 Toagosei Co Ltd Maillard reaction inhibitor
JP2006232686A (en) * 2005-02-23 2006-09-07 Toagosei Co Ltd New carnosine ester compound
WO2009041098A1 (en) * 2007-09-27 2009-04-02 Lead Chemical Co. , Ltd. Ultraviolet absorber
FR2932179A1 (en) * 2008-06-09 2009-12-11 Inst Rech Developpement Ird MICROBIOLOGICAL PROCESS FOR THE SYNTHESIS OF AMINO ACID CINNAMOYL AMIDE DERIVATIVES
JP2010520243A (en) * 2007-03-06 2010-06-10 コグニス・アイピー・マネージメント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Use of derivatives of sinapinic acid and compositions comprising such derivatives
JP2011037851A (en) * 2009-08-06 2011-02-24 Ind Technol Res Inst Skin lightening composition, plant-derived skin lightening composition, and composition possessing skin lightening effect
US8815221B2 (en) 2009-08-06 2014-08-26 Industrial Technology Research Institute Composition used for skin whitening, plant extracted skin whitening composition and composition having a skin whitening effect
CN104610054A (en) * 2015-02-04 2015-05-13 中国科学院华南植物园 Caffeoyl hydroquinone ester and preparation method and application of caffeoyl hydroquinone ester in preparation of tyrosinase inhibitor
KR101754826B1 (en) * 2015-07-20 2017-07-06 주식회사 앤코스메슈 Whitening functional ingredients made from cinnamic acid
WO2018080166A3 (en) * 2016-10-26 2018-08-09 (주)아모레퍼시픽 3,4,5-trimethoxycinnamic acid ester derivative, method for preparing same, and skin whitening composition comprising same
CN113234047A (en) * 2021-04-30 2021-08-10 深圳海创生物科技有限公司 Polyphenol compound and composition and application thereof in preparation of anti-aging product

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006232686A (en) * 2005-02-23 2006-09-07 Toagosei Co Ltd New carnosine ester compound
JP2006232685A (en) * 2005-02-23 2006-09-07 Toagosei Co Ltd Maillard reaction inhibitor
JP4631463B2 (en) * 2005-02-23 2011-02-16 東亞合成株式会社 Novel carnosine ester compounds
JP2010520243A (en) * 2007-03-06 2010-06-10 コグニス・アイピー・マネージメント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Use of derivatives of sinapinic acid and compositions comprising such derivatives
US8580775B2 (en) 2007-03-06 2013-11-12 Cognis Ip Management Gmbh Use of derivatives of sinapinic acid and compositions comprising such derivatives
CN101808976A (en) * 2007-09-27 2010-08-18 立德化学株式会社 ultraviolet absorber
AU2008305887B2 (en) * 2007-09-27 2010-08-26 Lead Chemical Co., Ltd. Ultraviolet absorber
KR101007768B1 (en) 2007-09-27 2011-01-14 리도 케미칼 가부시키가이샤 UV absorbers
WO2009041098A1 (en) * 2007-09-27 2009-04-02 Lead Chemical Co. , Ltd. Ultraviolet absorber
US8252273B2 (en) 2007-09-27 2012-08-28 Lead Chemical Co., Ltd. Ultraviolet absorber
CN101808976B (en) * 2007-09-27 2013-03-20 立德化学株式会社 Ultraviolet absorber
WO2010000964A1 (en) * 2008-06-09 2010-01-07 Institut De Recherche Pour Le Developpement Microbiological method for synthesizing cinnamoyl amide derivatives of amino acids
FR2932179A1 (en) * 2008-06-09 2009-12-11 Inst Rech Developpement Ird MICROBIOLOGICAL PROCESS FOR THE SYNTHESIS OF AMINO ACID CINNAMOYL AMIDE DERIVATIVES
US8497302B2 (en) 2008-06-09 2013-07-30 Institut De Recherche Pour Le Development Microbiological method for synthesizing cinnamoyl amide derivatives of amino acids
JP2011037851A (en) * 2009-08-06 2011-02-24 Ind Technol Res Inst Skin lightening composition, plant-derived skin lightening composition, and composition possessing skin lightening effect
US8815221B2 (en) 2009-08-06 2014-08-26 Industrial Technology Research Institute Composition used for skin whitening, plant extracted skin whitening composition and composition having a skin whitening effect
CN104610054A (en) * 2015-02-04 2015-05-13 中国科学院华南植物园 Caffeoyl hydroquinone ester and preparation method and application of caffeoyl hydroquinone ester in preparation of tyrosinase inhibitor
KR101754826B1 (en) * 2015-07-20 2017-07-06 주식회사 앤코스메슈 Whitening functional ingredients made from cinnamic acid
WO2018080166A3 (en) * 2016-10-26 2018-08-09 (주)아모레퍼시픽 3,4,5-trimethoxycinnamic acid ester derivative, method for preparing same, and skin whitening composition comprising same
CN110121491A (en) * 2016-10-26 2019-08-13 株式会社爱茉莉太平洋 3,4,5- trimethoxy cinnamic acid ester derivant, preparation method and the skin lightening compositions containing the derivative
CN110121491B (en) * 2016-10-26 2022-02-01 株式会社爱茉莉太平洋 3,4,5-trimethoxycinnamate derivative, method for preparing the same, and skin whitening composition containing the same
CN113234047A (en) * 2021-04-30 2021-08-10 深圳海创生物科技有限公司 Polyphenol compound and composition and application thereof in preparation of anti-aging product

Similar Documents

Publication Publication Date Title
EP1753708B1 (en) Novel sirtuin activating compounds and methods for making the same
JP6444324B2 (en) Combinations comprising alkylamidothiazoles and preservatives
EP1963257B1 (en) Merocyanine derivatives
JP3964989B2 (en) Use of 4,4-diarylbutadiene as a light-resistant UV filter, cosmetic or pharmaceutical preparations containing sunscreens, 4,4-diarylbutadienes and pharmaceutical preparations
US20090175809A1 (en) Merocyanine derivatives for cosmetic use
BRPI0512730B1 (en) cosmetic preparation comprising merocyanine derivatives as well as UV absorber dispersion
EP1458697A1 (en) Biphenylmethyl-thiazolidinediones and analogues and their use as ppar-gamma activators
CN103930409B (en) Armaticity amide thiazole, containing its cosmetic or dermatological preparations and their purposes overcoming and preventing less desirable cutaneous pigmentation
JP2004175778A (en) New cinnamic acid
EP1967175A1 (en) Use of derivatives of sinapinic acid and compositions comprising such derivatives
US20050165099A1 (en) Method for producing 2-(4-n,n-dialkylamino-2-hydroxybenzol)benzoates
JP2002193785A (en) Conjugant, method of producing the same and use thereof
EP1280506B1 (en) Silylated compounds as precursors for self-tanning compositions
JP2016510776A (en) Compositions comprising alkylamidothiazoles and aromatic substances
CN110121491B (en) 3,4,5-trimethoxycinnamate derivative, method for preparing the same, and skin whitening composition containing the same
JPH04290882A (en) Gamma-pyrone derivative and ultraviolet ray absorber and cosmetic containing the same
JPH04134041A (en) P-xylidene ketone derivative, ultraviolet absorber containing said derivative and cosmetic containing said absorber
US4125625A (en) Troponyl-oxamic acid derivatives
KR20110097701A (en) Composition for whitening of the skin comprising thiosemicarbazone derivatives
US20030171617A1 (en) 3,4-Dihydroxymandelic acid alkylamides and use thereof
CN100591319C (en) Merocyanine derivatives for cosmetic use
JPH07188208A (en) Skin external preparation
KR102463237B1 (en) Salicylic acid derivative compounds, preparation method thereof, and whitening cosmetic composition comprising the same
JP2003516953A (en) Catechol oximes and their use in cosmetic and dermatological preparations
KR101491728B1 (en) Conjugate of vitamin C with vitamin B3 and antioxidant comprising the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051026

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081028