JP2004174630A - Residual tensile stress removing and compressive stress applying method and device using ultrasonic irradiation - Google Patents

Residual tensile stress removing and compressive stress applying method and device using ultrasonic irradiation Download PDF

Info

Publication number
JP2004174630A
JP2004174630A JP2002341781A JP2002341781A JP2004174630A JP 2004174630 A JP2004174630 A JP 2004174630A JP 2002341781 A JP2002341781 A JP 2002341781A JP 2002341781 A JP2002341781 A JP 2002341781A JP 2004174630 A JP2004174630 A JP 2004174630A
Authority
JP
Japan
Prior art keywords
tensile stress
compressive stress
stress
liquid
ultrasonic vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002341781A
Other languages
Japanese (ja)
Inventor
Takehiko Watanabe
健彦 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIIGATA TLO KK
Niigata TLO Corp
Original Assignee
NIIGATA TLO KK
Niigata TLO Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIIGATA TLO KK, Niigata TLO Corp filed Critical NIIGATA TLO KK
Priority to JP2002341781A priority Critical patent/JP2004174630A/en
Publication of JP2004174630A publication Critical patent/JP2004174630A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for removing residual tensile stress without heating at high temperature and damage the surface and further applying compressive stress from the surface to a deep position for the purpose of solving the problem that in a welded part of the tank inner surface, a strong plastic worked product, or a soldered electronic circuit board, tensile stress remains from the surface to a deep position to cause deformation and breakage of material with the passage of time. <P>SOLUTION: After an object is dipped in a liquid, an ultrasonic vibrating horn is dipped and the tip thereof is approached to a portion of the object where residual tensile stress is removed and compressive stress is applied, ultrasonic vibration is applied to the object through a liquid to remove the tensile stress remaining from the surface to the deep position and further apply compressive stress. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は,たとえば,引張応力が残留するタンク内面の溶接部や熱加工や強塑性加工された製品やはんだ付された電子回路基盤等の対象物において,残留する引張応力を局部的に,あるいは,全面的に除去して,圧縮応力を付与する場合に適用できる引張残留応力除去に関する方法である。この時,対象物の表面粗さはほとんど変化せず,また,表面損傷がほとんど生じずに表面から深い位置まで圧縮応力を付与できることを特長とする方法を提供する。
【0002】
【従来の技術】
金属製品の熱加工部や溶接構造物の溶接部には引張応力が残留して,疲労強さの低下や応力腐食割れ等が生じる。また,熱加工や強塑性加工された製品の表面に引張残留応力が存在すると,表面にメッキや塗装を施して場合は,その表面で剥離等が生じることがある。従来,残留引張応力を除去するためには,応力除去焼なましやショットピーニング等が施されている。
【0003】
応力除去焼なましでは,加熱炉を用いるために大型製品や大型構造物の応力除去焼なましは不可能であり,また,高温に長時間加熱するために材質の劣化や製品機能の損傷が生じる問題がある。一方、ショットピーニングにおいてはショット(鋼球)を衝突させることにより,残留引張応力は除去することができるが,タンクのような閉空間内面の残留応力の除去は困難であったり,ショットが衝突した表面は破壊されて製品としての機能が損なわれたり,また,ショットピーニングを行う作業場の環境対策を十分に行う必要があり煩わしかった。また,薄板等にはショットピーニング法の適用は困難である。
【0004】
さらに,電子回路基盤のはんだ付部には,はんだの凝固収縮を伴う残留引張応力のために,はんだ付部の剥がれが生じたりするが,この場合の残留引張応力の除去に応力除去焼きなましやショットピーニング等の適用は不適切である。
【0005】
このような課題を解決する方法として,先行発明(特開2002−144155)が開示されている。
【0006】
【発明が解決しようとする課題】
上述のように,タンクのような閉空間内面,薄板表面,表面機能が損なわれては困る箇所,電子回路基盤のように熱を嫌う製品等や小型製品の微小箇所に残留する引張応力をショットを用いず,高温に加熱することなく除去して圧縮応力を付与する方法の開発が切望されていた。この発明の目的は,上記の問題を解決して,残留引張応力を除去して圧縮応力を付与する方法を提供することにある。
【0007】
【課題を解決するための手段】
添付図面を参照して本発明の要旨を説明する。
【0008】
本発明は,図1のように,引張応力が残留する対象物1(金属製品など)を液体(水,フロン,油など)3の中に浸漬した後,細い先端を有する超音波振動ホーン2の先端を対象物1の残留引張応力を除去して圧縮応力を付与したい箇所に接近させて,液体を介して対象物1に超音波振動を照射することによって引張残留応力を除去して圧縮応力を付与することを特徴とする方法である。
【0009】
この方法は,表面から深い位置まで圧縮応力を付与できる特長を有していて,先行発明(特開2002−144155)には開示されていない。
また,図4のように,液体3を満たした容器4内で対象物1を保持して移動させるために金網状のベルトコンベヤー6を液体3の表面から特定の深さの位置に設置して,その上に金属材料1を載せ,ベルトコンベヤー6を静止させるか,あるいは一定の速度で液中を移動させながら,容器4底部に設置した超音波振動子2によって,対象物1に超音波を照射して,対象物1の全表面の残留引張応力を除去してさらに圧縮応力を付与する方法である。
【0010】
超音波振動ホーン2の先端が細いほど,金属材料の表面から深い位置まで圧縮応力を付与できやすい。
【0011】
【発明の実施の形態】
本発明の実施の形態を,以下,図面に基づいてその作用効果を示して説明する。
【0012】
引張応力が残留する対象物(金属製品や構造物)を液体中に浸漬した後,超音波振動ホーンを液体中に挿入して,ホーン先端部を,引張応力を除去して圧縮応力を付与したい場所に近づけて液体を介して適当な時間だけ超音波振動を照射する。この時,超音波振動ホーンを二次元に走査すれば,広い面積に超音波振動を照射できる。
【0013】
例えば,図1に示したように,引張応力が残留している対象物(金属製品や構造物)1を水,フロンや油のような液体3の中に浸漬し,同時に,超音波振動ホーン2も浸漬して,引張応力を除去して圧縮応力を付与したい場所に近づけて液体3を介して適当な時間だけ超音波振動を照射する。この時,超音波振動ホーン2をXY方向に走査すれば,対象物1全体に超音波振動を照射することができる。
【0014】
また,対象物1が円筒形のような場合には,図2のように,対象物2を液体3中に浸漬して,同時に超音波振動ホーン2を浸漬して,引張応力を除去して圧縮応力を付与したい場所に近づけて液体3を介して適当な時間だけ超音波振動を照射する。この時,超音波振動ホーン2を三次元(XYZ方向)に走査すれば,対象物全体に超音波振動を照射することができる。
【0015】
超音波振動ホーンは,振動子の小さな振幅から大きな振幅を得るために,振動子に接続して振幅を増大させる作用をする。
【0016】
次に本発明の超音波振動ホーンの一例について説明する。材質としてはオーステナイトステンレス鋼を用い,ステップ形ホーンを作る場合を説明する。超音波振動ホーン先端での振幅拡大率は先端部の直径(d1)と振動子への取り付け部の直径(d2)の比の2乗,つまり,(d2/d1)×(d2/d1)で決定される。これによれば,先端部での振幅は5μmであり,先端部の直径d1は15mmでd2は50mmとなる。超音波振動ホーン先端部の直径は,対象物の作用領域の大きさによって決定するが,同時に,必要とする先端部での振幅を考慮して,振動ホーン全体の寸法を決めることになる。
【0017】
図2に示す例は,水中に浸漬された円筒状大型構造物(原子力発電設備の容器や炉心隔壁など)への適用に好適な例を示したものである。これは,円筒状内面に沿って超音波振動ホーンを回転させるものであり,図2に示す超音波振動ホーンを複数個設けると効率的である。
【0018】
図3は折り曲げられた対象物(アルミニウムやステンレス鋼の板)1の折り曲げ部の外表面の残留応力を除去する場合を示したもので,加工率の高い折り曲げ部の先端に超音波振動ホーンを当てると効率的である。
【0019】
また,図4に示したように大量の小物金属製品に流れ作業形式で適応するためには,液体3の表面から,深さD=c×(2n+1)/4fの式で計算される(ここで,cは水中での音速,n=1,2,3・・・,fは周波数)深さのDの位置に対象物1が設定されるように金網状ベルトコンベヤー5を設けることが重要である。その後,容器4の底部に設置した超音波振動子2によって,対象物1に超音波を照射して,対象物1の全表面の残留引張応力を除去してさらに圧縮応力を付与できる。この場合,超音波振動子2は容器4の外でその底面に設けてもよく,また,対象物1の上部でもよい。
【0020】
液体3を介して超音波振動を照射することによって,液体3中に生じるキャビテーション空洞の消滅に伴って発生する衝撃力によって対象物(金属製品や構造物)1の表面が圧縮変形され,引張残留応力が除去されて圧縮応力が残留するようになる。
【0021】
【実施例】
本発明の具体的な実施例について図面に基づいて説明する。
【0022】
【事例1】
図1は本発明に用いられた装置の構成図である。図1において,1は残留引張応力を除去しようとする対象物(金属材料)である。これを水,フロン,油などの液体3を満たした容器4に浸漬する。超音波振動ホーン2を液体中に浸漬して,ホーン2の先端を引張応力を除去して圧縮応力を付与したい場所に近づけて静止させ,液体3を介して適当な時間だけ超音波振動を適当な時間照射し続ける。あるいは,X−Y方向に二次元走査して超音波照射部分を広げても良い。
【0023】
以下,この発明の方法のさらに具体的な実施事例について説明する。
図1の構成図において,厚さ1mmあるいは10mm,幅40mmで長さ60mmの対象物(オーステナイトステンレス鋼板SUS304試験片)1を水中3に浸漬する。試験片の固定はどのような方法でも良く,例えば台座5の上に設置しても良い。直径15mmの先端部を持つ円柱形状の超音波振動ホーン2を水中3に浸漬して,その先端を試験片1のほぼ中央部の表面から約1mmの距離まで接近させる。この状態で,超音波振動ホーン2の先端を振動周波数19kHz,振幅26μmで適当な時間照射する。その結果,試験片1の表面に最初に残留していた約15〜30MPaの圧縮応力は超音波振動照射時間とともに増大して,30分以上の超音波振動照射で10MPa〜240MPaの圧縮応力にまで高まる。次に,超音波振動によって付与された圧縮応力が表面からどのくらいの深さまで及んでいるかを板厚が10mmの場合について調べた結果を図1−aに示す。超音波照射によって。表面から約130μm以上の深さまで,新たに圧縮応力が付与されていることがわかる。なお,入手状態では,約20MPaの圧縮応力が約10μmの深さまで残留している程度にしか過ぎなかった。
【0024】
【図1−a】

Figure 2004174630
【0025】
【事例2】
図3の構成図において,厚さ1mm,幅20mmで長さ100mmのオーステナイトステンレス鋼板SUS304をU字型に曲げた試験片1を凸部が上になるようにして水中3に浸漬する。試験片1の固定はどのような方法でも良い。直径15mmの先端部を持つ円柱形状の超音波振動ホーン2を水3中に浸漬して,その先端を試験片1のほぼ中央部の表面から約1mmの距離まで接近させる。この状態で,超音波振動ホーン2の先端を振動周波数19kHz,振幅26μmで30分間照射する。その結果,試験片をU字型に曲げたことによって,最初に残留していた約59MPaの引張応力が,30分間超音波振動を照射することによって,約113MPaの圧縮応力に変化した。
【0026】
【事例3】
図4に大量の小物金属製品に流れ作業形式で本方式を適応する構成図を示す。液体3を満たした大型の容器4内を移動する金網状のベルトコンベヤー6上に対象物(金属製品)1を設置して,容器4の底部に設置された超音波振動子2で超音波を照射する。振動周波数45kHzの超音波振動子を用いた場合は,ベルトコンベヤー4は,液体3の表面から約9cmの深さの位置に来るように設置する。この状態で,金属製品1に超音波を照射して,その超音波振動子に面した全表面の残留引張応力を除去してさらに圧縮応力を付与できることを実験で確認した。
【0027】
本発明は,対象物の移動方向に対して面の広い超音波振動子を配置してその後流側に先端が細くなっている超音波振動ホーンを配置して(または,全くその逆に)対象物1の残留応力を除去してもよい。また,一個の超音波振動ホーンだけではなく複数個の超音波振動ホーンを組合せて対象物に超音波を照射しても良いことは言うまでもない。この場合,複数個のホーンを対象物に対して一列に配置してもよく,十字状に配列してもよく,群配列してもよいことはいうまでもない。また,複数個の振動ホーンを全部同時に発振させるのではなく,時間間隔をあけて飛び飛びに発振させてもよいことはいうまでもない。また対象物が金属製品だけでなく、アクリル等のプラスチック製品にも応用出来ることは言うまでもない。
【0028】
【発明の効果】
本発明によれば,液体3中に浸漬された超音波振動ホーン2を対象物である表面の目的箇所に接近させて静止させるか,あるいは,走査しながら超音波を照射することによって,超音波を照射された対象物の材料表面の残留引張応力は除去される。さらに,表面からかなり深い内部まで圧縮応力を付与することができる。
【0029】
すなわち,本発明によって,対象物の材料表面の残留引張応力を圧縮応力に変えることもできる。これにより,金属製品や構造物を高温に長時間加熱する必要も無くなり,加熱による材料劣化の問題も無くなる。また,ショットブラスト法では困難なパイプやタンクの内面や薄板への適用も可能になる。さらに,ショットブラスト法ではショットの衝撃によって材料表面は破壊されて表面機能が喪失してしまうが,そのようなことも回避される。
【0030】
【図面の簡単な説明】
【図1】本発明の一実施例の構成図。
【図2】本発明の他の実施例の構成図
【図3】本発明の他の実施例の構成図
【図4】本発明の他の実施例の構成図
【符号の説明】
1 対象物(金属製品,プラスチック製品,構造物,試験片)
2 超音波振動ホーンあるいは超音波振動子
3 液体(水,フロン,油など)
4 容器
5 台
6 ベルトコンベヤー[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for reducing the residual tensile stress locally or in an object such as a welded portion on the inner surface of a tank where a residual tensile stress remains, a product subjected to thermal processing or high plasticity processing, or a soldered electronic circuit board. This is a method for removing residual tensile stress that can be applied when compressive stress is applied by removing the entire surface. At this time, there is provided a method characterized in that the surface roughness of the object hardly changes, and a compressive stress can be applied from a surface to a deep position with almost no surface damage.
[0002]
[Prior art]
Tensile stress remains in a heat-processed portion of a metal product or a welded portion of a welded structure, resulting in a decrease in fatigue strength, stress corrosion cracking, and the like. In addition, if there is a tensile residual stress on the surface of a product subjected to thermal processing or strong plastic processing, if plating or painting is applied to the surface, peeling or the like may occur on the surface. Conventionally, in order to remove residual tensile stress, stress relief annealing, shot peening, or the like has been performed.
[0003]
In stress relief annealing, large products and large structures cannot be subjected to stress relief annealing because of the use of a heating furnace. In addition, deterioration of materials and damage to product functions due to heating at high temperatures for long periods of time is not possible. There are problems that arise. On the other hand, in shot peening, the residual tensile stress can be removed by colliding the shot (steel ball), but it is difficult to remove the residual stress on the inner surface of a closed space such as a tank, or the shot collides. The surface was destroyed and the function as a product was impaired, and it was necessary to take sufficient environmental measures in the workplace where shot peening was performed, which was bothersome. Also, it is difficult to apply the shot peening method to a thin plate or the like.
[0004]
Furthermore, in the soldered part of the electronic circuit board, the soldered part may peel off due to residual tensile stress accompanying solidification shrinkage of the solder. In this case, stress relief annealing or shot Application of peening or the like is inappropriate.
[0005]
As a method for solving such a problem, a prior invention (Japanese Patent Application Laid-Open No. 2002-144155) is disclosed.
[0006]
[Problems to be solved by the invention]
As described above, the tensile stress remaining on the inner surface of a closed space such as a tank, the surface of a thin plate, a part where surface function is not expected to be impaired, or a small part of a product that dislikes heat such as an electronic circuit board or a small product is shot. There has been a strong demand for the development of a method of applying a compressive stress by removing the material without heating it to a high temperature without using it. An object of the present invention is to solve the above-mentioned problems and to provide a method for removing residual tensile stress and applying compressive stress.
[0007]
[Means for Solving the Problems]
The gist of the present invention will be described with reference to the accompanying drawings.
[0008]
According to the present invention, as shown in FIG. 1, after an object 1 (metal product or the like) having residual tensile stress is immersed in a liquid (water, chlorofluorocarbon, oil, etc.) 3, an ultrasonic vibration horn 2 having a thin tip is used. Of the object 1 to remove the residual tensile stress of the object 1 and approach the portion where the compressive stress is to be applied, and irradiate the object 1 with ultrasonic vibrations via a liquid to remove the residual tensile stress and compressive stress. Is provided.
[0009]
This method has a feature that a compressive stress can be applied from a surface to a deep position, and is not disclosed in the prior invention (Japanese Patent Application Laid-Open No. 2002-144155).
As shown in FIG. 4, a wire mesh belt conveyor 6 is installed at a position at a specific depth from the surface of the liquid 3 in order to hold and move the object 1 in the container 4 filled with the liquid 3. The metal material 1 is placed thereon, and the belt conveyor 6 is stopped or the ultrasonic wave is applied to the object 1 by the ultrasonic vibrator 2 installed at the bottom of the container 4 while moving in the liquid at a constant speed. Irradiation removes the residual tensile stress on the entire surface of the object 1 to give a further compressive stress.
[0010]
The thinner the tip of the ultrasonic vibration horn 2, the easier it is to apply a compressive stress from the surface of the metal material to a deep position.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to the drawings, showing its operational effects.
[0012]
After immersing an object (metal product or structure) with residual tensile stress in a liquid, insert an ultrasonic vibration horn into the liquid and remove the tensile stress at the horn tip to apply compressive stress. Ultrasonic vibration is applied through the liquid for an appropriate time while approaching the place. At this time, if the ultrasonic vibration horn is scanned two-dimensionally, a large area can be irradiated with ultrasonic vibration.
[0013]
For example, as shown in FIG. 1, an object (metal product or structure) 1 having a residual tensile stress is immersed in a liquid 3 such as water, Freon or oil, and at the same time, an ultrasonic vibration horn is used. 2 is also immersed, and ultrasonic vibration is irradiated through the liquid 3 for an appropriate time while approaching a place where tensile stress is to be removed and compressive stress is to be applied. At this time, if the ultrasonic vibration horn 2 is scanned in the X and Y directions, the entire object 1 can be irradiated with ultrasonic vibration.
[0014]
When the object 1 has a cylindrical shape, as shown in FIG. 2, the object 2 is immersed in the liquid 3 and simultaneously the ultrasonic vibration horn 2 is immersed to remove the tensile stress. Ultrasonic vibration is radiated through the liquid 3 for an appropriate time while approaching the place where compressive stress is to be applied. At this time, if the ultrasonic vibration horn 2 is scanned three-dimensionally (XYZ directions), the entire object can be irradiated with ultrasonic vibration.
[0015]
The ultrasonic vibration horn is connected to the vibrator to increase the amplitude in order to obtain a large amplitude from a small amplitude of the vibrator.
[0016]
Next, an example of the ultrasonic vibration horn of the present invention will be described. The case where austenitic stainless steel is used as the material and a step-type horn is made will be described. The amplitude expansion rate at the tip of the ultrasonic vibration horn is the square of the ratio of the diameter (d1) of the tip to the diameter (d2) of the portion attached to the vibrator, that is, (d2 / d1) × (d2 / d1). It is determined. According to this, the amplitude at the tip is 5 μm, the diameter d1 at the tip is 15 mm, and d2 is 50 mm. The diameter of the tip of the ultrasonic vibration horn is determined according to the size of the working area of the object, but at the same time, the dimensions of the entire vibration horn are determined in consideration of the required amplitude at the tip.
[0017]
The example shown in FIG. 2 is an example suitable for application to a large cylindrical structure immersed in water (such as a container of a nuclear power plant or a core bulkhead). This is to rotate the ultrasonic vibration horn along the cylindrical inner surface, and it is efficient to provide a plurality of ultrasonic vibration horns shown in FIG.
[0018]
FIG. 3 shows a case where the residual stress on the outer surface of the bent portion of the bent object (aluminum or stainless steel plate) 1 is removed, and an ultrasonic vibration horn is attached to the tip of the bent portion having a high processing rate. It is efficient to hit.
[0019]
Further, as shown in FIG. 4, in order to adapt to a large number of small metal products in a flow operation mode, the depth D is calculated from the surface of the liquid 3 by an equation of D = c × (2n + 1) / 4f (here, Where c is the velocity of sound in water, n = 1, 2, 3,..., F is the frequency) It is important to provide the wire mesh belt conveyor 5 so that the object 1 is set at the position D of the depth. It is. Thereafter, the object 1 is irradiated with ultrasonic waves by the ultrasonic vibrator 2 installed at the bottom of the container 4 to remove the residual tensile stress on the entire surface of the object 1 and further apply a compressive stress. In this case, the ultrasonic transducer 2 may be provided on the bottom surface outside the container 4, or may be provided above the object 1.
[0020]
By irradiating the ultrasonic vibrations through the liquid 3, the surface of the object (metal product or structure) 1 is compressed and deformed by the impact force generated due to the disappearance of the cavitation cavity generated in the liquid 3, and the tensile residual The stress is removed and the compressive stress remains.
[0021]
【Example】
A specific embodiment of the present invention will be described with reference to the drawings.
[0022]
[Case 1]
FIG. 1 is a configuration diagram of an apparatus used in the present invention. In FIG. 1, reference numeral 1 denotes an object (metal material) from which residual tensile stress is to be removed. This is immersed in a container 4 filled with a liquid 3 such as water, Freon or oil. The ultrasonic vibration horn 2 is immersed in a liquid, the tip of the horn 2 is stopped by bringing the tip of the horn 2 close to the place where the compressive stress is to be applied by removing the tensile stress, and the ultrasonic vibration is appropriately applied through the liquid 3 for an appropriate time. For a long time. Alternatively, two-dimensional scanning may be performed in the X-Y direction to widen the ultrasonic irradiation part.
[0023]
Hereinafter, more specific embodiments of the method of the present invention will be described.
In the configuration diagram of FIG. 1, an object (austenitic stainless steel plate SUS304 test piece) 1 having a thickness of 1 mm or 10 mm, a width of 40 mm and a length of 60 mm is immersed in water 3. The test piece may be fixed by any method, for example, it may be installed on the pedestal 5. A cylindrical ultrasonic vibration horn 2 having a tip with a diameter of 15 mm is immersed in water 3, and the tip is brought close to a distance of about 1 mm from the surface of the center of the test piece 1. In this state, the tip of the ultrasonic vibration horn 2 is irradiated at a vibration frequency of 19 kHz and an amplitude of 26 μm for an appropriate time. As a result, the compressive stress of about 15 to 30 MPa initially remaining on the surface of the test piece 1 increases with the ultrasonic vibration irradiation time, and reaches 10 MPa to 240 MPa by ultrasonic vibration irradiation for 30 minutes or more. Increase. Next, FIG. 1A shows the result of examining how deep the compressive stress given by the ultrasonic vibration extends from the surface when the plate thickness is 10 mm. By ultrasonic irradiation. It can be seen that a new compressive stress is applied to a depth of about 130 μm or more from the surface. In the obtained state, the compressive stress of about 20 MPa remained only to a depth of about 10 μm.
[0024]
FIG. 1-a
Figure 2004174630
[0025]
[Case 2]
3, a test piece 1 obtained by bending an austenitic stainless steel plate SUS304 having a thickness of 1 mm, a width of 20 mm, and a length of 100 mm into a U-shape is immersed in water 3 with its convex portion facing upward. The test piece 1 may be fixed by any method. A cylindrical ultrasonic vibration horn 2 having a tip with a diameter of 15 mm is immersed in water 3, and the tip is brought close to a distance of about 1 mm from the surface of the center of the test piece 1. In this state, the tip of the ultrasonic vibration horn 2 is irradiated with a vibration frequency of 19 kHz and an amplitude of 26 μm for 30 minutes. As a result, when the test piece was bent in a U-shape, the tensile stress of about 59 MPa, which was initially left, was changed to a compressive stress of about 113 MPa by irradiating ultrasonic vibration for 30 minutes.
[0026]
[Case 3]
FIG. 4 shows a configuration diagram in which the present method is applied to a large number of small metal products in a work flow format. An object (metal product) 1 is set on a wire mesh belt conveyor 6 moving in a large container 4 filled with the liquid 3, and ultrasonic waves are transmitted by an ultrasonic vibrator 2 installed at the bottom of the container 4. Irradiate. When an ultrasonic transducer having a vibration frequency of 45 kHz is used, the belt conveyor 4 is installed so as to be at a position at a depth of about 9 cm from the surface of the liquid 3. In this state, it was confirmed by experiments that the metal product 1 was irradiated with ultrasonic waves to remove residual tensile stress on the entire surface facing the ultrasonic vibrator and to apply compressive stress.
[0027]
According to the present invention, an ultrasonic vibrator having a wide surface in the moving direction of an object is disposed, and an ultrasonic vibrating horn having a narrow end is disposed on the downstream side (or vice versa). The residual stress of the object 1 may be removed. Needless to say, not only one ultrasonic vibration horn but also a plurality of ultrasonic vibration horns may be combined to irradiate an ultrasonic wave to an object. In this case, it goes without saying that a plurality of horns may be arranged in a line with respect to the object, arranged in a cross shape, or arranged in a group. Needless to say, a plurality of vibration horns may not be oscillated all at the same time, but may be oscillated discretely at intervals of time. Needless to say, the object can be applied not only to metal products but also to plastic products such as acrylic.
[0028]
【The invention's effect】
According to the present invention, the ultrasonic vibration horn 2 immersed in the liquid 3 is brought close to a target point on the surface as an object and is stopped, or the ultrasonic vibration horn 2 is irradiated with the ultrasonic wave while scanning. The residual tensile stress on the material surface of the object irradiated with is removed. Further, a compressive stress can be applied from the surface to a considerably deep inside.
[0029]
That is, according to the present invention, the residual tensile stress on the material surface of the object can be changed to the compressive stress. This eliminates the need to heat metal products and structures to a high temperature for a long time, and eliminates the problem of material deterioration due to heating. In addition, it can be applied to the inner surface and thin plate of pipes and tanks, which are difficult with the shot blast method. Further, in the shot blasting method, the material surface is destroyed by the impact of the shot and the surface function is lost, but such a case is also avoided.
[0030]
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an embodiment of the present invention.
FIG. 2 is a block diagram of another embodiment of the present invention. FIG. 3 is a block diagram of another embodiment of the present invention. FIG. 4 is a block diagram of another embodiment of the present invention.
1. Objects (metal products, plastic products, structures, test specimens)
2 Ultrasonic vibration horn or ultrasonic transducer 3 Liquid (water, Freon, oil, etc.)
4 Containers 5 units 6 Belt conveyor

Claims (2)

液体中に対象物を浸漬し,対象物に超音波振動ホーンを近づけて静止させるか,あるいは走査しながら,液体中で対象物に超音波を照射することによって,対象物の表面及び内部の残留引張応力を除去して圧縮応力を付与する方法及びその装置。By immersing the object in the liquid and bringing the ultrasonic vibration horn close to the object and stopping, or by irradiating the object with ultrasonic waves in the liquid while scanning, the residual on the surface and inside of the object A method and apparatus for applying a compressive stress by removing a tensile stress. 液体を入れた容器内に対象物を乗せるコンベヤーを配設し,移動する対象物に超音波振動子を近づけて対象物に超音波を照射して,対象物の残留引張応力を除去して圧縮応力を付与する方法及びその装置。A conveyer for placing an object in a container containing liquid is placed, an ultrasonic transducer is brought close to the moving object, and the object is irradiated with ultrasonic waves to remove the residual tensile stress of the object and compress it. Method and apparatus for applying stress.
JP2002341781A 2002-11-26 2002-11-26 Residual tensile stress removing and compressive stress applying method and device using ultrasonic irradiation Pending JP2004174630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002341781A JP2004174630A (en) 2002-11-26 2002-11-26 Residual tensile stress removing and compressive stress applying method and device using ultrasonic irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002341781A JP2004174630A (en) 2002-11-26 2002-11-26 Residual tensile stress removing and compressive stress applying method and device using ultrasonic irradiation

Publications (1)

Publication Number Publication Date
JP2004174630A true JP2004174630A (en) 2004-06-24

Family

ID=32704010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002341781A Pending JP2004174630A (en) 2002-11-26 2002-11-26 Residual tensile stress removing and compressive stress applying method and device using ultrasonic irradiation

Country Status (1)

Country Link
JP (1) JP2004174630A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006102871A (en) * 2004-10-05 2006-04-20 Toshiba Plant Systems & Services Corp Residual stress part reduction method and residual stress part reduction device
CN103776906A (en) * 2012-10-23 2014-05-07 财团法人工业技术研究院 Ultrasonic resonance guided wave device
JP2017022126A (en) * 2013-07-22 2017-01-26 富士フイルム株式会社 Manufacturing method of anisotropically conductive member
KR102079542B1 (en) * 2018-11-02 2020-02-20 단국대학교 산학협력단 Apparatus for ultrasonic peening
KR20200051088A (en) * 2018-11-02 2020-05-13 단국대학교 산학협력단 Apparatus for ultrasonic peening
CN112914686A (en) * 2021-03-26 2021-06-08 北京水木天蓬医疗技术有限公司 Ultrasonic osteotome and robot-assisted ultrasonic bone power system
CN115058585A (en) * 2022-06-28 2022-09-16 北京理工大学 Ultrasonic cavitation impact reduction and homogenization method for residual stress of complex curved surface component

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006102871A (en) * 2004-10-05 2006-04-20 Toshiba Plant Systems & Services Corp Residual stress part reduction method and residual stress part reduction device
JP4578918B2 (en) * 2004-10-05 2010-11-10 東芝プラントシステム株式会社 Residual stress portion reducing method and residual stress portion reducing device
CN103776906A (en) * 2012-10-23 2014-05-07 财团法人工业技术研究院 Ultrasonic resonance guided wave device
JP2017022126A (en) * 2013-07-22 2017-01-26 富士フイルム株式会社 Manufacturing method of anisotropically conductive member
KR102079542B1 (en) * 2018-11-02 2020-02-20 단국대학교 산학협력단 Apparatus for ultrasonic peening
KR20200051088A (en) * 2018-11-02 2020-05-13 단국대학교 산학협력단 Apparatus for ultrasonic peening
KR102111385B1 (en) 2018-11-02 2020-05-18 단국대학교 산학협력단 Apparatus for ultrasonic peening
CN112914686A (en) * 2021-03-26 2021-06-08 北京水木天蓬医疗技术有限公司 Ultrasonic osteotome and robot-assisted ultrasonic bone power system
CN115058585A (en) * 2022-06-28 2022-09-16 北京理工大学 Ultrasonic cavitation impact reduction and homogenization method for residual stress of complex curved surface component

Similar Documents

Publication Publication Date Title
US6993948B2 (en) Methods for altering residual stresses using mechanically induced liquid cavitation
US9050642B2 (en) Method and apparatus for surface enhancement
JP2005002475A5 (en)
US20140263213A1 (en) Ultrasound-assisted water-confined laser micromachining
JPH05195052A (en) Water jet peening method and device therefor
JP2004174630A (en) Residual tensile stress removing and compressive stress applying method and device using ultrasonic irradiation
CN110172566A (en) A kind of device and method cut down and be homogenized for complex component residual stress
Kunaporn et al. Mathematical modeling of ultra-high-pressure waterjet peening
EP2248630A1 (en) Shot peening device and oscillator for shot peening
JP2002144155A (en) Method of removing residual tensile stress by application of ultrasonic vibration in liquid
Lehocka et al. Surface integrity evaluation of brass CW614N after impact of acoustically excited pulsating water jet
Tan et al. Developing high intensity ultrasonic cleaning (HIUC) for post-processing additively manufactured metal components
GB2449759A (en) Methods for cleaning generator coils
US3993236A (en) Methods and apparatus for soldering
CA3138777A1 (en) A system and a method for cleaning a device
RU2394919C1 (en) Procedure for ultrasonic treatment of welded metal structures
ATE251506T1 (en) METHOD FOR CLEANING OR CORESING A CASTING
JPH05239674A (en) Method and device for pickling edge part of sheet, especially hot-rolled sheet immersed in reactive solution
JP4578918B2 (en) Residual stress portion reducing method and residual stress portion reducing device
JP4892722B2 (en) Coating apparatus and processing method thereof
JP4460981B2 (en) Dimple processing method and dimple processing apparatus
RU2447162C2 (en) Method of ultrasonic processing of welded metal structures
JP2004010995A (en) Peeling method and peeling apparatus
US20090133712A1 (en) Methods for cleaning generator coils
Tomita et al. Cavitation phenomena in extracorporeal microexplosion lithotripsy