JP2004175615A - Manufacturing method of cupric hydroxide and nickel hydroxide - Google Patents
Manufacturing method of cupric hydroxide and nickel hydroxide Download PDFInfo
- Publication number
- JP2004175615A JP2004175615A JP2002343196A JP2002343196A JP2004175615A JP 2004175615 A JP2004175615 A JP 2004175615A JP 2002343196 A JP2002343196 A JP 2002343196A JP 2002343196 A JP2002343196 A JP 2002343196A JP 2004175615 A JP2004175615 A JP 2004175615A
- Authority
- JP
- Japan
- Prior art keywords
- hydroxide
- nickel
- carbonate
- water
- cupric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、ハンドリング性に優れ不純物の少ない水酸化第二銅及び水酸化ニッケルの製造方法に関する。
【0002】
【従来の技術】
水酸化第二銅は、従来、銅塩の水溶液に苛性アルカリ又はアンモニアを添加する方法で製造されている(特許文献1、特許文献2、非特許文献1参照)。
しかし、苛性アルカリを添加する方法では、アルカリ過剰や反応熱の発生により酸化第二銅が生成しやすいため、低温での反応及びpH制御が必要となる。この方法では、粒径の小さい嵩高い水酸化第二銅が生成してしまい、水洗などのハンドリング性が悪く、陰イオンが水酸化第二銅中に残存するという欠点があった。
一方アンモニアを使用する方法では、アンモニアの臭気が作業環境を悪化させるとともに、反応時に生成する銅アンモニア錯イオンを廃水処理で分解する必要が生じる。また、アンモニア中和で水酸化第二銅中に陰イオンが残存するという欠点もある。
【0003】
水酸化ニッケル(水酸化第一ニッケル)の製造は従来、苛性アルカリを添加する方法で行われているが(非特許文献2参照)、水酸化第二銅と同様に、陰イオンが残存し嵩高くハンドリング性の悪い水酸化ニッケルが生成するという欠点があった。
【0004】
【特許文献1】
特開平8−104519号公報
【特許文献2】
特開平8−12328号公報
【非特許文献1】
「化学大辞典」共立出版、昭和44年3月15日、第5巻31頁
【非特許文献2】
「化学大辞典」共立出版、昭和44年3月15日、第5巻33頁
【0005】
【発明が解決しようとする課題】
本発明は、上記の問題点を解消し、洗浄、乾燥などのハンドリング性がよく、陰イオンの残存が少ない水酸化第二銅及び水酸化ニッケルを提供しようとするものである。
【0006】
【課題を解決するための手段】
本発明者は、下記の構成を採用することにより前記の課題の解決を可能にした。
(1)塩基性炭酸銅又は塩基性炭酸ニッケルを水に分散させ、苛性アルカリを添加して反応させることを特徴とする水酸化第二銅又は水酸化ニッケルの製造方法。
(2)苛性アルカリ/銅のモル比が0.5〜2.5となるよう苛性アルカリを添加することを特徴とする(1)記載の水酸化第二銅の製造方法。
(3)苛性アルカリ/ニッケルのモル比が0.5〜3.0となるよう苛性アルカリを添加することを特徴とする(1)記載の水酸化ニッケルの製造方法。
【0007】
【発明の実施の形態】
本発明においては下記の反応によって水酸化第二銅又は水酸化ニッケルを得る。
(M1はCu又はNiを表し、M2はアルカリ金属原子を表す。x、yは正の整数であり、塩基性炭酸塩の製法により種々の値をとりうる。)
アルカリ金属は好ましくはナトリウム、カリウムである。
【0008】
上記反応は具体的には以下の手順で行われる。
塩基性炭酸銅又は塩基性炭酸ニッケルを水に分散させ、撹拌を続けながら苛性アルカリを添加し、生成した炭酸アルカリを常法により水洗除去し、水分を除去、乾燥して水酸化第二銅又は水酸化ニッケルを得る。
水酸化第二銅の場合、苛性アルカリ/銅のモル比が0.5〜2.5となるように苛性アルカリを添加することが好ましく、さらに好ましくは1.0〜2.0である。反応温度は好ましくは5〜50℃、さらに好ましくは10〜40℃である。高温だと酸化銅が生成するためである。反応時間は好ましくは15分〜240分、さらに好ましくは30〜120分である。熟成は好ましくは10〜120分、さらに好ましくは30〜60分行う。
水酸化ニッケルの場合は苛性アルカリ/ニッケルのモル比が0.5〜3.0となるように苛性アルカリを添加することが好ましく、さらに好ましくは1.5〜2.5である。反応温度は好ましくは60〜100℃、さらに好ましくは80〜100℃であり、反応時間は好ましくは15〜240分、さらに好ましくは30〜120分である。熟成時間は好ましくは10〜120分、さらに好ましくは30〜60分である。
【0009】
なお、本発明の製造方法においては、原料となる塩基性炭酸銅もしくは塩基性炭酸ニッケルの粒径がほぼ水酸化第二銅もしくは水酸化ニッケルの粒径となる。したがって、粒径の小さい原料を使用した場合には生成する目的化合物の粒径も小さくなりハンドリング性は悪く、粒径の大きい原料を使用した場合には粒径の大きなハンドリング性の良好な目的化合物が得られる。原料化合物の好ましい形状は具体的には平均粒径1〜60μmのもので、さらに好ましくは平均粒径10〜30μmのものである。
粒径の大きな無機化合物を得る製法は公知のごとく、反応温度を高くし、反応に供するイオン濃度を薄くし、反応時間を長くする方法が一般的である。塩基性炭酸銅も同様であり、特開2001−253710号公報記載の方法(銅イオン含有液と炭酸イオン含有液を65〜85℃で同時に滴下する方法)、特開昭49−58099号公報記載の方法(塩基性炭酸銅として銅イオンを加熱してろ過しやすい状態に変換する方法)、特開平2−289423号公報記載の方法(中和反応によって生成した沈殿物を加熱熟成して結晶化させる方法)等により得られる塩基性炭酸銅は好ましく用いることができる。
塩基性炭酸ニッケルについては特開昭61−106422号公報、特開昭63−50328号公報、特開平1−153534号公報、特開平2−172829号公報及び特開2001−335326号公報記載の製法で得られるものが好ましく用いられる。
【0010】
このようにして得られる目的化合物は比較的大きな粒径を有するものとなるので、洗浄・乾燥などを行いやすい、ハンドリング性に優れたものとなる。また、原料として使用する塩基性炭酸塩には、金属塩水溶液と炭酸アルカリの反応によって得たものの場合、その金属塩の陰イオン(硫酸塩では硫酸イオン、塩化物では塩化物イオン、硝酸塩では硝酸イオン)が必ず含まれるが、本発明における苛性アルカリとの反応においては、強アルカリ下での反応により硝酸アルカリや塩化アルカリなどになって水に溶け出し、水洗工程で除去されるため、目的化合物である水酸化物では陰イオンの含有量がより少ないものとできる。
【0011】
【実施例】
次に本発明を比較例とともに示す実施例により更に具体的に説明する。なお、本発明は下記実施例中に記述した材料、組成、及び作成方法に何等限定されるものではない。
なお、実施例、比較例中の「%」は重量%を示す。
【0012】
(実施例1)
水2000Lを入れた反応器に塩基性炭酸銅1000kg(銅含有量45%、SO4 2−含有量0.3%、平均粒径15μm)を入れよく撹拌混合した。この中にNaOH/Cu=1.5モル比に相当する25%苛性ソーダ1340Lを1時間で滴下し30分撹拌を続けた。20℃の水温は反応により30℃となった。撹拌停止後、水洗水の導電率が1mS/cm以下になるまでデカンテーション水洗を繰り返した。16時間静置後の沈殿容量は1000L(沈殿嵩は0.72kg/L)であった。水洗を終えた水酸化第二銅スラリーを遠心脱水機にて水分を除去、さらに70℃で20時間の乾燥を行い、粉末の鮮青色の水酸化第二銅720kgを得た。含まれる銅、硫酸イオン、炭酸イオンの量及び見掛け比重を表1に示す。
【0013】
(実施例2)
水2Lを入れた反応器に塩基性炭酸銅1000g(銅含有量45%、SO4 2−含有量0.3%、平均粒径15μm)を入れよく撹拌混合した。この中にNaOH/Cu=1モル比に相当する25%苛性ソーダ892mlを1時間で滴下し30分撹拌を続けた。20℃の水温は反応により30℃となった。撹拌停止後、水洗水の導電率が1mS/cm以下になるまでデカンテーション水洗を繰り返した。16時間静置後の沈殿容量は1L(沈殿嵩は0.72kg/L)であった。水洗を終えた水酸化第二銅スラリーを遠心脱水機にて水分を除去、さらに70℃で20時間の乾燥を行い、粉末の鮮青色の水酸化第二銅720gを得た。含まれる銅、硫酸イオン、炭酸イオンの量及び見掛け比重を表1に示す。
【0014】
(比較例1)
水2Lを入れた反応器に硫酸銅5水和物254gを加え撹拌溶解した。この中にNaOH/Cu=1.8モル比に相当する25%苛性ソーダ288gを1時間で滴下した。滴下終了後30分撹拌を続けた。撹拌停止後、水洗水の導電率が1mS/cm以下になるまでデカンテーション水洗を繰り返した。16時間静置後の沈殿容量は800ml(沈殿嵩は0.125kg/L)であった。水洗を終えた水酸化第二銅スラリーを遠心脱水機にて水分を除去、さらに70℃で20時間の乾燥を行い、粉末の水酸化第二銅100gを得た。含まれる銅、硫酸イオン、炭酸イオンの量及び見掛け比重を表1に示す。
【0015】
(比較例2)
水2Lを入れた反応器に硫酸銅5水和物254gを加え撹拌溶解した。この中にNH3/Cu=2.1モル比に相当する25%アンモニア水143gを1時間で滴下した。滴下終了後30分撹拌を続けた。撹拌を停止し生成した水酸化第二銅を沈殿させたが、反応液は銅アンミン錯体が生成し青色を呈した。沈殿容量は500ml(沈殿嵩は0.19kg/L)であった。水洗水の導電率が1mS/cm以下になるまでデカンテーション水洗を繰り返した。水洗を終えた水酸化第二銅スラリーを遠心脱水機にて水分を除去、さらに70℃で20時間の乾燥を行い、粉末の水酸化第二銅95gを得た。含まれる銅、硫酸イオン、炭酸イオンの量及び見掛け比重を表1に示す。
【0016】
【表1】
【0017】
表1より、比較例1、2で得られた水酸化第二銅より実施例1、2で得られた水酸化第二銅のほうが硫酸イオンの含有量が少なく、見掛け比重が大きいことがわかる。すなわち実施例で得られた水酸化第二銅は、嵩高い比較例の水酸化第二銅よりもハンドリング性に優れ、陰イオンの含有量が少ない良質品である。
【0018】
(実施例3)
水300mlを入れた反応器に塩基性炭酸ニッケル240g(ニッケル含有量35%、SO4 2−含有量0.5%、平均粒径20μm)を入れよく撹拌混合し、90℃に加温した。この中にNaOH/Ni=2.0モル比に相当する25%苛性ソーダ液458gを1時間で滴下し90〜100℃を保持して30分撹拌を続けた。冷却し撹拌停止後、水洗水の導電率が1mS/cm以下になるまでデカンテーション水洗を繰り返した。16時間静置後の沈殿容量は270ml(沈殿嵩は0.5kg/L)であった。水洗を終えた水酸化ニッケルスラリーを遠心脱水機にて水分を除去、さらに100℃で16時間の乾燥を行い、粉末の青緑色の水酸化ニッケル135gを得た。含まれるニッケル、硫酸イオン、炭酸イオンの量及び見掛け比重を表2に示す。
【0019】
(実施例4)
水300mlを入れた反応器に塩基性炭酸ニッケル240g(ニッケル含有量35%、SO4 2−含有量0.5%、平均粒径20μm)を入れよく撹拌混合し、90℃に加温した。この中にNaOH/Ni=1.5モル比に相当する25%苛性ソーダ液343.5gを1時間で滴下し90〜100℃を保持して30分撹拌を続けた。冷却し撹拌停止後、水洗水の導電率が1mS/cm以下になるまでデカンテーション水洗を繰り返した。16時間静置後の沈殿容量は270ml(沈殿嵩は0.5kg/L)であった。水洗を終えた水酸化ニッケルスラリーを遠心脱水機にて水分を除去、さらに100℃で16時間の乾燥を行い、粉末の青緑色の水酸化ニッケル135gを得た。含まれるニッケル、硫酸イオン、炭酸イオンの量及び見掛け比重を表2に示す。
【0020】
(比較例3)
反応器にNaOH/Ni=2.1モル比に相当する25%苛性ソーダ液336gをはかり取り、水を加え1000mlとし90℃に加温した。別の容器に水1Lを用意し、硫酸ニッケル6水和物263gを加え撹拌溶解し、90℃に保持した反応器に1時間で滴下した。滴下終了後、30分撹拌を続けた。冷却し撹拌停止後、水洗水の導電率が1mS/cm以下になるまでデカンテーション水洗を繰り返した。16時間静置後の沈殿容量は900ml(沈殿嵩は0.15kg/L)であった。水洗を終えた水酸化ニッケルスラリーを遠心脱水機にて水分を除去、さらに100℃で16時間の乾燥を行い、粉末の水酸化ニッケル135gを得た。含まれるニッケル、硫酸イオン、炭酸イオンの量及び見掛け比重を表2に示す。
【0021】
(比較例4)
反応器にNaOH/Ni=2.1モル比に相当する25%苛性ソーダ液336gをはかり取り、水を加え1000mlとし90℃に加温した。別の容器に水1Lを用意し、硫酸ニッケル6水和物263gを加え撹拌溶解し、90℃に保持した反応器に3時間で滴下した。滴下終了後、30分撹拌を続けた。冷却し撹拌停止後、水洗水の導電率が1mS/cm以下になるまでデカンテーション水洗を繰り返した。16時間静置後の沈殿容量は700ml(沈殿嵩は0.19kg/L)であった。水洗を終えた水酸化ニッケルスラリーを遠心脱水機にて水分を除去、さらに100℃で16時間の乾燥を行い、粉末の水酸化ニッケル135gを得た。含まれるニッケル、硫酸イオン、炭酸イオンの量及び見掛け比重を表2に示す。
【0022】
【表2】
【0023】
表2の結果より、水酸化ニッケルの製造においても、実施例3、4の水酸化ニッケルは比較例3、4で得られたものに比べ不純物が少なく粒径の大きい、ハンドリング性のよいものであることがわかる。
【0024】
【発明の効果】
以上説明したように、本発明によれば、陰イオンの含有量が少なく、粒径の大きなハンドリング性のよい水酸化第二銅及び水酸化ニッケルを得ることができる。また、アンモニアを使用しない製造方法であるので、作業環境に悪影響を与えないという効果も奏する。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing cupric hydroxide and nickel hydroxide having excellent handling properties and containing few impurities.
[0002]
[Prior art]
Cupric hydroxide is conventionally produced by a method of adding caustic alkali or ammonia to an aqueous solution of a copper salt (see Patent Literature 1, Patent Literature 2, Non-Patent Literature 1).
However, in the method of adding a caustic alkali, cupric oxide is easily generated due to excess alkali or generation of reaction heat, so that a low-temperature reaction and pH control are required. In this method, bulky cupric hydroxide having a small particle size is generated, handling properties such as washing with water are poor, and there is a defect that anions remain in cupric hydroxide.
On the other hand, in the method using ammonia, the odor of ammonia deteriorates the working environment, and it is necessary to decompose the copper-ammonia complex ions generated during the reaction by wastewater treatment. In addition, there is a disadvantage that anions remain in cupric hydroxide due to neutralization of ammonia.
[0003]
Conventionally, nickel hydroxide (nickel hydroxide) is produced by a method of adding caustic alkali (see Non-Patent Document 2). However, similar to cupric hydroxide, anions remain and bulk is reduced. There is a disadvantage that nickel hydroxide which is high and has poor handling properties is generated.
[0004]
[Patent Document 1]
JP-A-8-104519 [Patent Document 2]
JP-A-8-12328 [Non-Patent Document 1]
"Chemical Encyclopedia" Kyoritsu Shuppan, March 15, 1969, Vol. 5, p. 31 [Non-Patent Document 2]
"Chemical Encyclopedia" Kyoritsu Shuppan, March 15, 1969, Vol. 5, page 33 [0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a cupric hydroxide and a nickel hydroxide which solve the above problems, have good handling properties such as washing and drying, and have less residual anions.
[0006]
[Means for Solving the Problems]
The inventor has made it possible to solve the above-mentioned problem by adopting the following configuration.
(1) A method for producing cupric hydroxide or nickel hydroxide, comprising dispersing basic copper carbonate or basic nickel carbonate in water and adding a caustic alkali to react.
(2) The method for producing cupric hydroxide according to (1), wherein the caustic alkali is added so that the molar ratio of caustic alkali / copper is 0.5 to 2.5.
(3) The method for producing nickel hydroxide according to (1), wherein the caustic alkali is added so that the molar ratio of caustic alkali / nickel is 0.5 to 3.0.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, cupric hydroxide or nickel hydroxide is obtained by the following reaction.
(M 1 represents Cu or Ni, M 2 represents an alkali metal atom, x and y are positive integers, and can take various values depending on the method of producing a basic carbonate.)
The alkali metal is preferably sodium or potassium.
[0008]
The above reaction is specifically performed according to the following procedure.
Disperse basic copper carbonate or basic nickel carbonate in water, add caustic while continuing stirring, wash and remove the generated alkali carbonate in a conventional manner, remove water, dry and remove cupric hydroxide or Obtain nickel hydroxide.
In the case of cupric hydroxide, it is preferable to add caustic so that the molar ratio of caustic alkali / copper is 0.5 to 2.5, and more preferably 1.0 to 2.0. The reaction temperature is preferably 5 to 50C, more preferably 10 to 40C. This is because copper oxide is generated at a high temperature. The reaction time is preferably from 15 minutes to 240 minutes, more preferably from 30 to 120 minutes. The aging is preferably performed for 10 to 120 minutes, more preferably 30 to 60 minutes.
In the case of nickel hydroxide, it is preferable to add caustic so that the molar ratio of caustic / nickel is 0.5 to 3.0, and more preferably 1.5 to 2.5. The reaction temperature is preferably from 60 to 100C, more preferably from 80 to 100C, and the reaction time is preferably from 15 to 240 minutes, more preferably from 30 to 120 minutes. The aging time is preferably 10 to 120 minutes, more preferably 30 to 60 minutes.
[0009]
In the production method of the present invention, the particle size of the basic copper carbonate or basic nickel carbonate as the raw material is substantially the same as the particle size of cupric hydroxide or nickel hydroxide. Therefore, when a raw material with a small particle size is used, the particle size of the target compound to be produced becomes small and the handling property is poor, and when a raw material with a large particle size is used, the target compound with a large particle size and good handleability is used. Is obtained. The preferred shape of the raw material compound is specifically one having an average particle size of 1 to 60 μm, more preferably one having an average particle size of 10 to 30 μm.
As is well known, a method of obtaining an inorganic compound having a large particle size generally involves increasing the reaction temperature, decreasing the concentration of ions used for the reaction, and increasing the reaction time. The same applies to basic copper carbonate, the method described in JP-A-2001-253710 (a method in which a copper ion-containing liquid and a carbonate ion-containing liquid are simultaneously dropped at 65 to 85 ° C.), and the method described in JP-A-49-58099. (A method of heating copper ions as basic copper carbonate to convert the ions into a state that can be easily filtered) and a method described in JP-A-2-289423 (a precipitate formed by a neutralization reaction is heated and aged to crystallize it). The basic copper carbonate obtained by the above method can be preferably used.
Basic nickel carbonate is described in JP-A-61-106422, JP-A-63-50328, JP-A-1-153534, JP-A-2-172829 and JP-A-2001-335326. What is obtained by is preferably used.
[0010]
The target compound thus obtained has a relatively large particle size, so that it can be easily washed and dried, and has excellent handling properties. In the case of a basic carbonate used as a raw material, an anion of the metal salt (a sulfate ion for a sulfate, a chloride ion for a chloride, and a nitrate for a nitrate) when the basic carbonate is obtained by a reaction between an aqueous solution of a metal salt and an alkali carbonate. Ion), but in the reaction with caustic alkali in the present invention, the reaction under strong alkali becomes alkali nitrate or alkali chloride and dissolves in water, and is removed in the water washing step. In the hydroxide, the content of the anion can be made smaller.
[0011]
【Example】
Next, the present invention will be described more specifically with reference to examples showing comparative examples. The present invention is not limited to the materials, compositions, and preparation methods described in the following examples.
In the Examples and Comparative Examples, "%" indicates% by weight.
[0012]
(Example 1)
1000 kg of basic copper carbonate (copper content 45%, SO 4 2- content 0.3%, average particle size 15 μm) was charged into a reactor containing 2000 L of water, and mixed well with stirring. To this, 1340 L of 25% caustic soda corresponding to a 1.5 molar ratio of NaOH / Cu was added dropwise over 1 hour, and stirring was continued for 30 minutes. The water temperature at 20 ° C. was reduced to 30 ° C. by the reaction. After the stirring was stopped, the decantation washing was repeated until the conductivity of the washing water became 1 mS / cm or less. The sediment volume after standing for 16 hours was 1000 L (the sediment bulk was 0.72 kg / L). The cupric hydroxide slurry that had been washed with water was removed of water with a centrifugal dehydrator and dried at 70 ° C. for 20 hours to obtain 720 kg of powdery bright blue cupric hydroxide. Table 1 shows the amounts of copper, sulfate ions, and carbonate ions contained and the apparent specific gravity.
[0013]
(Example 2)
1000 g of basic copper carbonate (copper content 45%, SO 4 2- content 0.3%, average particle size 15 μm) was charged into a reactor containing 2 L of water, and mixed well with stirring. Into this, 892 ml of 25% caustic soda corresponding to a molar ratio of NaOH / Cu = 1 was dropped over 1 hour, and stirring was continued for 30 minutes. The water temperature at 20 ° C. was reduced to 30 ° C. by the reaction. After the stirring was stopped, the decantation washing was repeated until the conductivity of the washing water became 1 mS / cm or less. The sediment volume after standing for 16 hours was 1 L (the sediment bulk was 0.72 kg / L). Water was removed from the cupric hydroxide slurry after the water washing with a centrifugal dehydrator, followed by drying at 70 ° C. for 20 hours to obtain 720 g of powdery bright blue cupric hydroxide. Table 1 shows the amounts of copper, sulfate ions, and carbonate ions contained and the apparent specific gravity.
[0014]
(Comparative Example 1)
254 g of copper sulfate pentahydrate was added to a reactor containing 2 L of water and dissolved by stirring. To this, 288 g of 25% caustic soda corresponding to a NaOH / Cu = 1.8 molar ratio was added dropwise over 1 hour. After completion of the dropwise addition, stirring was continued for 30 minutes. After the stirring was stopped, the decantation washing was repeated until the conductivity of the washing water became 1 mS / cm or less. After standing for 16 hours, the sediment volume was 800 ml (the sediment volume was 0.125 kg / L). The cupric hydroxide slurry after the water washing was removed with a centrifugal dehydrator and dried at 70 ° C. for 20 hours to obtain 100 g of powdered cupric hydroxide. Table 1 shows the amounts of copper, sulfate ions, and carbonate ions contained and the apparent specific gravity.
[0015]
(Comparative Example 2)
254 g of copper sulfate pentahydrate was added to a reactor containing 2 L of water and dissolved by stirring. 143 g of 25% aqueous ammonia corresponding to NH 3 /Cu=2.1 molar ratio was added dropwise thereto over 1 hour. After completion of the dropwise addition, stirring was continued for 30 minutes. The agitation was stopped to precipitate the generated cupric hydroxide, but the reaction solution turned blue due to the formation of a copper ammine complex. The sediment volume was 500 ml (the sediment volume was 0.19 kg / L). The decantation washing was repeated until the conductivity of the washing water became 1 mS / cm or less. The cupric hydroxide slurry that had been washed with water was removed of water with a centrifugal dehydrator, and further dried at 70 ° C. for 20 hours to obtain 95 g of powdered cupric hydroxide. Table 1 shows the amounts of copper, sulfate ions, and carbonate ions contained and the apparent specific gravity.
[0016]
[Table 1]
[0017]
From Table 1, it can be seen that the cupric hydroxide obtained in Examples 1 and 2 has a lower sulfate ion content and a larger apparent specific gravity than the cupric hydroxide obtained in Comparative Examples 1 and 2. . That is, the cupric hydroxide obtained in the examples is a high quality product which is more excellent in handleability than the bulky cupric hydroxide of the comparative example and has a small content of anions.
[0018]
(Example 3)
240 g of basic nickel carbonate (nickel content 35%, SO 4 2- content 0.5%, average particle diameter 20 μm) was charged into a reactor containing 300 ml of water, mixed well with stirring, and heated to 90 ° C. 458 g of a 25% sodium hydroxide solution corresponding to a 2.0 molar ratio of NaOH / Ni was added dropwise thereto over 1 hour, and stirring was continued for 30 minutes while maintaining 90 to 100 ° C. After cooling and stopping stirring, the decantation washing was repeated until the conductivity of the washing water became 1 mS / cm or less. After standing for 16 hours, the precipitation volume was 270 ml (precipitation bulk was 0.5 kg / L). Moisture was removed from the washed nickel hydroxide slurry with a centrifugal dehydrator, followed by drying at 100 ° C. for 16 hours to obtain 135 g of powdery blue-green nickel hydroxide. Table 2 shows the amounts of nickel, sulfate ions, and carbonate ions contained and the apparent specific gravity.
[0019]
(Example 4)
240 g of basic nickel carbonate (nickel content 35%, SO 4 2- content 0.5%, average particle diameter 20 μm) was put into a reactor containing 300 ml of water, mixed well, and heated to 90 ° C. In this, 343.5 g of a 25% sodium hydroxide solution corresponding to a 1.5 molar ratio of NaOH / Ni was added dropwise over 1 hour, and stirring was continued for 30 minutes while maintaining 90 to 100 ° C. After cooling and stopping stirring, the decantation washing was repeated until the conductivity of the washing water became 1 mS / cm or less. After standing for 16 hours, the precipitation volume was 270 ml (precipitation bulk was 0.5 kg / L). Moisture was removed from the washed nickel hydroxide slurry with a centrifugal dehydrator, followed by drying at 100 ° C. for 16 hours to obtain 135 g of powdery blue-green nickel hydroxide. Table 2 shows the amounts of nickel, sulfate ions, and carbonate ions contained and the apparent specific gravity.
[0020]
(Comparative Example 3)
In a reactor, 336 g of a 25% sodium hydroxide solution corresponding to a molar ratio of NaOH / Ni = 2.1 was weighed, and water was added to 1000 ml, followed by heating to 90 ° C. 1 L of water was prepared in another container, 263 g of nickel sulfate hexahydrate was added thereto, dissolved by stirring, and added dropwise to the reactor kept at 90 ° C. in one hour. After completion of the dropwise addition, stirring was continued for 30 minutes. After cooling and stopping stirring, the decantation washing was repeated until the conductivity of the washing water became 1 mS / cm or less. The sediment volume after standing for 16 hours was 900 ml (the sediment bulk was 0.15 kg / L). Water was removed from the washed nickel hydroxide slurry using a centrifugal dehydrator, followed by drying at 100 ° C. for 16 hours to obtain 135 g of powdered nickel hydroxide. Table 2 shows the amounts of nickel, sulfate ions, and carbonate ions contained and the apparent specific gravity.
[0021]
(Comparative Example 4)
In a reactor, 336 g of a 25% sodium hydroxide solution corresponding to a molar ratio of NaOH / Ni = 2.1 was weighed, and water was added to 1000 ml, followed by heating to 90 ° C. In another container, 1 L of water was prepared, 263 g of nickel sulfate hexahydrate was added, dissolved by stirring, and added dropwise to the reactor kept at 90 ° C. in 3 hours. After completion of the dropwise addition, stirring was continued for 30 minutes. After cooling and stopping stirring, the decantation washing was repeated until the conductivity of the washing water became 1 mS / cm or less. The sediment volume after standing for 16 hours was 700 ml (the sediment bulk was 0.19 kg / L). Water was removed from the washed nickel hydroxide slurry using a centrifugal dehydrator, followed by drying at 100 ° C. for 16 hours to obtain 135 g of powdered nickel hydroxide. Table 2 shows the amounts of nickel, sulfate ions, and carbonate ions contained and the apparent specific gravity.
[0022]
[Table 2]
[0023]
From the results shown in Table 2, also in the production of nickel hydroxide, the nickel hydroxides of Examples 3 and 4 have smaller impurities and larger particle diameters than those obtained in Comparative Examples 3 and 4, and have good handleability. You can see that there is.
[0024]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain cupric hydroxide and nickel hydroxide having a small content of anions, a large particle diameter, and excellent handleability. In addition, since the manufacturing method does not use ammonia, there is an effect that the working environment is not adversely affected.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002343196A JP2004175615A (en) | 2002-11-27 | 2002-11-27 | Manufacturing method of cupric hydroxide and nickel hydroxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002343196A JP2004175615A (en) | 2002-11-27 | 2002-11-27 | Manufacturing method of cupric hydroxide and nickel hydroxide |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004175615A true JP2004175615A (en) | 2004-06-24 |
Family
ID=32705024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002343196A Pending JP2004175615A (en) | 2002-11-27 | 2002-11-27 | Manufacturing method of cupric hydroxide and nickel hydroxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004175615A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006241529A (en) * | 2005-03-03 | 2006-09-14 | Taiheiyo Kinzoku Kk | Refining method for removing sulfur and the like from nickel compound or cobalt compound, and method for producing ferronickel |
-
2002
- 2002-11-27 JP JP2002343196A patent/JP2004175615A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006241529A (en) * | 2005-03-03 | 2006-09-14 | Taiheiyo Kinzoku Kk | Refining method for removing sulfur and the like from nickel compound or cobalt compound, and method for producing ferronickel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107876799A (en) | High-tap density low specific surface area super fine silver powder and preparation method thereof | |
JPH0123414B2 (en) | ||
WO2016065950A1 (en) | Method for preparing basic zinc chloride | |
JPS59209647A (en) | Nickel base catalyst, production and application thereof | |
JP2016195981A (en) | Adsorbent and production method of adsorbent | |
JP2003503300A (en) | Method for producing cobalt hydroxide or cobalt mixed hydroxide of high density and large particle size and product produced by this method | |
JP5744940B2 (en) | Method for treating radioactive Cs-contaminated water, radioactive Cs adsorbent and method for producing the same | |
US9637806B2 (en) | Silver recovery methods and silver products produced thereby | |
CN104884193B (en) | Not solvent-laden silver synthesis and the silver-colored product thus prepared | |
JPH02145422A (en) | Production of fine copper oxide powder | |
JP2009117246A (en) | Electrolytic manganese dioxide, and manufacturing method and application thereof | |
JP5259375B2 (en) | Method for producing basic copper carbonate | |
JP2004175615A (en) | Manufacturing method of cupric hydroxide and nickel hydroxide | |
JP6080980B2 (en) | Preparation of silica-alumina composition | |
JP5992646B2 (en) | Method for producing alkali metal 9 titanate | |
JPH05319825A (en) | Production of cuprous oxide | |
JP2018104724A (en) | Production method of silver-coated copper powder | |
JP2017178749A (en) | Method for producing manganese sulfate aqueous solution and method for producing manganese oxide | |
JP2008095174A (en) | Method for producing particulate platinum powder | |
US2525242A (en) | Manufacture of cupric hydrate | |
JP2675465B2 (en) | Hydrous calcium carbonate and method for producing the same | |
JP2009269783A (en) | Silver oxide powder and its manufacturing method | |
JP2015108606A (en) | METHOD FOR TREATING RADIOACTIVE Cs-CONTAMINATED WATER | |
JPH1043609A (en) | Ion exchanger | |
JP4518844B2 (en) | Method for producing yttria sol |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051122 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060215 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070919 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080530 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080610 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080801 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20081224 |