JP2004174390A - Treatment method for treatment liquid of washing column of ethylene manufacturing plant - Google Patents

Treatment method for treatment liquid of washing column of ethylene manufacturing plant Download PDF

Info

Publication number
JP2004174390A
JP2004174390A JP2002344377A JP2002344377A JP2004174390A JP 2004174390 A JP2004174390 A JP 2004174390A JP 2002344377 A JP2002344377 A JP 2002344377A JP 2002344377 A JP2002344377 A JP 2002344377A JP 2004174390 A JP2004174390 A JP 2004174390A
Authority
JP
Japan
Prior art keywords
liquid
washing tower
gas
recovered
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002344377A
Other languages
Japanese (ja)
Other versions
JP3872749B2 (en
Inventor
Kenichiro Hiroto
健一郎 廣戸
Heigo Sato
平吾 佐藤
Tetsuhiro Yamauchi
哲弘 山内
Kazunari Takahashi
和成 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2002344377A priority Critical patent/JP3872749B2/en
Publication of JP2004174390A publication Critical patent/JP2004174390A/en
Application granted granted Critical
Publication of JP3872749B2 publication Critical patent/JP3872749B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Abstract

<P>PROBLEM TO BE SOLVED: To recover an organic component contained in a recovered liquid, which is obtained by recovering the mist-like or liquid drop-like mixture produced from the region ranging from the middle part to upper part of the washing column of an ethylene manufacturing plant by the countercurrent contact of a decomposition gas of naphtha with a sodium hydroxide aqueous solution in the washing column, or contained in the separated liquid after a useful gas is separated from the recovered liquid before the organic component is discharged out of the system. <P>SOLUTION: In this treatment method for the treatment liquid from the washing column of the ethylene manufacturing plant, the separated liquid or recovered liquid itself is mixed with the alkali aqueous solution, of which the concentration is adjusted, supplied so as to be sent to a treatment process for the wastewater discharged from the lowermost stage part of the washing column of the ethylene manufacturing plant to reduce drain quantity, and the organic component contained in the wastewater and the separated liquid is efficiently extracted with an extraction solvent to be recovered by increasing the concentration of alkali in an extraction process. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、エチレン製造プラントの洗浄塔において生じる処理液の処理方法に関する。
【従来の技術】
【0002】
エチレン製造プロセスでは、一般的に触媒毒となる硫黄分をナフサの分解ガスからあらかじめ除去する作業が行なわれている。まず、ナフサを熱分解炉で分解し、次いで分留塔で気液を分離する。得られた気体、すなわち分解ガスを洗浄塔に送り硫黄分を除去する。
【0003】
洗浄塔で固定化する硫黄分の除去プロセスは、図3に示すように、洗浄塔11の下段部から導入される分解ガスaを、洗浄塔11の中段部に導入される水酸化ナトリウム水溶液bと向流させることによって、分解ガスaに含まれる硫黄分を固定化し、次いで、排水e’として上記洗浄塔11の最下段部から排出させ、次いで溶存ガスを気液分離して排水hを得、これを湿式酸化することにより硫酸ナトリウムに変化させて系外に排出するプロセスである。
【0004】
しかし、排水hには硫黄分だけではなく、ナフサの分解時に生じる有機成分が含まれる。この排水hをそのまま湿式酸化すると、そのとき加えられる熱によって有機成分が気化され、有機成分を多く含んだガスが大気へ放出されて、環境上問題となる場合がある。そのため、湿式酸化工程の前に排水hを油水混合機13で抽出用媒体iと混合し、抽出槽14へ送って、抽出済媒体と抽出した有機成分jを抽出排水kから分離して、排水hより有機成分の濃度を減らす。
【0005】
有機成分濃度を減らした抽出排水kを一度タンク15に溜めたのち、湿式酸化槽16へ送る。ここで空気lと水蒸気mを加えて硫黄分を硫酸ナトリウムに湿式酸化する。この時同時に抽出排水qに残っていた有機成分がガス化する。これらを気液分離塔17へ送り、pH調整剤nを加えて中和させつつ気液を分離する。液体分は排液pとして処理され、気体分は排ガスoとして大気へ放出される。ただし、抽出槽14であらかじめ有機成分を抽出しているので、排ガスoに含まれて大気に放出される有機成分量を抑えることができる。
【0006】
一方、洗浄塔11の中部から上部では、中部から下部で起こる分解ガスaと水酸化ナトリウム水溶液bとの向流によって、霧状又は液滴状の混合物が発生するため、そのままではエチレンなどの有用なガス分dのみを取り出しにくい。そこで洗浄塔の上段部から水cを加えて向流させることにより、上記混合物を洗浄塔11の中上段部で回収して、有用なガス分dのみを洗浄塔11の最上段部から取り出す。回収した霧状または液滴状の回収液eをさらに気液分離器12にかけて分離液gを分離し、またガス分であるfは排ガスとしてフレア処理または燃料ガスまたは再度分解ガスとして分解ガス圧縮工程などへ供給され回収される。この分離液gは非特許文献1に記載されているように排水hと混合し、抽出工程経由で湿式酸化工程へ送られている。
【0007】
【非特許文献】
1998 NALCO/EXXON ETHYLENE SYMPOSIUM Tokyo, Japan の中の Caustic System (Operation of Caustic Systems Free from Polymer (Red Oil) By Michael Weismiller)
【0008】
【発明が解決しようとする課題】
しかしながら、上記回収液eにも、上記分解ガスに含まれる有機成分が含有されており、この回収液eを気液分離し、分離ガスfを取り除いた後も、その分離液g中に有機成分が含まれている場合がある。この分離液gを排水e’または排水hと混合した後、上記の抽出工程で有機成分を除去しているが、水cの使用量が多いと抽出排水k中のアルカリ濃度が希釈され排水の密度が低下し、高比重抽出油を用いた場合では抽出済媒体jと抽出排水kの比重差が縮まり、油水分離を悪化させる。また、アルカリ濃度が低下すると排水に溶存する有機成分の濃度は逆に増加するため、抽出分離性能を低下させる問題点があった。油水分離性能を維持するには、抽出済媒体jと抽出排水kとの比重差を高くする必要があり、そのためには排水hのアルカリ濃度を高めておかなければならない。さらに、抽出排水k中の有機成分濃度が平衡濃度に達している場合、抽出排水kの流量により、ガスoまたは排液pから系外への排出量が決まるため、排水流量を低減することは重要な課題である。
【0009】
そこでこの発明は、上記回収液eに含まれる有機成分が系外に放出される前に回収する際、上記洗浄塔から排出される排出流量をできるだけ抑えることで、上記有機成分をできるだけ回収することを目的とする。
【0010】
【課題を解決するための手段】
この発明は、エチレン製造プラントの洗浄塔の下段部に導入されるナフサの分解ガスを、上記洗浄塔の中段部に導入される水酸化ナトリウム水溶液と向流させることによって、上記分解ガスを洗浄し、上記分解ガスに含まれる有機成分を含有する排水を上記洗浄塔の最下段部から排出させ、抽出用媒体による上記有機成分の抽出工程を経て系外へ排出させる一方で、上記洗浄された分解ガスを上記洗浄塔の上段部に導入される水と向流させることによって、上記の洗浄された分解ガスから霧状物又は液滴状物を回収し、その回収液に含有される有機成分を上記抽出用媒体に回収させる、エチレン製造プラントの洗浄塔処理液の処理方法において、
直接に上記回収液を、又は、上記回収液を気液分離した分離液の一部を上記水酸化ナトリウム水溶液と混合して洗浄塔に戻すことによって、上記の目的を実現したのである。
【0011】
【発明の実施の形態】
以下、この発明の実施形態を説明する。
【0012】
この発明は、エチレン製造プラントの洗浄塔で発生する処理液について、洗浄塔から排出する排水の処理工程を利用して、洗浄塔上部で発生する気液の混合物を回収した回収液に含まれる有機成分を、系外に排出する前に回収するにあたり、上記回収液を洗浄塔に戻して上記処理液を減らし、また、それによって系外への有機成分の排出を減少させる、洗浄塔処理液の処理方法である。
【0013】
洗浄塔処理液とは、洗浄塔内で水酸化ナトリウム水溶液によってナフサの分解ガス中の硫黄分を洗浄した後の排水と、上記洗浄塔内で上記洗浄された分解ガスを水と向流させることによって発生する気液の混合液として回収される回収液とを、包括するものである。
【0014】
まず、エチレン製造プロセスにおける、上記処理液の処理方法に関する第一の発明について説明する。
【0015】
熱分解炉から出てきた後に液体成分を分留によって取り除かれたナフサの分解ガスAは、図1に示すように、洗浄塔1の下段部へ送られる。洗浄塔1では、中段部から水酸化ナトリウム水溶液Bを導入して、下部から中部で分解ガスAと向流させることにより、分解ガスA中の主に硫化水素からなる硫黄分を反応させて、硫化ナトリウムや水硫化ナトリウムにする。これらの硫化ナトリウムや水硫化ナトリウムは、排水E’として洗浄塔1の最下段部から排出される。排水E’は他に、反応しきらなかった水酸化ナトリウムと、ナフサの分解ガスに含まれる有機成分とを含有している。
【0016】
洗浄塔1から排出された排水E’は気液分離器2’を経由し、含有する溶存ガスをF’を除去した後排水Hとして、または気液分離器2’を経由せず直接に排水Hとして(図示せず。なお、気液分離器2’を経由しない場合も排水E’は便宜上Hと表示する。)、油水混合機3で抽出用媒体Iと混合し、抽出槽4へ送って、抽出媒体と抽出した有機成分の混合液である抽出済媒体Jを抽出排水Kから分離して、抽出排水Kが含有する有機成分の濃度を元の排水Hよりも少なくする。抽出排水Kは一旦タンク5に溜めてから、湿式酸化槽6に送る。
【0017】
湿式酸化槽6では、タンク5から送られてきた抽出排水Kに空気Lと水蒸気Mを加え、抽出排水K中の硫化ナトリウムや水硫化ナトリウムを硫酸ナトリウムに変化させる。このとき同時に、抽出排水Kに含まれる有機成分がガス化するが、抽出槽4で有機成分濃度を減少させているため、ガス化する量は抑えられる。
【0018】
湿式酸化槽6を経た後は気液分離塔7へ送り、pH調整剤Nを加えて中和しつつ、ガス化した微量の有機成分を含む気体成分である排ガスOと、硫酸ナトリウムが含まれる液体成分である排液Pとに分離する。排ガスOは大気中に放出されるが、抽出槽4であらかじめ排水H中の有機成分濃度を減少させているため、この気液分離塔7での有機成分の大気への放出量は抑えられる。また、排液Pは活性汚泥処理などを経由して処理される。
【0019】
一方、洗浄塔1内において、下部の向流によって霧状または液滴状になり上昇した処理液と分解ガスの混合物は、洗浄塔1の上段部から水Cを加えて向流させることにより、洗浄塔1の中段部から回収される。
【0020】
回収された回収液Eは、排水E’と同様に有機成分を含んだままである。しかし、回収液Eと排水E’はどちらも元は洗浄塔1内の処理液であり、有機成分を含むこと以外にも、濃度は異なるが水酸化ナトリウムを含んだ水溶液であることは共通している。
【0021】
そこで、回収液Eを気液分離器を経由して排水Hと混合するのではなく、アルカリ水溶液である水酸化ナトリウム水溶液Bに直接混合して洗浄塔1へ戻す。しかし単純に混合するだけでは、塔内に導入される水酸化ナトリウム水溶液中のアルカリ濃度が低下し、分解ガスA中の主に硫化水素からなる硫黄分を反応させて、硫化ナトリウムや水硫化ナトリウムにする転換率が低下する問題が発生する。このため、回収液Eとアルカリ水溶液Bとの混合液のアルカリ濃度が所定の濃度となるようにアルカリ水溶液B中のアルカリ濃度を調整する。これによりBから供給されるアルカリ水溶液の流量は低減し、最終的に系外へ排出される排液Pの流量も低減させることができる。この方法では従来使われていた図3に示す気液分離器12を経由しないので、回収液中に含まれる溶存ガスは、フレア処理による廃棄や燃料ガスまたは分解ガス圧縮工程での再圧縮などによる回収を行うことなくそのまま分解ガスとして回収されるため、回収効率が向上し、また、エネルギー原単位的にも効率的である。
【0022】
回収液Eを洗浄塔1に供給されるアルカリ水溶液Bと混合するとともに、アルカリ濃度を調整して、従来と同じ高比重の排水E’を得る。これにより抽出槽4における油水分離を悪化させることがない。また排水Hの流量は、従来使われていた図3の排水hと分離液gとの混合液の流量と比べ低減している。このため流量が低下した分、最終的に排ガスOや排液Pから排出する有機成分量をさらに低減することができ、環境保護の面で優位である。また流量が減少した分、湿式酸化槽6で加える熱量を低減でき、エネルギー原単位的にも優位である。
【0023】
抽出用媒体Iとは、水溶液からベンゼンやトルエン等の有機成分を抽出することができる、疎水性の有機液である。上記のナフサの分解ガスにベンゼンが含まれている場合、この抽出用媒体に含まれるベンゼンの濃度は5重量%以下であることが望ましい。ベンゼンはナフサの分解によって生じる有機成分のなかでも、特に環境上問題とされることが多く、大気への排出量は他の有機成分よりもさらに少ないことが望ましい。抽出用媒体Iに含まれるベンゼンの濃度が5重量%より高いと、抽出排水Kに残留するベンゼンの量が無視できない量になり、場合によっては抽出作業を行なう前よりもベンゼン濃度が上がってしまう事もありうる。これに対し、抽出用媒体I中のベンゼン濃度を5重量%以下にしておけば、抽出槽4において、より効率よくベンゼンを回収することができる。
【0024】
次に、エチレン製造プロセスにおける、上記処理液の処理方法に関する第二の発明について説明する。なお、回収液E、分離ガス(第二の発明においてはFと表記)、分離液Gの扱い以外は、図1に示す第一の発明と同様である。
【0025】
図2に示すように、洗浄塔1内において、下部の向流によって霧状または液滴状になり上昇した処理液と分解ガスの混合物は、洗浄塔1の上段部から水Cを加えて、洗浄塔1の中上段部から回収される。この回収液Eの一部または全量から気液分離器2で分離ガスFを除去し、分離液Gとする。分離ガスFは排ガスとしてフレア処理されるか、あるいは燃料ガスまたは再度分解ガスとして分解ガス圧縮工程などへ供給し回収される。
【0026】
気液分離器2で分離された分離液Gは、回収液Eや排水Hと同様に有機成分を含んだままである。しかし、回収液Eと分離液Gと排水Hはどれも元は洗浄塔1内の処理液であり、有機成分以外に濃度が異なるが水酸化ナトリウムを含んだ水溶液であることは共通している。
【0027】
このため、分離液Gを、上記有機成分を含有する排水と混合させると共に、洗浄塔1に導入される水酸化ナトリウム水溶液Bと混合して洗浄塔1へ戻し、洗浄塔1内で向流させて、再び洗浄に用いることができる。また、必要に応じて一部の回収液Eを気液分離せずに直接水酸化ナトリウム水溶液Bと混合して、同様に洗浄に用いることができる。ただし、これにより、アルカリ水溶液中のアルカリ濃度が低下し、分解ガスA中の主に硫化水素からなる硫黄分を反応させて、硫化ナトリウムや水硫化ナトリウムにする転換率が低下する問題が発生する。このため、水酸化ナトリウム水溶液Bに混合される分離液G及び回収液Eの流量に応じて、混合後のアルカリ濃度が低下し過ぎないよう水酸化ナトリウム水溶液Bの濃度を調整する。向流された分離液Gは洗浄塔1の最下段部から排水E’として排出される。これによりBから供給されるアルカリ水溶液流量は低減され、結果として排液Pの流量も低減することができる。
【0028】
分離液Gを分岐させて、一方を洗浄塔1へ送り、もう一方を排水Hと混合する場合の、分岐させる量の比率や、回収液Eから直接洗浄塔1へ戻す流量と気液分離器2に供給する流量の比率は、固定するのではなく、プラントの運用状況に応じて変化させることができるのが望ましい。たとえば洗浄工程で発生するRed Oilが洗浄塔内に蓄積した場合などは、系内の排水の滞留時間を短くする必要があり、抽出槽4へ送る排水Hの量を調節することができると、プラントの運用上便利である。
【0029】
なお、エチレン製造プラントとは、単にエチレンのみを製造するプラントだけではなく、メタンやエタン等の燃料ガス、プロピレン等の樹脂材料、ガソリン、燃料油等といった、石油や石炭、天然ガス等を原料とする他の有機化学製品を生産するプラントを含めた総称である。
【0030】
また、洗浄塔における最上段部、上段部、中上段部、中段部、下段部、最下段部という区別や、上部、中部、下部という範囲は、基本的には上から上記の順番であるが、それらは絶対的なものではなく、その区別や範囲における相対的な目安である。
【0031】
(実施例1)
図1に示すエチレン製造工程で、分解ガスAを流量210t/hで洗浄塔1に供給する。15重量%水酸化ナトリウム溶液を0.8t/hで供給する。一方水を1.7t/hで供給する。排水E’の流量は2.5t/hで排水中の有機成分の1つであるベンゼン濃度は243重量ppmであった。表1に示すエチレン製造プロセスで副生する抽出油Iを用い、抽出除去した後の抽出排水K中のベンゼン濃度は57重量ppmであった。従ってベンゼンを含有する抽出排水Kを湿式酸化工程経由で2.5t/hの流量で活性汚泥処理へ供給することができた。
【0032】
【表1】

Figure 2004174390
【0033】
(比較例1)
図3に示すエチレン製造工程で分解ガスaを流量210t/hで洗浄塔1に供給する。5重量%水酸化ナトリウム溶液を2.5t/hで供給する。一方水を1.7t/hで供給する。排水e’の流量は2.5t/hで排水中の有機成分の1つであるベンゼン濃度は248重量ppmであった。この排水e’は気液分離器12’を経て排水hとなる。またcより供給された洗浄水eは気液分離器12を経由し分離液gとなる。分離液gの流量は1.7t/hで、その中のベンゼン濃度は207ppmであった。この分離液gと排水hは混合された後、実施例1と同様に表1に示す抽出油Iを用い、抽出除去を行った。その後の抽出排水k中のベンゼン濃度は80重量ppmであった。従ってベンゼンを含有する抽出排水kを湿式酸化工程経由で4.2t/hの流量で活性汚泥処理へ供給することができた。
【0034】
(実施例2)
水酸化ナトリウム(関東化学(株)製試薬)を4重量%、硫化ナトリウム(関東化学(株)製試薬)を6重量%含む水溶液1200mlにベンゼン(和光純薬工業(株)製試薬)を22重量%含む表2に示す有機液を120ml添加し室温で1Hr攪拌した。その後油水分離を行い、分離して得られた水溶液中のベンゼン濃度を測定すると112重量ppmであった。
【0035】
【表2】
Figure 2004174390
【0036】
(比較例2)
実施例2で水酸化ナトリウム(関東化学(株)製試薬)を4重量%、硫化ナトリウム(関東化学(株)製試薬)を6重量%含む水溶液の代わりに水を用いた以外は、実施例2と同様にした。分離後の水溶液中のベンゼン濃度は1356重量ppmであった。
【0037】
(比較例3)
実施例2で水酸化ナトリウム(関東化学(株)製試薬)を4重量%、硫化ナトリウム(関東化学(株)製試薬)を6重量%含む水溶液の代わりに水酸化ナトリウム(関東化学(株)製試薬)を1重量%、硫化ナトリウム(関東化学(株)製試薬)を1.5重量%含む水溶液を用いた以外は、実施例2と同様にした。分離後の水溶液中のベンゼン濃度は410重量ppmであった。
【0038】
(結果)
油水分離する排水中のアルカリ濃度は高い方がベンゼンなどの有機液の溶解が少なく、抽出除去の効率がいいことが判る。従って抽出工程から排出される有機物濃度を低減するには、図1に示すような方法が従来の図3の方法に比べ抽出工程での排水中のアルカリ濃度を高く維持できるためベンゼンなど有機物の溶解濃度を低減できる。
【0039】
【発明の効果】
この発明の方法により、有機成分を含有する回収液を洗浄塔に戻し、アルカリ水溶液として排水処理工程へ送ることで、エチレン製造プラントから系外に排出される有機成分の量をより抑えることができる。
【図面の簡単な説明】
【図1】エチレン製造プラントの、洗浄塔処理液の処理プロセスの例を示す模式図
【図2】エチレン製造プラントの、洗浄塔処理液の他の処理プロセスの例を示す模式図
【図3】従来のエチレン製造プラントにおける洗浄塔処理液の処理プロセスの例を示す模式図
【符号の説明】
1,11 洗浄塔
2,12 気液分離器
2’,12’ 気液分離器
3,13 油水混合機
4,14 抽出槽
5,15 タンク
6,16 湿式酸化槽
7,17 気液分離塔
A,a ナフサ分解ガス
B,b 水酸化ナトリウム水溶液
C,c 水
D,d 分解ガス中の有用なガス分
E,e 回収された霧状物又は液滴状物を含む回収液
E’,e’ 排水
F,f 回収物を分離したガス
G,g 回収物の分離液
H,h 溶存ガスを除去した排水
I,i 抽出用媒体
J,j 抽出済媒体と抽出された有機成分を含む液
K,k 抽出排水
L,l 空気
M,m 水蒸気
N,n pH調整剤
O,o 湿式酸化時に気化した成分を含む排ガス
P,p 湿式酸化処理後の排液
Q,q 抽出排水[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for treating a treatment liquid generated in a washing tower of an ethylene production plant.
[Prior art]
[0002]
In the ethylene production process, generally, an operation of previously removing a sulfur component, which is a catalyst poison, from a naphtha decomposition gas is performed. First, naphtha is decomposed in a pyrolysis furnace, and then gas and liquid are separated in a fractionation tower. The obtained gas, that is, the cracked gas is sent to a washing tower to remove the sulfur content.
[0003]
As shown in FIG. 3, the process of removing the sulfur content fixed in the washing tower is performed by converting the decomposition gas a introduced from the lower part of the washing tower 11 into an aqueous sodium hydroxide solution b introduced into the middle part of the washing tower 11. To fix the sulfur content contained in the decomposition gas a, and then discharge it as waste water e ′ from the lowermost part of the washing tower 11, and then perform gas-liquid separation of the dissolved gas to obtain waste water h. This is a process in which this is converted to sodium sulfate by wet oxidation and discharged out of the system.
[0004]
However, the wastewater h contains not only the sulfur content but also organic components generated when naphtha is decomposed. If the wastewater h is subjected to wet oxidation as it is, the organic component is vaporized by the heat applied at that time, and a gas containing a large amount of the organic component is released to the atmosphere, which may cause environmental problems. Therefore, before the wet oxidation step, the drainage h is mixed with the extraction medium i by the oil-water mixer 13 and sent to the extraction tank 14, where the extracted medium and the extracted organic component j are separated from the extraction drainage k, h, reduce the concentration of organic components.
[0005]
The extraction wastewater k having a reduced organic component concentration is once stored in a tank 15 and then sent to a wet oxidation tank 16. At this time, sulfur is wet-oxidized to sodium sulfate by adding air 1 and steam m. At this time, the organic components remaining in the extraction wastewater q are gasified at the same time. These are sent to the gas-liquid separation tower 17, where the gas-liquid is separated while adding and neutralizing the pH adjuster n. The liquid component is treated as a drainage p and the gas component is released to the atmosphere as exhaust gas o. However, since the organic components are extracted in advance in the extraction tank 14, the amount of the organic components contained in the exhaust gas o and released to the atmosphere can be suppressed.
[0006]
On the other hand, from the middle to the upper part of the washing tower 11, a counter-current of the decomposition gas a and the aqueous sodium hydroxide solution b generated from the middle to the lower part generates a mist-like or droplet-like mixture. It is difficult to take out only the gas amount d. Then, by adding water c from the upper part of the washing tower and causing it to flow countercurrently, the above-mentioned mixture is recovered in the upper middle part of the washing tower 11, and only useful gas components d are taken out from the uppermost part of the washing tower 11. The collected liquid e in the form of a mist or droplets is further passed through a gas-liquid separator 12 to separate a separated liquid g. The gaseous component f is a flare treatment as an exhaust gas or a decomposition gas compression step as a fuel gas or a decomposition gas again. It is supplied to and collected. The separated liquid g is mixed with the waste water h as described in Non-Patent Document 1, and sent to the wet oxidation step via the extraction step.
[0007]
[Non-patent literature]
1998 Custom System in NALCO / EXXON ETHYLENE Symposium Tokyo, Japan (Operation of Customer Systems Free from Polymers (Red Oil))
[0008]
[Problems to be solved by the invention]
However, the recovered liquid e also contains an organic component contained in the decomposed gas. Even after the recovered liquid e is subjected to gas-liquid separation and the separation gas f is removed, the separated liquid g does not contain any organic components. May be included. After the separated liquid g is mixed with the waste water e ′ or the waste water h, the organic component is removed in the above-mentioned extraction step. However, if the amount of water c used is large, the alkali concentration in the extracted waste water k is diluted, and the waste water is removed. When the density decreases and the high specific gravity extraction oil is used, the specific gravity difference between the extracted medium j and the extraction wastewater k is reduced, and the oil / water separation is deteriorated. In addition, when the alkali concentration decreases, the concentration of the organic component dissolved in the wastewater increases, so that there is a problem that the extraction / separation performance is reduced. In order to maintain the oil-water separation performance, it is necessary to increase the specific gravity difference between the extracted medium j and the extraction wastewater k, and for that purpose, the alkali concentration of the wastewater h must be increased. Furthermore, when the organic component concentration in the extraction wastewater k reaches the equilibrium concentration, the flow rate of the extraction wastewater k determines the amount of discharge from the gas o or the wastewater p to the outside of the system. This is an important issue.
[0009]
Accordingly, the present invention is to recover the organic component as much as possible by suppressing the discharge flow rate discharged from the washing tower as much as possible when the organic component contained in the recovery liquid e is recovered before being discharged out of the system. With the goal.
[0010]
[Means for Solving the Problems]
The present invention cleans the decomposition gas by flowing the naphtha decomposed gas introduced into the lower part of the washing tower of the ethylene production plant countercurrently with the aqueous sodium hydroxide solution introduced into the middle part of the washing tower. Discharging the wastewater containing the organic component contained in the decomposition gas from the lowermost part of the washing tower and discharging the organic component through the extraction step of the organic component using an extraction medium, By causing the gas to flow countercurrently to the water introduced into the upper part of the washing tower, mist or droplets are collected from the washed decomposition gas, and the organic components contained in the collected liquid are collected. In the method for treating a treatment liquid for a washing tower of an ethylene production plant, which is recovered in the extraction medium,
The above object was achieved by directly mixing the recovered liquid or a part of the separated liquid obtained by gas-liquid separation of the recovered liquid with the aqueous sodium hydroxide solution and returning the mixed liquid to the washing tower.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0012]
The present invention is directed to an organic solvent contained in a collected liquid obtained by collecting a gas-liquid mixture generated in the upper part of the washing tower by using a treatment step of wastewater discharged from the washing tower with respect to the treated liquid generated in the washing tower of the ethylene manufacturing plant. In recovering the components before discharging to the outside of the system, the recovered liquid is returned to the cleaning tower to reduce the processing liquid, and thereby the discharge of the organic components to the outside of the system is reduced. Processing method.
[0013]
The washing tower treatment liquid refers to drainage after washing the sulfur content in the decomposition gas of naphtha with an aqueous solution of sodium hydroxide in the washing tower, and counterflow of the washed decomposition gas in the washing tower with water. And a recovery liquid that is recovered as a mixture of gas and liquid generated by the recovery.
[0014]
First, a first invention relating to a method for treating the above-mentioned treatment liquid in the ethylene production process will be described.
[0015]
The naphtha cracked gas A from which the liquid component has been removed by fractionation after coming out of the pyrolysis furnace is sent to the lower part of the washing tower 1 as shown in FIG. In the washing tower 1, an aqueous sodium hydroxide solution B is introduced from the middle stage, and countercurrently flows from the lower portion with the decomposed gas A from the lower portion, thereby reacting a sulfur component mainly composed of hydrogen sulfide in the decomposed gas A, Change to sodium sulfide or sodium hydrosulfide. These sodium sulfide and sodium hydrosulfide are discharged from the lowermost part of the washing tower 1 as waste water E '. The wastewater E 'further contains unreacted sodium hydroxide and organic components contained in the naphtha decomposition gas.
[0016]
Effluent E ′ discharged from the washing tower 1 passes through a gas-liquid separator 2 ′, and the dissolved gas contained therein is removed as F ′ after removing F ′, or directly discharged without passing through the gas-liquid separator 2 ′. As H (not shown, the drainage E ′ is indicated as H for convenience even when not passing through the gas-liquid separator 2 ′), mixed with the extraction medium I in the oil-water mixer 3 and sent to the extraction tank 4. Then, the extracted medium J, which is a mixture of the extraction medium and the extracted organic components, is separated from the extraction wastewater K so that the concentration of the organic components contained in the extraction wastewater K is lower than the original wastewater H. The extraction wastewater K is temporarily stored in the tank 5 and then sent to the wet oxidation tank 6.
[0017]
In the wet oxidation tank 6, air L and steam M are added to the extraction wastewater K sent from the tank 5, and sodium sulfide and sodium hydrosulfide in the extraction wastewater K are changed into sodium sulfate. At this time, at the same time, the organic components contained in the extraction wastewater K are gasified. However, since the concentration of the organic components is reduced in the extraction tank 4, the amount of gasification can be suppressed.
[0018]
After passing through the wet oxidation tank 6, it is sent to the gas-liquid separation column 7, and contains neutralized by adding the pH adjuster N, and contains gaseous exhaust gas O containing a trace amount of organic components and sodium sulfate. The liquid is separated into a drainage liquid P which is a liquid component. The exhaust gas O is released into the atmosphere. However, since the concentration of the organic components in the wastewater H is reduced in advance in the extraction tank 4, the amount of the organic components released into the atmosphere in the gas-liquid separation tower 7 can be suppressed. Further, the drainage liquid P is processed via activated sludge processing or the like.
[0019]
On the other hand, in the washing tower 1, the mixture of the processing liquid and the decomposition gas, which is formed into a mist or a droplet by the countercurrent of the lower part and rises, is added with water C from the upper part of the washing tower 1 to cause the countercurrent to flow. It is collected from the middle part of the washing tower 1.
[0020]
The recovered liquid E still contains an organic component similarly to the wastewater E ′. However, both the recovery liquid E and the waste water E ′ are originally processing liquids in the washing tower 1, and in addition to containing organic components, they are common in that they are aqueous solutions having different concentrations but containing sodium hydroxide. ing.
[0021]
Therefore, the recovered liquid E is not directly mixed with the wastewater H via the gas-liquid separator, but is directly mixed with the aqueous sodium hydroxide solution B which is an alkaline aqueous solution and returned to the washing tower 1. However, simple mixing only lowers the alkali concentration in the aqueous sodium hydroxide solution introduced into the column, and reacts the sulfur content of the decomposition gas A, which is mainly composed of hydrogen sulfide, to form sodium sulfide or sodium hydrosulfide. A problem occurs in that the conversion rate decreases. For this reason, the alkali concentration in the alkaline aqueous solution B is adjusted such that the alkaline concentration of the mixture of the recovery liquid E and the alkaline aqueous solution B becomes a predetermined concentration. Thereby, the flow rate of the alkaline aqueous solution supplied from B can be reduced, and the flow rate of the drainage liquid P finally discharged out of the system can also be reduced. Since this method does not pass through the gas-liquid separator 12 shown in FIG. 3 which has been conventionally used, the dissolved gas contained in the recovered liquid is discarded by flare treatment or recompressed in a fuel gas or cracked gas compression step. Since the decomposed gas is recovered as it is without recovery, the recovery efficiency is improved, and the energy consumption is also efficient.
[0022]
The recovered liquid E is mixed with the aqueous alkali solution B supplied to the washing tower 1 and the alkali concentration is adjusted to obtain the same high specific gravity wastewater E 'as in the past. Thereby, oil-water separation in the extraction tank 4 does not deteriorate. Further, the flow rate of the waste water H is smaller than the flow rate of the liquid mixture of the waste water h and the separated liquid g shown in FIG. For this reason, the amount of the organic component finally discharged from the exhaust gas O and the waste liquid P can be further reduced by the reduced flow rate, which is advantageous in terms of environmental protection. In addition, the amount of heat applied in the wet oxidation tank 6 can be reduced by the reduced flow rate, which is advantageous in terms of energy consumption.
[0023]
The extraction medium I is a hydrophobic organic liquid capable of extracting organic components such as benzene and toluene from an aqueous solution. When benzene is contained in the naphtha decomposition gas, the concentration of benzene contained in the extraction medium is desirably 5% by weight or less. Benzene is often considered to be particularly environmentally harmful among the organic components generated by the decomposition of naphtha, and it is desirable that the amount of benzene emitted into the atmosphere is even lower than that of other organic components. When the concentration of benzene contained in the extraction medium I is higher than 5% by weight, the amount of benzene remaining in the extraction wastewater K becomes a nonnegligible amount, and in some cases, the benzene concentration is higher than before the extraction work is performed. Things can happen. On the other hand, if the benzene concentration in the extraction medium I is set to 5% by weight or less, benzene can be more efficiently recovered in the extraction tank 4.
[0024]
Next, a second invention relating to a method for treating the above-mentioned treatment liquid in the ethylene production process will be described. Except for the treatment of the recovery liquid E, the separation gas (denoted as F in the second invention), and the separation liquid G, it is the same as the first invention shown in FIG.
[0025]
As shown in FIG. 2, in the cleaning tower 1, the mixture of the processing liquid and the decomposition gas which has been formed into a mist or a droplet by the countercurrent of the lower part and rises is added with water C from the upper part of the cleaning tower 1. It is collected from the upper middle part of the washing tower 1. The separation gas F is removed from a part or all of the recovered liquid E by the gas-liquid separator 2 to obtain a separated liquid G. The separated gas F is subjected to flare treatment as exhaust gas, or supplied to a decomposition gas compression step or the like as a fuel gas or again as a decomposition gas and collected.
[0026]
The separated liquid G separated by the gas-liquid separator 2 still contains an organic component like the recovered liquid E and the waste water H. However, the recovery liquid E, the separation liquid G, and the wastewater H are all treatment liquids in the washing tower 1 and are common in that they are aqueous solutions containing sodium hydroxide having a different concentration besides the organic components. .
[0027]
For this reason, the separation liquid G is mixed with the wastewater containing the organic component, and is mixed with the aqueous sodium hydroxide solution B introduced into the washing tower 1 and returned to the washing tower 1, and is allowed to flow countercurrently in the washing tower 1. And can be used again for cleaning. Further, if necessary, a part of the recovered liquid E can be directly mixed with the aqueous sodium hydroxide solution B without gas-liquid separation, and used for washing similarly. However, this causes a problem that the alkali concentration in the aqueous alkali solution is reduced, and the conversion of sodium sulfide or sodium hydrosulfide into sodium sulfide or sodium hydrosulfide is reduced by reacting the sulfur component mainly composed of hydrogen sulfide in the decomposition gas A. . For this reason, the concentration of the aqueous sodium hydroxide solution B is adjusted according to the flow rates of the separation liquid G and the recovery liquid E mixed with the aqueous sodium hydroxide solution B so that the alkali concentration after mixing does not excessively decrease. The countercurrent separated liquid G is discharged from the lowermost part of the washing tower 1 as drainage E '. Thereby, the flow rate of the alkaline aqueous solution supplied from B is reduced, and as a result, the flow rate of drainage P can also be reduced.
[0028]
When the separated liquid G is branched and one is sent to the washing tower 1 and the other is mixed with the wastewater H, the ratio of the amount to be branched, the flow rate of the collected liquid E to be returned directly to the washing tower 1 and the gas-liquid separator It is desirable that the ratio of the flow rate supplied to 2 is not fixed, but can be changed according to the operation status of the plant. For example, when Red Oil generated in the washing step accumulates in the washing tower, it is necessary to shorten the residence time of the wastewater in the system, and if the amount of the wastewater H sent to the extraction tank 4 can be adjusted, It is convenient for plant operation.
[0029]
In addition, the ethylene production plant is not limited to a plant that produces only ethylene, but also uses petroleum, coal, natural gas, etc., such as fuel gas such as methane and ethane, resin materials such as propylene, gasoline, and fuel oil. Is a generic term that includes plants that produce other organic chemical products.
[0030]
Also, in the washing tower, the uppermost part, upper part, middle upper part, middle part, lower part, the distinction of the lowermost part, and the range of upper part, middle part, lower part are basically the above order from the top, , They are not absolute, they are relative measures in their distinction and scope.
[0031]
(Example 1)
In the ethylene production process shown in FIG. 1, the decomposition gas A is supplied to the washing tower 1 at a flow rate of 210 t / h. A 15% by weight sodium hydroxide solution is fed at 0.8 t / h. On the other hand, water is supplied at 1.7 t / h. The flow rate of the wastewater E ′ was 2.5 t / h, and the concentration of benzene, one of the organic components in the wastewater, was 243 ppm by weight. Using the extracted oil I by-produced in the ethylene production process shown in Table 1, the benzene concentration in the extraction wastewater K after extraction and removal was 57 ppm by weight. Therefore, the extraction wastewater K containing benzene could be supplied to the activated sludge treatment at a flow rate of 2.5 t / h via the wet oxidation step.
[0032]
[Table 1]
Figure 2004174390
[0033]
(Comparative Example 1)
In the ethylene production process shown in FIG. 3, the decomposition gas a is supplied to the washing tower 1 at a flow rate of 210 t / h. A 5% by weight sodium hydroxide solution is fed at 2.5 t / h. On the other hand, water is supplied at 1.7 t / h. The flow rate of the waste water e ′ was 2.5 t / h, and the concentration of benzene, one of the organic components in the waste water, was 248 ppm by weight. This drainage e 'becomes drainage h via the gas-liquid separator 12'. The washing water e supplied from c passes through the gas-liquid separator 12 to become a separated liquid g. The flow rate of the separated liquid g was 1.7 t / h, and the benzene concentration therein was 207 ppm. After the separated liquid g and the waste water h were mixed, extraction and removal were performed using the extracted oil I shown in Table 1 in the same manner as in Example 1. The benzene concentration in the subsequent extraction wastewater k was 80 ppm by weight. Therefore, the extraction wastewater k containing benzene could be supplied to the activated sludge treatment at a flow rate of 4.2 t / h via the wet oxidation step.
[0034]
(Example 2)
Benzene (reagent manufactured by Wako Pure Chemical Industries, Ltd.) was added to 1200 ml of an aqueous solution containing 4% by weight of sodium hydroxide (reagent manufactured by Kanto Chemical Co., Ltd.) and 6% by weight of sodium sulfide (reagent manufactured by Kanto Chemical Co., Ltd.). 120 ml of the organic liquid shown in Table 2 containing 1% by weight was added and stirred at room temperature for 1 hour. Thereafter, oil-water separation was performed, and the benzene concentration in the aqueous solution obtained by separation was 112 ppm by weight.
[0035]
[Table 2]
Figure 2004174390
[0036]
(Comparative Example 2)
Example 2 Example 2 was repeated except that water was used instead of the aqueous solution containing 4% by weight of sodium hydroxide (a reagent manufactured by Kanto Chemical Co., Ltd.) and 6% by weight of sodium sulfide (a reagent manufactured by Kanto Chemical Co., Ltd.). Same as 2. The benzene concentration in the aqueous solution after separation was 1356 ppm by weight.
[0037]
(Comparative Example 3)
In Example 2, sodium hydroxide (Kanto Chemical Co., Ltd.) was used instead of the aqueous solution containing 4% by weight of sodium hydroxide (reagent made by Kanto Chemical Co., Ltd.) and 6% by weight of sodium sulfide (reagent made by Kanto Chemical Co., Ltd.). Example 2 was carried out in the same manner as in Example 2 except that an aqueous solution containing 1% by weight of sodium sulfide (a reagent manufactured by Kanto Chemical Co., Ltd.) was used. The benzene concentration in the aqueous solution after the separation was 410 ppm by weight.
[0038]
(result)
It can be seen that the higher the alkali concentration in the wastewater to be separated from oil and water, the less the organic liquid such as benzene is dissolved, and the higher the efficiency of extraction and removal. Therefore, in order to reduce the concentration of organic substances discharged from the extraction step, the method shown in FIG. 1 can maintain the alkali concentration in the wastewater in the extraction step higher than the conventional method of FIG. The concentration can be reduced.
[0039]
【The invention's effect】
According to the method of the present invention, the amount of the organic component discharged from the ethylene production plant to the outside of the system can be further suppressed by returning the recovery liquid containing the organic component to the washing tower and sending it to the wastewater treatment step as an aqueous alkaline solution. .
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an example of a process for treating a cleaning tower treatment liquid in an ethylene production plant. FIG. 2 is a schematic diagram showing another example of a treatment process for a cleaning tower treatment solution in an ethylene production plant. Schematic diagram showing an example of a treatment process of a treatment liquid for a washing tower in a conventional ethylene production plant [Description of symbols]
1,11 Washing tower 2,12 Gas-liquid separator 2 ', 12' Gas-liquid separator 3,13 Oil-water mixer 4,14 Extraction tank 5,15 Tank 6,16 Wet oxidation tank 7,17 Gas-liquid separation tower A , A Naphtha decomposed gas B, b Sodium hydroxide aqueous solution C, c Water D, d Useful gas content E, e in decomposed gas Recovered liquid E ', e' containing collected mist or droplets Wastewater F, f Gas G from which the recovered material is separated, g Separated liquid H from the recovered material, h Wastewater I from which dissolved gas is removed I, i Extraction medium J, j Liquid K containing the extracted medium and the extracted organic components, k Extraction wastewater L, 1 Air M, m Steam N, n pH adjuster O, o Exhaust gas P containing components vaporized during wet oxidation, p Wastewater Q after wet oxidation treatment Q, q Extraction wastewater

Claims (4)

エチレン製造プラントの洗浄塔の下段部に導入されるナフサの分解ガスを、上記洗浄塔の中段部に導入される水酸化ナトリウム水溶液と向流させることによって、上記分解ガスを洗浄し、上記分解ガスに含まれる有機成分を含有する排水を上記洗浄塔の最下段部から排出させ、抽出用媒体による上記有機成分の抽出工程を経て系外へ排出させる一方で、上記洗浄された分解ガスを上記洗浄塔の上段部に導入される水と向流させることによって、上記の洗浄された分解ガスから霧状物又は液滴状物を回収し、その回収液に含有される有機成分を上記抽出用媒体に回収させる、エチレン製造プラントの洗浄塔処理液の処理方法において、
上記回収液を上記水酸化ナトリウム水溶液と混合し、上記洗浄塔に戻し、上記洗浄塔内で向流させた後、上記洗浄塔の最下段部より排出させ、上記回収液が含有する有機成分を、上記排水が含有する有機成分として、上記抽出用媒体に抽出させる、エチレン製造プラントの洗浄塔処理液の処理方法。
The decomposed gas of naphtha introduced into the lower part of the washing tower of the ethylene production plant is counter-flowed with the aqueous sodium hydroxide solution introduced into the middle part of the washing tower, thereby washing the decomposed gas and removing the decomposed gas. The wastewater containing the organic components contained in the washing tower is discharged from the lowermost part of the washing tower, and is discharged out of the system through the extraction step of the organic components using the extraction medium, while the washed decomposition gas is washed in the washing tower. By flowing countercurrently with the water introduced into the upper part of the tower, mist or droplets are recovered from the washed decomposition gas, and the organic component contained in the recovered liquid is extracted by the extraction medium. In the method for treating a treatment liquid for a washing tower of an ethylene production plant,
The recovered liquid is mixed with the aqueous sodium hydroxide solution, returned to the washing tower, and allowed to flow countercurrently in the cleaning tower, and then discharged from the lowermost part of the washing tower, and the organic component contained in the recovered liquid is removed. A method for treating a treatment liquid in a washing tower of an ethylene production plant, wherein the treatment liquid is extracted by the extraction medium as an organic component contained in the wastewater.
エチレン製造プラントの洗浄塔の下段部に導入されるナフサの分解ガスを、上記洗浄塔の中段部に導入される水酸化ナトリウム水溶液と向流させることによって、上記分解ガスを洗浄し、上記分解ガスに含まれる有機成分を含有する排水を上記洗浄塔の最下段部から排出させ、抽出用媒体による上記有機成分の抽出工程を経て系外へ排出させる一方で、上記洗浄された分解ガスを上記洗浄塔の上段部に導入される水と向流させることによって、上記の洗浄された分解ガスから霧状物又は液滴状物を回収し、その回収液に含有される有機成分を上記抽出用媒体に回収させる、エチレン製造プラントの洗浄塔処理液の処理方法において、
上記回収液から気液分離器によって分離液を取り出し、この分離液を、上記有機成分を含有する排水と混合させると共に、上記水酸化ナトリウム水溶液と混合して上記洗浄塔に戻し、
上記洗浄塔に戻した上記分離液を上記洗浄塔内で向流させることによって、上記洗浄塔の最下段部から排水として排出させ、上記排水と混合した分離液と共に上記抽出工程へ送ることによって、上記分離液が含有する有機成分を、上記抽出用媒体に抽出させる、エチレン製造プラントの洗浄塔処理液の処理方法。
The decomposed gas of naphtha introduced into the lower part of the washing tower of the ethylene production plant is counter-flowed with the aqueous sodium hydroxide solution introduced into the middle part of the washing tower, thereby washing the decomposed gas and removing the decomposed gas. The wastewater containing the organic components contained in the washing tower is discharged from the lowermost part of the washing tower, and is discharged out of the system through the extraction step of the organic components using the extraction medium, while the washed decomposition gas is washed in the washing tower. By flowing countercurrently with the water introduced into the upper part of the tower, mist or droplets are recovered from the washed decomposition gas, and the organic component contained in the recovered liquid is extracted by the extraction medium. In the method for treating a treatment liquid for a washing tower of an ethylene production plant,
A separated liquid is taken out from the recovered liquid by a gas-liquid separator, and the separated liquid is mixed with a wastewater containing the organic component, mixed with the aqueous sodium hydroxide solution, and returned to the washing tower.
By causing the separated liquid returned to the washing tower to flow countercurrently in the washing tower, discharged as wastewater from the lowermost part of the washing tower, and sent to the extraction step together with the separated liquid mixed with the wastewater, A method for treating a treatment liquid in a washing tower of an ethylene production plant, wherein an organic component contained in the separation liquid is extracted by the extraction medium.
上記回収液の一部を直接上記水酸化ナトリウム水溶液に混合させる、請求項2に記載のエチレン製造プラントの洗浄塔処理液の処理方法。The method according to claim 2, wherein a part of the recovered solution is directly mixed with the aqueous sodium hydroxide solution. 上記のナフサの分解ガスがベンゼンを含有し、上記抽出用媒体に含まれるベンゼンの濃度が5重量%以下である、請求項1乃至3のいずれかに記載のエチレン製造プラントの洗浄塔処理液の処理方法。4. The treatment solution for a cleaning tower of an ethylene production plant according to claim 1, wherein the decomposition gas of naphtha contains benzene, and the concentration of benzene contained in the extraction medium is 5% by weight or less. Processing method.
JP2002344377A 2002-11-27 2002-11-27 Processing method of cleaning tower processing liquid in ethylene production plant Expired - Fee Related JP3872749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002344377A JP3872749B2 (en) 2002-11-27 2002-11-27 Processing method of cleaning tower processing liquid in ethylene production plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002344377A JP3872749B2 (en) 2002-11-27 2002-11-27 Processing method of cleaning tower processing liquid in ethylene production plant

Publications (2)

Publication Number Publication Date
JP2004174390A true JP2004174390A (en) 2004-06-24
JP3872749B2 JP3872749B2 (en) 2007-01-24

Family

ID=32705881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002344377A Expired - Fee Related JP3872749B2 (en) 2002-11-27 2002-11-27 Processing method of cleaning tower processing liquid in ethylene production plant

Country Status (1)

Country Link
JP (1) JP3872749B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010144190A2 (en) * 2009-06-10 2010-12-16 Uop Llc Methods and systems for efficient neutralization of acid gases

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010144190A2 (en) * 2009-06-10 2010-12-16 Uop Llc Methods and systems for efficient neutralization of acid gases
WO2010144190A3 (en) * 2009-06-10 2011-03-31 Uop Llc Methods and systems for efficient neutralization of acid gases

Also Published As

Publication number Publication date
JP3872749B2 (en) 2007-01-24

Similar Documents

Publication Publication Date Title
US5236557A (en) Process for purification of aqueous solutions containing hydrogen sulfide, hydrogen cyanide, and ammonia
KR101322224B1 (en) Methods and systems for deacidizing gaseous mixtures
RU2561625C2 (en) Method of separating and purifying sodium sulphide
CN101704726B (en) Continuous refinement separation device and method of coked crude phenol
JP2005502460A5 (en)
RU2756585C2 (en) Purification of waste stream in technological process of joint production of propylene oxide and styrene
CN102350203A (en) Process for removing hydrogen-sulfide-containing gas by using rotary power equipment
WO2018190886A1 (en) Systems and processes for removing hydrogen sulfide from gas streams
CN103045288B (en) Comprehensive treatment method of high-sulphur high-COD (Chemical Oxygen Demand) caustic sludge waste liquid
KR20110095294A (en) Method and apparatus for treating an off-gas stream
CN1670134A (en) Method for refining catalytic gasoline
CN105793220A (en) Process for removal of sulphur from raw methanol
EP2686276A2 (en) Elimination of hydrogen sulfide in aqueous ammonia
CN1774288A (en) A process for the removal of H2S and mercaptans from a gas stream
JP2004174390A (en) Treatment method for treatment liquid of washing column of ethylene manufacturing plant
WO2013160420A1 (en) Method for reducing organic impurities in waste water
CN104030486B (en) A kind of dephenolization treating method of residual coking ammonia water
CN104609622B (en) The processing method of spent lye in a kind of ethylene production
JP2004175729A (en) Method for treating treated liquid of wash column of ethylene production plant
EP3511310B1 (en) Device and method for increasing the content of methane in a current of biogas by means of a low-pressure airlift system
CN105000733B (en) Treatment method of organic nitrogen-containing liquid-state hydrocarbon waste alkali liquid
CN104071913A (en) Pollution-free processing method of sulfur-containing waste alkaline solution
KR100478271B1 (en) Wet oxidation process
CN108117209A (en) The integrated conduct method and device of a kind of alkali residue waste liquid
CN106277468A (en) A kind of method removing oils from high salinity DMF waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061020

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3872749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees