JP2004174557A - Circularity correcting method of thin-walled cylinder, circularity-corrected thin-walled cylinder, and thin-walled cylinder having surface layer material - Google Patents

Circularity correcting method of thin-walled cylinder, circularity-corrected thin-walled cylinder, and thin-walled cylinder having surface layer material Download PDF

Info

Publication number
JP2004174557A
JP2004174557A JP2002343895A JP2002343895A JP2004174557A JP 2004174557 A JP2004174557 A JP 2004174557A JP 2002343895 A JP2002343895 A JP 2002343895A JP 2002343895 A JP2002343895 A JP 2002343895A JP 2004174557 A JP2004174557 A JP 2004174557A
Authority
JP
Japan
Prior art keywords
thin
cylinder
walled cylinder
walled
roundness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002343895A
Other languages
Japanese (ja)
Inventor
Masaaki Takahashi
正明 高橋
Junji Hamana
純二 浜名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Canon Electronics Inc
Original Assignee
Canon Inc
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc, Canon Electronics Inc filed Critical Canon Inc
Priority to JP2002343895A priority Critical patent/JP2004174557A/en
Publication of JP2004174557A publication Critical patent/JP2004174557A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a circularity correcting method for obtaining a thin-walled cylinder of less dispersion of film thickness, and a circularity-corrected thin-walled cylinder, and the thin-walled cylinder having a surface layer material thereof, and to provide a fixing belt and a carrying unit of an image heating and fixing device using the thin-walled cylinder with the surface layer material. <P>SOLUTION: A thin-walled cylinder is expanded to perform circularity correction by inserting an extended tube core in the thin-walled cylinder, and thermally swelling the extended tube core in the axial direction and the circumferential direction. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、精密部品を高精度の位置精度を保証して所定位置に搬送するのに用いる搬送用ベルトなどの、管状、環状、筒状、リング状及びベルト状の薄肉円筒形状物の真円矯正法並びにその方法により真円矯正された薄肉円筒、さらには、表層材付真円矯正された薄肉円筒に関し、さらに詳しくは、複写機、レーザービームプリンター及びファクシミリ等の電子写真装置に配設される像加熱定着装置の定着ベルトに関する。
【0002】
【従来の技術】
従来、特許文献1に記載されるように、円筒形状を有する物品の真円度を矯正する方法としては、円筒の引き抜き、加工時に真円度の高いパイプに仕上げる方法が開示されている。また、特許文献2に記載されるように、弾性体の軸方向に荷重を加えたとき、円周方向への変形力を利用して拡管し、配管端部を真円に矯正する方法が述べられている。
【0003】
【特許文献1】
特開平9−103819号公報
【特許文献2】
特公昭63−31287号公報
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来例のうち、特許文献1記載の方法では、高い真円度を有する円筒の製造には適しているが、その後の変形や別法で製造された円筒の真円度の矯正には適用できない場合がある。
また、特許文献2記載の方法のように弾性体の周方向の変形力を用いる方法は、弾性体が球状、又は、丈の短い円柱状のように限られた範囲の真円度矯正には有効な方法と考えられる。しかしながら、長い筒の真円度矯正では、矯正しようとする円柱状弾性体が、軸方向の荷重により、周方向に均一に変形しない場合や弾性体の軸が歪むことにより、円筒全域に渡る真円度矯正が、困難な場合がある。事実、発明の名称に「配管端部の真円矯正法」と、述べられているように、配管端部に限られた矯正法であって円筒全域に渡る真円矯正に適用するのは不可能な場合がある。
【0005】
一般的に電鋳法により製造される薄肉円筒は(以後、電鋳薄肉円筒)、メッキ浴中に置かれたSUS材などで作られた円筒状母型に析出させ、その後、母型から脱型することで得られる。
このとき得られた電鋳薄肉円筒は、電鋳製造時の内部歪や母型から剥がれるときの状態により、また、その後の取り扱い等により変形する場合があった。
このような変形した薄肉円筒を用いたとき、物品の精密搬送は不利となることがあった。
【0006】
さらに、電鋳薄肉円筒に樹脂材料よりなる弾性層などの表層材を塗布形成しようとするとき、特に、リングコート法のように、ノズルと円筒との間隔により、形成される膜の厚みが影響を受ける場合、円筒の歪みが原因となって表面に形成される膜厚のばらつきを引き起こす。そのような膜厚ばらつきのある電鋳薄肉円筒では、物品の精密搬送が困難となり、さらには、それを用いた像加熱定着装置の定着ベルトにおいては、搬送への悪影響のみならず、膜厚差により熱伝導のばらつきが生じるため、1シート内で定着状態が異なる電子写真像となる場合があった。
【0007】
本発明は、上記従来例の問題点を解消し、薄肉円筒の真円矯正法、真円矯正された薄肉円筒及び膜厚ばらつきの小さい表層材を形成した薄肉円筒を提供すること、また、特に前記表層材付薄肉円筒を用いた、像加熱定着装置の定着ベルト及び搬送ユニットなどを提供することを主たる目的とする。
【0008】
【課題を解決するための手段】
本発明は、真円度0.015mm以下に真円矯正された薄肉円筒に関するものである。
本発明は、薄肉円筒に拡管中子を挿入し、該拡管中子を熱的に軸方向および円周方向に膨張させることにより薄肉円筒を拡管し、真円矯正を行うことを特徴とする薄肉円筒の真円矯正法に関するものである。
本発明は更に、前記薄肉円筒の構成部材のうち、真円矯正時に前記拡管中子に接する部材の熱膨張率α1と、前記拡管中子の熱膨張率α2との関係が、α1<α2であることを特徴とする薄肉円筒の真円矯正法に関するものである。
【0009】
本発明は更に、前記薄肉円筒が金属であることを特徴とする薄肉円筒の真円矯正法に関するものである。
本発明は更に、前記薄肉円筒が電鋳法により形成されていることを特徴とする薄肉円筒の真円矯正法に関するものである。
本発明は更に、前記真円矯正された薄肉円筒表面に、少なくとも一層の樹脂材料よりなる表層材を形成することを特徴とする薄肉円筒の真円矯正法に関するものである。
本発明は更に、前記表層材と薄肉円筒表面との間に、カップリング剤の塗布および焼き付けを行うことを特徴とする薄肉円筒の真円矯正法に関するものである。
【0010】
本発明は更に、前記カップリング剤の焼き付けを、100℃以上の温度で行うことを特徴とする薄肉円筒の真円矯正法に関するものである。
本発明は更に、前記薄肉円筒表面へのカップリング剤の焼き付けが、前記拡管中子を薄肉円筒に挿入し、熱的に拡管中子が軸方向および円周方向に膨張する際に行われることを特徴とする薄肉円筒の真円矯正法に関するものである。
本発明は更に、前記真円矯正を行った薄肉円筒表面に形成される表層材が、リングコート法により塗布されたことを特徴とする薄肉円筒の真円矯正法に関するものである。
【0011】
本発明は更に、前記真円矯正法により真円矯正された薄肉円筒に関するものである。
本発明は更に、前記真円矯正法により真円矯正された薄肉円筒上に表層材を形成したことを特徴とする表層材付薄肉円筒に関するものである。
本発明は更に、前記表層材付薄肉円筒が、像加熱定着装置の定着ベルトであることを特徴とする表層材付薄肉円筒に関するものである。
【0012】
【発明の実施の形態】
本発明は真円度0.015mm以下に真円矯正された薄肉円筒に関するものである。ここで、真円度の測定は薄肉円筒の外径を、任意の点を起点として軸方向に12点測定し、これらの測定位置から円周方向(任意方向)に90°ずらした位置で更に軸方向に12点測定した合計24点の外径の標準偏差を測定したものである。より好ましくは、真円度0.012mm以下、更に好ましくは、真円度0.010mm以下に真円矯正された薄肉円筒であるのが良い。
【0013】
本発明は、薄肉円筒に拡管中子を挿入し、拡管中子を熱的に軸方向および円周方向に膨張させることにより薄肉円筒を拡管し、真円矯正を行うことを特徴とする薄肉円筒の真円矯正法に関するものである。図1は薄肉円筒内に拡管中子が挿入された状態を表した模式図である。薄肉円筒2の中に拡管中子1が挿入されている。薄肉円筒への拡管中子の挿入は、拡管中子の軸と薄肉円筒が一致する位置に行なえば、効果的に真円矯正を行うことができ、好ましい。
【0014】
図8及び図9には、それぞれ断面を真円に矯正しつつ、薄肉円筒をクラウン形状及び逆クラウン形状に矯正することのできる、拡管中子の形状を示す。ここで、クラウン形状とは軸方向の中央部を太く、両端部を細くした形状であり、逆クラウン形状とは軸方向の中央部を細く、両端部を太くした形状である。逆クラウン形状の電鋳では、母型からの脱型が非常に困難であるが、電鋳で直管を形成し、その後、図9のような逆クラウン型拡管中子により熱的に拡管矯正することにより、電鋳直管を容易に逆クラウン形状に矯正することができる。図9の逆クラウン形状の拡管中子の中心部には、割れ目があり2つに分割することができる。中心部の最大径部が、薄肉円筒に内接している。
【0015】
また、薄肉円筒の内径(R1)と拡管中子の最大外径(R2)の差R1−R2は、−0.050〜0.050mmであるのが好ましく、より好ましくは0.030〜0.030mm、更に好ましくは−0.020〜0.020mmであるのが良い。また、拡管中子は膨張させて真円矯正後、冷却して薄肉円筒から抜き出すのが良い。より好ましくは、拡管中子の冷却温度は室温であるのが良い。R2−R1が負の値のときは、薄肉円筒を熱的に膨張、あるいは空気圧等により膨張させることにより、容易に拡管中子を挿入できる。
【0016】
本発明における薄肉円筒とは、大略500μm以下の肉厚の円筒形状を有するものが好ましく、より好ましくは200μm以下、更に好ましくは100μm以下であるのが良い。薄肉円筒は、電鋳や引き抜き、深絞り及び切削加工等により製造されたシームレス管であって、シート状膜の端部を接続して形成したループ状、環状、管状、リング状、筒状、輪状及び中空状等を含むものをいい、その材質は、金属、セラミックス及びプラスチックのいずれであっても良く、これらの材料が積層されていても、複合化されていてもよい。その中でも、本発明の真円矯正に好適なのは、金属であって、電鋳法により製造された薄肉円筒であることが好ましい。金属としては、Ni及びその合金を用いることが好ましい。また、拡管中子の材質としては、Al、Mg、Sn、Pb及びその合金並びに樹脂材料を用いることが好ましい。好ましくは、薄肉円筒はニッケル電鋳円筒であることが好ましい。
【0017】
また、薄肉円筒に挿入された拡管中子を熱的に膨張させることにより、薄肉円筒を円周方向及び軸方向に変形させ、真円矯正を行うため、拡管中子と薄肉円筒を熱的に遮蔽しておき、拡管中子のみを熱膨張させることも可能であるが、薄肉円筒よりも熱膨張率の大きな拡管中子を薄肉円筒に挿入しておき、薄肉円筒と拡管中子をともに加熱する方が、設備も簡便であり好ましい。
【0018】
ここで、薄肉円筒の構成部材のうち、真円矯正時に拡管中子に接する部材の熱膨張率α1と拡管中子の熱膨張率α2が、α1<α2の関係にあることが好ましい。ここで、薄肉円筒が多層から構成されているときのα1は、薄肉円筒の構成部材のうち最も内層を構成し、真円矯正時に拡管中子に接する部材の熱膨張率を表す。また、本発明において熱膨張率とは線膨張率を表す。熱膨張率が上記のような関係にある材質のものを薄肉円筒と拡管中子に用いることによって、良好に真円矯正を行うことができる。好ましくは、熱膨張率差α2−α1は0.5×10−5(K−1)以上であるのが良く、より好ましくは0.8×10−5(K−1)、更に好ましくは1.0×10−5(K−1)であるのが良い。
【0019】
また、真円矯正時の加熱温度は、薄肉円筒と拡管中子の熱膨張率差や、薄肉円筒と拡管中子との隙間幅、薄肉円筒の耐熱性を考慮して最適化されるが、100℃以上が好ましく、150℃以上がより好ましく、200℃以上が更に好ましい。また、500℃以下が好ましく、400℃以下がより好ましく、300℃以下が更に好ましい。また、拡管中子は、熱膨張率が大きく加工性が良い材料であって、熱的に均一変形を起す材料であれば良く、Al、Mg、Sn、Zn、Pb等の金属及びそれらを成分とする合金並びに樹脂材料がそれに当たる。
【0020】
本発明の真円矯正された薄肉円筒表面上に少なくとも一層の表層材を形成することによって、例えば、耐摩耗性に優れ、帯電特性に優れた薄肉円筒を得ることができる。表層材は必要に応じて2層以上を積層させても良い。表層材には、ポリアミド樹脂、フッ素樹脂、ポリウレタン樹脂、シリコーン樹脂、ポリエステル樹脂、フェノール樹脂、イミド樹脂、オレフィン樹脂及びシリコーンゴム等を使用することができるが、これらに限定されるわけではない。好ましくは、シリコーンゴムを使用するのが良い。
【0021】
また、薄肉円筒表面と表層材との間にカップリング剤の塗布および焼き付けを行うことによって、薄肉円筒と表層材との結合をより強固にすることができる。カップリング剤としては、例えばシラン系カップリング剤、チタネート系カップリング剤及びアルミネート系カップリング剤を用いることができるが、これらに限定されるわけではない。カップリング剤の焼き付けは100℃以上が好ましく、150℃以上がより好ましく、200℃以上が更に好ましい。また、400℃以下が好ましく、350℃以下がより好ましく、300℃以下が更に好ましい。
【0022】
このような、真円矯正処理は処理だけを単独で行っても良いが、真円矯正された薄肉円筒上に表層材を形成する場合のように、薄肉円筒表面と表層材を結びつけるカップリング剤の薄肉円筒表面への焼き付けと同時に行うことにより、処理工程の短縮ができ好ましい。本発明により真円矯正された薄肉円筒上に塗布される表層材の形成法は、ディップコート法、スピンコート法、スプレーコート法及びリングコート法等のうち、いずれの塗布法でも採用できる。図4は、リングコート法による薄肉円筒への表層材の塗布方法を表したものである。ニッケル電鋳6は、テーパー状ホルダー7a及び7bに両端部を固定され、表層材5を、リング状ノズル8からの表層材の吐出量(吐出機構は不図示)やリング状ノズル8とニッケル電鋳との相対速度(駆動機構は不図示)を調節することにより、ニッケル電鋳製薄肉円筒表面に塗布することができる。
【0023】
本発明による真円矯正した薄肉円筒への表層材形成においては、リング状ノズルと円筒表面との距離を均一に保つことができ、表層材を一定膜厚に形成ができるため、リングコート法を用いるのが好ましい。薄肉円筒上の外周面に沿って、表層材を無溶剤で効率よく、かつ、一定膜厚で形成する場合、リング状ノズルと円筒表面との距離を変化させることにより表層材の膜厚が変化する。
【0024】
前記真円矯正法により真円矯正した薄肉円筒は、複写機、レーザービームプリンター及びファクシミリ等の電子写真装置に配設される像加熱定着装置の定着ベルトとして使用することができる。図7は本発明の定着ベルトを使用する像加熱定着装置の説明図である。図7において、符号11は本発明による定着ベルトである。12は定着ベルト11の加熱ヒーターであり、ヒーター12はヒーターホルダー13に保持されている。14は、ステ−部材であり、略U字型に形成されている。定着ベルト11はステ−部材14とヒーターホルダー13の外周面に嵌め込むように組み込まれている。15は加圧ローラーであり不図示の駆動手段により駆動される。
【0025】
像加熱定着装置は図示のように、定着ベルト11と加圧ローラー15との間に、画像を形成するトナーを担持した紙などの担持体16を搬送挿通させて、ヒーターから受けた定着ベルトへの熱を、表層材を介してトナーへ伝達するとともに、トナーを紙の上に加圧・加熱することにより定着させる。
【0026】
【実施例】
以下実施例によって本発明を更に詳細に説明するが、これらは、本発明を何ら限定するものではない。
「ニッケル電鋳製薄肉円筒の作成」
外径24.00mm、のSUS製母型をメッキ浴中に入れ、肉厚50μmのニッケル電鋳を析出させ、メッキ浴より取り出した後、母型より脱型した。それらの両端部を切りそろえ280mmの長さのニッケル電鋳製薄肉円筒3本を得た。
【0027】
(実施例1及び比較例1) 薄肉円筒の真円矯正
先に作成したニッケル電鋳薄肉円筒1本を、両端を架台に載せレーザー測長機(キーエンス社製)により測長距離260mm、測定ピッチ20mmで外径測定した結果を比較例1として、図3の4a及び4bに示す(真円度0.016mm)。ここでの添字a及びbは、薄肉円筒表面の任意位置(a)での外径測定結果と、(a)から円周方向(任意方向)に90°ずらした位置(b)での外径測定結果を表す。
【0028】
次に本実施例1として、図1に示すように比較例1に使用したのと同じニッケル電鋳製薄肉円筒1に、外径23.98mmのアルミ製拡管中子(円筒形状)2を挿入して、220℃の炉に入れて30分キープの後、室温に戻し、アルミ製拡管中子2を取り去り、比較例1と同様の条件で同一位置をレーザー測長機により、本実施例1による外径測定を行った結果を、図2の3a及び3bに示す(真円度0.010mm)。この測定は、比較例1と同じ位置で行っている。
【0029】
なお、このとき、拡管中子を構成するアルミの熱膨張率は2.4×10−1(K−1)、薄肉円筒を構成するニッケル電鋳の熱膨張率は1.3×10−1(K−1)である。図2及び3の結果から明らかなように、本実施例による熱膨張の差を利用して円周方向及び軸方向に拡管させる矯正法は、薄肉円筒の真円度を高めるには極めて効果的であることがわかる。
【0030】
(実施例2及び比較例2)表層材付薄肉円筒
カップリング剤No.101(信越化学社製)を、用意したニッケル電鋳製薄肉円筒2本の表面に塗布し、一本は本発明の実施例2として実施例1と同一寸法のアルミ製拡管中子(円筒形状)を挿入し、もう一本はフリーな状態で、これらを220℃の炉に30分間入れニッケル電鋳表面にカップリング剤の焼き付けを行った。本発明ではカップリング剤の焼き付けと同時に、ニッケル電鋳よりも熱膨張率の大きな拡管中子の熱膨張を利用して、ニッケル電鋳を拡管して、真円矯正を行うことで、特別な工程を加えることもない。なお、このとき、焼き付けたカップリング剤は数μmの厚みであって、外径への影響はほとんど無視できる値である。
【0031】
これらを炉から取り出して室温に戻し、アルミ製拡管中子を抜き取り、リングコート機に取り付け表層材5を塗布する様子を図4に模式的に示す。図4において、カップリング剤の焼き付けと同時に真円矯正されたニッケル電鋳6は、テーパー状ホルダー7a及び7bに両端部を固定され、表層材5として、液状シリコーンゴムDY35−561(東レ・ダウコーニング・シリコーン株式会社製)を、リング状ノズル8からの表層材の吐出量(吐出機構は不図示)やリング状ノズル8とニッケル電鋳との相対速度(駆動機構は不図示)を調節することにより、膜厚200μm、塗布長240mmで、ニッケル電鋳製薄肉円筒表面に塗布した。その後、220℃の炉で4時間液状シリコーンゴムの加硫を行い、室温に戻した後、実施例2として表層材付薄肉円筒を得た。これを、実施例1などに示したものと同様な方法により260mmの長さを20mmピッチで外径寸法を測定し、その結果を図5の9a及び9bに示す(真円度0.005mm)。ここでの添字a、bは薄肉円筒表面の任意位置(a)での外径測定結果と、(a)から円周方向(任意方向)に90°ずらした位置(b)での外径測定結果を表す。
【0032】
比較例2として、カップリング剤焼き付けと真円矯正を同時に行わない状態で行ったニッケル電鋳を、リングコート機に取り付け実施例2と同様な条件で表層材を塗布、加硫を行った後、室温に戻して、比較例2の表層材付薄肉円筒を得た。これを、実施例2と同一条件で外径寸法を測定した結果を図6の10a及び10bに示す(真円度0.016mm)。ここでの添字a、bは薄肉円筒表面の任意位置(a)での外径測定結果と、(a)から円周方向(任意方向)に90°ずらした位置(b)での外径測定結果を表す。
【0033】
本発明の方法による表層材付薄肉円筒は、外径変動が極めて少なく真円度が高い、かつ、実施例1の結果から類推されるように、表層材膜厚のばらつきが極めて小さいことがわかる。
【0034】
(実施例3及び比較例3)像加熱定着装置の定着ベルト
実施例2より得られた薄肉円筒を、図7に示す像加熱定着装置の定着ベルト11として使用する例を実施例3として示す。複数枚の未定着トナーの担持された紙を搬送挿通させ、搬送性及び定着性を評価したところ、本実施例3による定着ベルトは、紙の搬送性の良好な、高画質な定着像が得られた。
【0035】
比較例3として、比較例2で作成した表層材付薄肉円筒を用いて、実施例3と同様、像加熱定着装置の定着ベルトとして装着し、複数枚の未定着トナーの担持された紙を搬送挿通させ、搬送性及び定着性を評価したところ、表層材の膜厚ばらつきによる搬送性の低下や熱伝導のばらつきと考えられる、搬送による紙シワの発生や、トナーの溶融過不足による定着状態によるバラツキが認められた。
【0036】
【発明の効果】
以上説明したように本発明によれば、薄肉円筒の真円矯正方法に関し、薄肉円筒に挿入された拡管中子を熱的に拡管することにより、薄肉円筒の真円矯正することができる。
特に、薄肉円筒よりも大きい熱膨張率の素材で拡管中子をつくり、薄肉円筒に挿入し、加熱により薄肉円筒及び拡管中子をとも熱的に膨張させたときの膨張差を利用し、薄肉円筒を円周方向及び軸方向に拡管するという簡便な方法により、容易に薄肉円筒の真円矯正を行うことができた。
【0037】
真円矯正においては、単独でその工程を加えることもできるが、本発明に示すように、カップリング剤の焼き付け工程と真円矯正工程とを同時に行うことにより、工程を増加させることなく真円矯正が行える。
薄肉円筒外表面にリングコート法により、一定膜厚の表層材を塗布すると、本発明による方法で真円矯正された薄肉円筒上に極めて、高精度の膜厚の表層材が形成できる。
このようにして形成された表層材付薄肉円筒を、像加熱定着装置の定着ベルトに用いることにより、紙搬送性や定着状態の良好な定着ベルトを得ることができた。
【図面の簡単な説明】
【図1】薄肉円筒に拡管中子が挿入された状態の説明図である。
【図2】実施例1による薄肉円筒の外径測定結果である。
【図3】比較例1による薄肉円筒の外径測定結果である。
【図4】本発明の表層材塗布方法を示す説明図である。
【図5】実施例2による薄肉円筒の外径測定結果である。
【図6】比較例2による薄肉円筒の外径測定結果である。
【図7】本発明の定着ベルトを使用する像加熱定着装置の説明図である。
【図8】本発明の他の実施例を示すクラウン形状の拡管中子である。
【図9】本発明の他の実施例を示す逆クラウン形状の拡管中子である。
【符号の説明】
1 拡管中子
2 薄肉円筒
3a、3b 実施例1の薄肉円筒の外径測定結果
4a、4b 比較例1の薄肉円筒の外径測定結果
5 表層材
6 カップリング剤の焼き付けと同時に真円矯正した薄肉円筒
7a、7b テーパー状ホルダー
8 リング状ノズル
9a、9b 実施例2の表層材付薄肉円筒の外径測定結果
10a、10b 比較例2の表層材付薄肉円筒の外径測定結果
11 定着ベルト
12 ヒーター
13 ヒーターホルダー
14 ステ−部材
15 加圧ローラー
16 紙
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a perfect circular shape of a tubular, annular, tubular, ring-shaped, and belt-shaped thin-walled cylindrical material such as a transport belt used to transport a precision part to a predetermined position while assuring high precision positional accuracy. The straightening method and the thin-walled cylinder whose roundness has been corrected by the method, and further, the thin-walled cylinder whose roundness has been corrected with a surface layer material, more particularly, is installed in an electrophotographic apparatus such as a copying machine, a laser beam printer, and a facsimile. And a fixing belt for the image heating fixing device.
[0002]
[Prior art]
Conventionally, as described in Patent Literature 1, as a method of correcting the roundness of an article having a cylindrical shape, a method of finishing a pipe with a high roundness at the time of drawing and processing a cylinder has been disclosed. Further, as described in Patent Document 2, when a load is applied in an axial direction of an elastic body, a method of expanding a pipe using a deforming force in a circumferential direction to correct a pipe end to a perfect circle is described. Have been.
[0003]
[Patent Document 1]
JP-A-9-103819 [Patent Document 2]
JP-B-63-31287 [0004]
[Problems to be solved by the invention]
However, among the above-mentioned conventional examples, the method described in Patent Document 1 is suitable for manufacturing a cylinder having high roundness, but is suitable for subsequent deformation and correction of the roundness of a cylinder manufactured by another method. May not be applicable.
In addition, the method using the circumferential deformation force of the elastic body as in the method described in Patent Document 2 is useful for correcting the circularity of a limited range such as a spherical or short-length elastic body. Considered an effective method. However, in the correction of the roundness of a long cylinder, when the cylindrical elastic body to be corrected does not deform uniformly in the circumferential direction due to an axial load, or when the axis of the elastic body is distorted, the roundness of the entire cylindrical area is reduced. Circularity correction can be difficult. In fact, as described in the title of the invention, "the method for correcting roundness of the pipe end", it is not limited to the method for correcting the roundness of the pipe end and applied to the roundness correction of the entire cylinder. May be possible.
[0005]
In general, a thin-walled cylinder manufactured by an electroforming method (hereinafter referred to as an electroformed thin-walled cylinder) is deposited on a cylindrical matrix formed of a SUS material or the like placed in a plating bath, and then removed from the matrix. Obtained by typing.
The electroformed thin-walled cylinder obtained at this time was sometimes deformed due to internal strain at the time of electroforming production, a state at the time of peeling off from the matrix, and subsequent handling.
When such a deformed thin cylinder is used, precision conveyance of articles may be disadvantageous.
[0006]
Furthermore, when attempting to apply and form a surface material such as an elastic layer made of a resin material on an electroformed thin-walled cylinder, the thickness of the formed film is affected by the distance between the nozzle and the cylinder, as in a ring coating method. When this occurs, the thickness of the film formed on the surface varies due to the distortion of the cylinder. Such an electroformed thin cylinder having a film thickness variation makes it difficult to precisely convey an article. Further, in a fixing belt of an image heating and fixing device using the same, not only an adverse effect on conveyance but also a difference in film thickness is caused. As a result, there is a case where an electrophotographic image having a different fixing state within one sheet is obtained.
[0007]
The present invention solves the above-mentioned problems of the conventional example, and provides a thin-walled cylinder in which a round-wall straightening method for a thin-walled cylinder, a round-walled thin-walled cylinder and a surface material having a small thickness variation are formed. A main object of the present invention is to provide a fixing belt and a transport unit of an image heating and fixing device using the thin cylinder with the surface layer.
[0008]
[Means for Solving the Problems]
The present invention relates to a thin-walled cylinder whose roundness has been corrected to 0.015 mm or less.
The present invention is characterized in that a thin-walled cylinder is expanded by inserting a tube-expanding core into a thin-walled cylinder and thermally expanding the tube-expanding core axially and circumferentially, thereby performing a roundness correction. The present invention relates to a method for correcting circularity of a cylinder.
In the present invention, the relationship between the coefficient of thermal expansion α1 of the member that contacts the expanded core at the time of roundness correction and the coefficient of thermal expansion α2 of the expanded core is α1 <α2. The present invention relates to a method of straightening a circular cylinder of a thin-walled cylinder characterized by a certain characteristic.
[0009]
The present invention further relates to a method of straightening a thin cylinder, wherein the thin cylinder is made of metal.
The present invention further relates to a method of correcting the circularity of a thin cylinder, wherein the thin cylinder is formed by an electroforming method.
The present invention further relates to a method for correcting the roundness of a thin-walled cylinder, comprising forming a surface material made of at least one layer of a resin material on the surface of the round-walled thin-walled cylinder.
The present invention further relates to a method for correcting the circularity of a thin-walled cylinder, which comprises applying and baking a coupling agent between the surface material and the surface of the thin-walled cylinder.
[0010]
The present invention further relates to a method of straightening a thin-walled cylinder, wherein the baking of the coupling agent is performed at a temperature of 100 ° C. or higher.
In the present invention, the baking of the coupling agent on the surface of the thin-walled cylinder may be performed when the expansion-expanding core is inserted into the thin-walled cylinder and thermally expanded in the axial direction and the circumferential direction. The present invention relates to a method for straightening a circular cylinder of a thin cylinder characterized by the following.
The present invention further relates to a method of straightening a thin-walled cylinder, wherein a surface material formed on the surface of the thin-walled cylinder having undergone the roundness correction is applied by a ring coating method.
[0011]
The present invention further relates to a thin-walled cylinder whose roundness has been corrected by the above-mentioned roundness correcting method.
The present invention further relates to a thin cylinder provided with a surface material, wherein a surface material is formed on a thin cylinder whose roundness has been corrected by the roundness correction method.
The present invention further relates to a thin cylinder with a surface material, wherein the thin cylinder with a surface material is a fixing belt of an image heating fixing device.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention relates to a thin-walled cylinder whose roundness has been corrected to 0.015 mm or less. Here, the circularity is measured by measuring the outer diameter of the thin cylinder at 12 points in the axial direction from an arbitrary point as a starting point, and further at a position shifted by 90 ° in the circumferential direction (arbitrary direction) from these measurement positions. The standard deviation of the outer diameter at a total of 24 points measured at 12 points in the axial direction is measured. More preferably, it is a thin-walled cylinder whose roundness has been corrected to 0.012 mm or less, more preferably 0.010 mm or less.
[0013]
The thin-walled cylinder according to the present invention is characterized in that a thin-walled cylinder is inserted into a thin-walled cylinder, and the thin-walled cylinder is expanded by thermally expanding the expansion core in an axial direction and a circumferential direction, thereby performing roundness correction. This is related to the roundness correction method. FIG. 1 is a schematic diagram showing a state in which an expanding core is inserted into a thin-walled cylinder. The expansion core 1 is inserted into the thin cylinder 2. It is preferable that the insertion of the tube-expanding core into the thin-walled cylinder be performed at a position where the axis of the tube-expanding core and the thin-walled cylinder coincide with each other, so that the roundness can be effectively corrected.
[0014]
FIG. 8 and FIG. 9 show the shapes of the expanding cores that can correct the thin-walled cylinder into a crown shape and an inverted crown shape, respectively, while correcting the cross section to a perfect circle. Here, the crown shape is a shape in which the central portion in the axial direction is thick and both ends are thin, and the inverted crown shape is a shape in which the central portion in the axial direction is thin and both ends are thick. In the reverse crown-shaped electroforming, it is very difficult to remove the mold from the mother die. However, a straight pipe is formed by electroforming, and then the pipe is thermally expanded and corrected by an inverted crown-shaped expanding core as shown in FIG. By doing so, the electroformed straight pipe can be easily corrected to an inverted crown shape. There is a crack at the center of the inverted crown-shaped expansion core shown in FIG. 9 and it can be divided into two parts. The largest diameter portion at the center is inscribed in the thin cylinder.
[0015]
The difference R1-R2 between the inner diameter (R1) of the thin cylinder and the maximum outer diameter (R2) of the expanded core is preferably -0.050 to 0.050 mm, more preferably 0.030 to 0.50 mm. 030 mm, more preferably -0.020 to 0.020 mm. Further, it is preferable that the expanded tube core be expanded and straightened, then cooled and extracted from the thin cylinder. More preferably, the cooling temperature of the expansion core is room temperature. When R2-R1 is a negative value, the expansion core can be easily inserted by thermally expanding the thin-walled cylinder or expanding it by air pressure or the like.
[0016]
The thin cylinder in the present invention preferably has a cylindrical shape with a thickness of about 500 μm or less, more preferably 200 μm or less, and still more preferably 100 μm or less. The thin-walled cylinder is a seamless pipe manufactured by electroforming, drawing, deep drawing, cutting, or the like, and formed by connecting the ends of a sheet-like film to a loop, a ring, a tube, a ring, a tube, The material includes a ring shape, a hollow shape, and the like, and the material may be any of metal, ceramics, and plastic, and these materials may be laminated or composited. Among them, the metal suitable for the roundness correction of the present invention is a metal, and a thin-walled cylinder manufactured by an electroforming method is preferable. It is preferable to use Ni and its alloy as the metal. Further, as the material of the tube expansion core, it is preferable to use Al, Mg, Sn, Pb and alloys thereof and a resin material. Preferably, the thin cylinder is a nickel electroformed cylinder.
[0017]
Also, by thermally expanding the expansion core inserted into the thin cylinder, the thin cylinder is deformed in the circumferential direction and the axial direction, and in order to perform roundness correction, the expansion core and the thin cylinder are thermally deformed. Although it is possible to shield and expand only the expansion core thermally, it is possible to insert the expansion core having a higher coefficient of thermal expansion than the thin cylinder into the thin cylinder and heat both the thin cylinder and the expansion core. It is preferable to perform the operation because the equipment is simple.
[0018]
Here, among the constituent members of the thin-walled cylinder, it is preferable that the coefficient of thermal expansion α1 of a member that comes into contact with the expanding core at the time of roundness correction and the coefficient of thermal expansion α2 of the expanding core satisfy α1 <α2. Here, α1 when the thin cylinder is composed of multiple layers represents the coefficient of thermal expansion of the member that constitutes the innermost layer among the components of the thin cylinder and that comes into contact with the expanding core at the time of roundness correction. In the present invention, the coefficient of thermal expansion indicates a coefficient of linear expansion. By using a material having a coefficient of thermal expansion having the above-mentioned relationship for the thin-walled cylinder and the expanding core, it is possible to satisfactorily correct the roundness. Preferably, the thermal expansion coefficient difference α2−α1 is 0.5 × 10 −5 (K −1 ) or more, more preferably 0.8 × 10 −5 (K −1 ), and still more preferably 1 × 10 −5 (K −1 ). 0.0 × 10 −5 (K −1 ).
[0019]
In addition, the heating temperature at the time of roundness correction is optimized in consideration of the difference in thermal expansion coefficient between the thin cylinder and the expansion core, the gap width between the thin cylinder and the expansion core, and the heat resistance of the thin cylinder, 100 ° C. or higher is preferable, 150 ° C. or higher is more preferable, and 200 ° C. or higher is further preferable. Further, the temperature is preferably 500 ° C. or lower, more preferably 400 ° C. or lower, and still more preferably 300 ° C. or lower. The expanded core may be a material having a large coefficient of thermal expansion and good workability, and may be any material that causes thermally uniform deformation, such as metals such as Al, Mg, Sn, Zn, and Pb and components thereof. Alloys and resin materials correspond to this.
[0020]
By forming at least one surface layer material on the surface of the circular cylinder of the present invention, for example, a thin cylinder having excellent wear resistance and excellent charging characteristics can be obtained. The surface layer material may be formed by laminating two or more layers as necessary. As the surface material, a polyamide resin, a fluorine resin, a polyurethane resin, a silicone resin, a polyester resin, a phenol resin, an imide resin, an olefin resin, a silicone rubber, or the like can be used, but is not limited thereto. Preferably, silicone rubber is used.
[0021]
In addition, by applying and baking a coupling agent between the surface of the thin cylinder and the surface material, the bonding between the thin cylinder and the surface material can be further strengthened. Examples of the coupling agent include, but are not limited to, a silane coupling agent, a titanate coupling agent, and an aluminate coupling agent. The baking of the coupling agent is preferably at least 100 ° C, more preferably at least 150 ° C, even more preferably at least 200 ° C. Further, the temperature is preferably 400 ° C. or lower, more preferably 350 ° C. or lower, and further preferably 300 ° C. or lower.
[0022]
Such a roundness correction process may be performed alone, but as in the case of forming a surface material on a rounded thin walled cylinder, a coupling agent for linking the surface of the thin walled cylinder to the surface layer material. Is preferably performed at the same time as baking on the surface of the thin cylinder, since the processing steps can be shortened. As a method of forming the surface layer material applied on the thin-walled cylinder whose roundness has been corrected by the present invention, any of a dip coating method, a spin coating method, a spray coating method, a ring coating method and the like can be adopted. FIG. 4 shows a method of applying a surface layer material to a thin cylinder by a ring coating method. The nickel electroforming 6 has both ends fixed to the tapered holders 7a and 7b, and the surface material 5 is used to discharge the surface material from the ring-shaped nozzle 8 (discharge mechanism is not shown) and the ring-shaped nozzle 8 By adjusting the relative speed with respect to the casting (the drive mechanism is not shown), the coating can be performed on the surface of the thin cylinder made of nickel electroformed.
[0023]
In the formation of the surface layer material on the thin-walled cylinder whose roundness has been corrected according to the present invention, the distance between the ring-shaped nozzle and the cylinder surface can be kept uniform, and the surface layer material can be formed to a constant film thickness. Preferably, it is used. When the surface layer material is formed efficiently and without solvent along the outer peripheral surface on the thin cylinder and has a constant film thickness, the film thickness of the surface layer material changes by changing the distance between the ring-shaped nozzle and the cylinder surface. I do.
[0024]
The thin-walled cylinder whose roundness has been corrected by the above-described roundness correction method can be used as a fixing belt of an image heating and fixing device disposed in an electrophotographic apparatus such as a copying machine, a laser beam printer, and a facsimile. FIG. 7 is an explanatory diagram of an image heating and fixing apparatus using the fixing belt of the present invention. In FIG. 7, reference numeral 11 denotes a fixing belt according to the present invention. Reference numeral 12 denotes a heater for the fixing belt 11, and the heater 12 is held by a heater holder 13. Reference numeral 14 denotes a stay member, which is formed in a substantially U-shape. The fixing belt 11 is incorporated so as to be fitted on the outer peripheral surfaces of the stay member 14 and the heater holder 13. Reference numeral 15 denotes a pressure roller which is driven by driving means (not shown).
[0025]
As shown in the figure, the image heating and fixing device transports and inserts a carrier 16 such as paper carrying toner for forming an image between the fixing belt 11 and the pressure roller 15 so that the carrier 16 is transferred to the fixing belt received from the heater. Is transferred to the toner via the surface material, and the toner is fixed on paper by pressing and heating.
[0026]
【Example】
Hereinafter, the present invention will be described in more detail by way of examples, but these do not limit the present invention in any way.
"Preparation of thin cylinder made of nickel electroformed"
A SUS master having an outer diameter of 24.00 mm was placed in a plating bath, nickel electroforming having a thickness of 50 μm was deposited, taken out from the plating bath, and then removed from the master. Both ends were cut out to obtain three thin cylinders made of nickel electroformed 280 mm long.
[0027]
(Example 1 and Comparative Example 1) One nickel electroformed thin cylinder prepared at the point where the circular cylinder of the thin cylinder was straightened was placed on a base at both ends, and a laser measuring machine (manufactured by KEYENCE CORPORATION) was used to measure the distance 260 mm and the measuring pitch. The results of measuring the outer diameter at 20 mm are shown as Comparative Example 1 in FIGS. 4A and 4B (roundness 0.016 mm). Here, the subscripts a and b are the outer diameter measurement results at an arbitrary position (a) on the surface of the thin cylinder and the outer diameter at a position (b) shifted by 90 ° in the circumferential direction (arbitrary direction) from (a). Shows the measurement results.
[0028]
Next, as Example 1, as shown in FIG. 1, an aluminum expansion core (cylindrical shape) 2 having an outer diameter of 23.98 mm was inserted into the same nickel electroformed thin-walled cylinder 1 used in Comparative Example 1. Then, after being kept in a furnace at 220 ° C. for 30 minutes, the temperature was returned to room temperature, the aluminum expansion core 2 was removed, and the same position as that of Comparative Example 1 was measured using a laser length measuring apparatus. 2a and 3b show the results of the measurement of the outer diameter (circularity of 0.010 mm). This measurement was performed at the same position as in Comparative Example 1.
[0029]
At this time, the coefficient of thermal expansion of aluminum constituting the expanded core is 2.4 × 10 −1 (K −1 ), and the coefficient of thermal expansion of nickel electroforming constituting a thin-walled cylinder is 1.3 × 10 −1. (K −1 ). As is apparent from the results of FIGS. 2 and 3, the straightening method of expanding the pipe in the circumferential direction and the axial direction using the difference in thermal expansion according to the present embodiment is extremely effective in increasing the roundness of a thin-walled cylinder. It can be seen that it is.
[0030]
(Example 2 and Comparative Example 2) Thin cylindrical coupling agent No. with surface material 101 (manufactured by Shin-Etsu Chemical Co., Ltd.) is applied to the surface of two prepared thin cylinders made of nickel electroformed nickel, and one of them is used as an embodiment 2 of the present invention. ) Was inserted and the other was free, and these were placed in a 220 ° C. furnace for 30 minutes to bake the coupling agent on the nickel electroformed surface. In the present invention, special baking is performed by expanding the nickel electroformed tube and performing roundness correction by utilizing the thermal expansion of the expanded tube core having a larger coefficient of thermal expansion than nickel electroformed simultaneously with baking of the coupling agent. No additional steps. At this time, the baked coupling agent has a thickness of several μm, and its influence on the outer diameter is a value that can be almost ignored.
[0031]
FIG. 4 schematically shows a state in which these are taken out of the furnace, returned to room temperature, the aluminum expansion core is pulled out, attached to a ring coater, and the surface material 5 is applied. In FIG. 4, the nickel electroforming 6 whose roundness has been corrected at the same time as the baking of the coupling agent is fixed at both ends to the tapered holders 7a and 7b, and the liquid silicone rubber DY35-561 (Toray Dow) is used as the surface layer material 5. (Corning Silicone Co., Ltd.) is adjusted by adjusting the discharge amount of the surface material from the ring-shaped nozzle 8 (discharge mechanism is not shown) and the relative speed between the ring-shaped nozzle 8 and nickel electroforming (the drive mechanism is not shown). In this way, it was applied to the surface of a thin cylinder made of nickel electroformed with a thickness of 200 μm and an application length of 240 mm. Thereafter, the liquid silicone rubber was vulcanized in a furnace at 220 ° C. for 4 hours and returned to room temperature. As a second example, a thin cylinder with a surface layer material was obtained. The outer diameter of this was measured at a pitch of 20 mm with a length of 260 mm by the same method as that shown in Example 1 and the like, and the results are shown in FIGS. 9A and 9B (roundness: 0.005 mm). . Here, the subscripts a and b are the outer diameter measurement results at an arbitrary position (a) on the surface of the thin cylinder and the outer diameter measurement at a position (b) shifted from the (a) by 90 ° in the circumferential direction (arbitrary direction). Indicates the result.
[0032]
As Comparative Example 2, nickel electroforming performed in a state where baking of the coupling agent and roundness correction were not performed at the same time was attached to a ring coater, and the surface material was applied and vulcanized under the same conditions as in Example 2. The temperature was returned to room temperature to obtain a thin-walled cylinder with a surface material of Comparative Example 2. The results of measuring the outer diameter under the same conditions as in Example 2 are shown in FIGS. 6A and 6B (roundness 0.016 mm). Here, the subscripts a and b are the outer diameter measurement results at an arbitrary position (a) on the surface of the thin cylinder and the outer diameter measurement at a position (b) shifted from the (a) by 90 ° in the circumferential direction (arbitrary direction). Indicates the result.
[0033]
It can be seen that the thin cylinder with the surface material according to the method of the present invention has a very small variation in outer diameter and a high roundness, and the variation in the film thickness of the surface material is extremely small, as inferred from the results of Example 1. .
[0034]
(Embodiment 3 and Comparative Example 3) Fixing Belt of Image Heating Fixing Apparatus An example in which the thin cylinder obtained in Example 2 is used as the fixing belt 11 of the image heating fixing apparatus shown in FIG. When a plurality of sheets of paper having unfixed toner carried thereon were conveyed and inserted, and the conveyance property and the fixing property were evaluated, the fixing belt according to the third embodiment provided a high-quality fixed image with good paper conveyance properties. Was done.
[0035]
As Comparative Example 3, using the thin cylinder with the surface material prepared in Comparative Example 2, it was mounted as a fixing belt of an image heating and fixing device in the same manner as in Example 3, and a plurality of sheets carrying unfixed toner were conveyed. When the paper was inserted and the transportability and fixing property were evaluated, it was considered that the transportability was reduced due to the thickness variation of the surface material and the thermal conductivity was varied. Variation was observed.
[0036]
【The invention's effect】
As described above, according to the present invention, a method for correcting the roundness of a thin-walled cylinder can be performed by thermally expanding the expansion core inserted into the thin-walled cylinder to correct the roundness of the thin-walled cylinder.
In particular, the expansion core is made of a material having a larger coefficient of thermal expansion than the thin cylinder, inserted into the thin cylinder, and the difference in expansion when both the thin cylinder and the expansion core are thermally expanded by heating is used. By a simple method of expanding the cylinder in the circumferential direction and the axial direction, the roundness of the thin-walled cylinder could be easily corrected.
[0037]
In the roundness correction, the process can be added alone, but as shown in the present invention, by performing the baking process of the coupling agent and the roundness correction process simultaneously, the roundness is increased without increasing the process. Correction can be performed.
When a surface material having a constant thickness is applied to the outer surface of the thin cylinder by a ring coating method, a surface material having an extremely high precision film thickness can be formed on the thin cylinder whose roundness has been corrected by the method according to the present invention.
By using the thin cylinder with the surface material formed in this manner as a fixing belt of an image heating and fixing device, a fixing belt with good paper transportability and a good fixing state could be obtained.
[Brief description of the drawings]
FIG. 1 is an explanatory view of a state in which an expansion core is inserted into a thin cylinder.
FIG. 2 shows the results of measuring the outer diameter of a thin cylinder according to Example 1.
FIG. 3 shows the results of measuring the outer diameter of a thin cylinder according to Comparative Example 1.
FIG. 4 is an explanatory view showing a method of applying a surface material according to the present invention.
FIG. 5 is a measurement result of an outer diameter of a thin cylinder according to Example 2.
FIG. 6 shows the results of measuring the outer diameter of a thin cylinder according to Comparative Example 2.
FIG. 7 is an explanatory diagram of an image heating and fixing device using the fixing belt of the present invention.
FIG. 8 shows a crown-shaped expanding core showing another embodiment of the present invention.
FIG. 9 shows an inverted crown-shaped expanding core showing another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Expansion core 2 Thin cylinder 3a, 3b Outer diameter measurement result 4a, 4b of the thin cylinder of Example 1 Outer diameter measurement result of the thin cylinder of Comparative Example 5 Surface material 6 The roundness was corrected simultaneously with the baking of the coupling agent. Thin-walled cylinders 7a, 7b Tapered holder 8 Ring-shaped nozzle 9a, 9b Outer diameter measurement results 10a, 10b of thin-walled cylinder with surface material of Example 2 Outer diameter measurement result of thin-walled cylinder with surface material of Comparative Example 11 Fixing belt 12 Heater 13 Heater holder 14 Stay member 15 Pressure roller 16 Paper

Claims (13)

真円度0.015mm以下に真円矯正された薄肉円筒。A thin-walled cylinder whose roundness has been corrected to 0.015 mm or less. 薄肉円筒に拡管中子を挿入し、該拡管中子を熱的に軸方向および円周方向に膨張させることにより薄肉円筒を拡管し、真円矯正を行うことを特徴とする薄肉円筒の真円矯正法。Inserting the expanding core into the thin-walled cylinder, expanding the thin-walled cylinder by thermally expanding the expanding core in the axial direction and the circumferential direction, and performing roundness correction. Straightening method. 前記薄肉円筒の構成部材のうち、真円矯正時に前記拡管中子に接する部材の熱膨張率α1と、前記拡管中子の熱膨張率α2との関係が、α1<α2であることを特徴とする請求項2記載の薄肉円筒の真円矯正法。Among the constituent members of the thin-walled cylinder, the relationship between the coefficient of thermal expansion α1 of a member that is in contact with the expanded core at the time of roundness correction and the coefficient of thermal expansion α2 of the expanded core is α1 <α2. 3. The method for correcting circularity of a thin-walled cylinder according to claim 2. 前記薄肉円筒が金属であることを特徴とする請求項2または3記載の薄肉円筒の真円矯正法。4. The method for straightening a thin cylinder according to claim 2, wherein the thin cylinder is made of metal. 前記薄肉円筒が電鋳法により形成されていることを特徴とする請求項2乃至4の何れかに記載の薄肉円筒の真円矯正法。5. The method of claim 2, wherein the thin cylinder is formed by electroforming. 前記真円矯正された薄肉円筒表面に、少なくとも一層の樹脂材料よりなる表層材を形成することを特徴とする請求項2乃至5の何れかに記載の薄肉円筒の真円矯正法。The method for correcting the circularity of a thin-walled cylinder according to any one of claims 2 to 5, wherein a surface material made of at least one layer of a resin material is formed on the surface of the circular-walled thin-walled cylinder. 前記表層材と薄肉円筒表面との間に、カップリング剤の塗布および焼き付けを行うことを特徴とする請求項6に記載の薄肉円筒の真円矯正法。The method of claim 6, wherein a coupling agent is applied and baked between the surface material and the surface of the thin cylinder. 前記カップリング剤の焼き付けを、100℃以上の温度で行うことを特徴とする請求項7記載の薄肉円筒の真円矯正法。8. The method according to claim 7, wherein the baking of the coupling agent is performed at a temperature of 100 [deg.] C. or more. 前記薄肉円筒表面へのカップリング剤の焼き付けが、前記拡管中子を薄肉円筒に挿入し、熱的に拡管中子が軸方向および円周方向に膨張する際に行われることを特徴とする請求項7または8記載の薄肉円筒の真円矯正法。The baking of the coupling agent on the surface of the thin cylinder is performed when the expansion core is inserted into the thin cylinder and the expansion core thermally expands in the axial direction and the circumferential direction. Item 7. A method for correcting circularity of a thin-walled cylinder according to Item 7 or 8. 前記真円矯正を行った薄肉円筒表面に形成される表層材が、リングコート法により塗布されたことを特徴とする請求項6乃至9の何れかに記載の薄肉円筒の真円矯正法。The method according to any one of claims 6 to 9, wherein the surface layer material formed on the surface of the thin cylinder having undergone the roundness correction is applied by a ring coating method. 請求項2乃至10の何れかに記載の真円矯正法により真円矯正された薄肉円筒。A thin-walled cylinder whose roundness has been corrected by the roundness correcting method according to claim 2. 請求項6乃至10の何れかに記載の真円矯正法により真円矯正された薄肉円筒上に表層材を形成したことを特徴とする表層材付薄肉円筒。A thin cylinder with a surface material, wherein a surface material is formed on a thin cylinder whose roundness has been corrected by the roundness correction method according to any one of claims 6 to 10. 請求項12に記載の表層材付薄肉円筒が、像加熱定着装置の定着ベルトであることを特徴とする表層材付薄肉円筒。13. The thin cylinder with a surface material, wherein the thin cylinder with a surface material according to claim 12 is a fixing belt of an image heating and fixing device.
JP2002343895A 2002-11-27 2002-11-27 Circularity correcting method of thin-walled cylinder, circularity-corrected thin-walled cylinder, and thin-walled cylinder having surface layer material Pending JP2004174557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002343895A JP2004174557A (en) 2002-11-27 2002-11-27 Circularity correcting method of thin-walled cylinder, circularity-corrected thin-walled cylinder, and thin-walled cylinder having surface layer material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002343895A JP2004174557A (en) 2002-11-27 2002-11-27 Circularity correcting method of thin-walled cylinder, circularity-corrected thin-walled cylinder, and thin-walled cylinder having surface layer material

Publications (1)

Publication Number Publication Date
JP2004174557A true JP2004174557A (en) 2004-06-24

Family

ID=32705577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002343895A Pending JP2004174557A (en) 2002-11-27 2002-11-27 Circularity correcting method of thin-walled cylinder, circularity-corrected thin-walled cylinder, and thin-walled cylinder having surface layer material

Country Status (1)

Country Link
JP (1) JP2004174557A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009056638A (en) * 2007-08-30 2009-03-19 Arai Pump Mfg Co Ltd Method of manufacturing roller
CN104043693A (en) * 2014-06-18 2014-09-17 中核(天津)科技发展有限公司 Correcting device for position accuracy of ultrathin-wall cylinder workpiece

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009056638A (en) * 2007-08-30 2009-03-19 Arai Pump Mfg Co Ltd Method of manufacturing roller
CN104043693A (en) * 2014-06-18 2014-09-17 中核(天津)科技发展有限公司 Correcting device for position accuracy of ultrathin-wall cylinder workpiece
CN104043693B (en) * 2014-06-18 2019-07-05 中核(天津)科技发展有限公司 Ultra-thin-wall cylinder class location of workpiece degree apparatus for correcting

Similar Documents

Publication Publication Date Title
JP3406293B2 (en) Metallic ring and method for producing the same
US8351835B2 (en) Tube and method for manufacturing the same
US9897954B2 (en) Base for fixing belt, fixing belt, fixing device, and image forming apparatus
US20080299247A1 (en) Fine Pattern Mold and Method for Producing the Same
JP2010143118A (en) Method for manufacturing fixing member
US3950839A (en) Method of making an electroforming mandrel
CN100386697C (en) Circular-shaped metal structure and method of fabricating the same
US20190099796A1 (en) Manufacturing method of base member of rotatable fixing member and manufacturing method of the rotatable fixing member
JP2004174557A (en) Circularity correcting method of thin-walled cylinder, circularity-corrected thin-walled cylinder, and thin-walled cylinder having surface layer material
US3927463A (en) Method of making a cylindrically shaped, hollow electroforming mandrel
US3905400A (en) Electroforming mandrel
JP2008000969A (en) Method for producing rubber roll body, silicone rubber roll, and roller for heating fixation
US7334336B2 (en) Method for producing a sleeved polymer member, an image cylinder or a blanket cylinder
US20170060058A1 (en) Fixing device using stainless steel material
JP6075103B2 (en) Endless belt metal mold and manufacturing method thereof
JP2020138501A (en) Manufacturing method of fixation member and pressure member
JP2009056638A (en) Method of manufacturing roller
JP5076797B2 (en) Annular seamless belt and manufacturing method thereof
JP2012189889A (en) Endless belt, fixing belt, fixing device, and image forming apparatus
JP2010202419A (en) Member for molding element, method for producing the element, and the element
JP2004154789A (en) Method for manufacturing thin cylindrical body
JP2004154816A (en) Non-straight cylinder having coating layer
US5500105A (en) Bowed shape electroforms
JP2002361341A (en) Method for producing metallic pipe
JP2000280339A (en) Manufacture of tubular body, tubular body, manufacture of metal tube, metal tube and fixing film and transfer belt of image forming apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050222

A521 Written amendment

Effective date: 20050222

Free format text: JAPANESE INTERMEDIATE CODE: A821