【0001】
【発明の属する技術分野】
本発明は、RNAと、ゼラチンもしくはコラーゲン・ペプチドとからなるRNA−ゼラチン複合体、該RNA−ゼラチン複合体の製造方法、ならびに該RNA−ゼラチン複合体を含む健康食品に関する。
【0002】
【従来の技術】
従来より、酵母より抽出された核酸、特にRNAは、その細胞の新陳代謝を補助する栄養素として知られており、一方、一般に食品市場で呼ばれる「コラーゲン」即ち、コラーゲンの加熱変性により水溶性誘導タンパク質である「ゼラチン」もしくはゼラチンをさらに低分子化した「コラーゲン・ペプチド」等は、高血圧の防止や骨粗鬆症の軽減、関節炎の治癒などに効果や、体内でのコラーゲン合成を促進し、皮膚の若返りや肌の保湿性が高まるなどの美容効果等があるといわれており、近年注目を浴びている。そしてこれらは、健康食品の他、化粧品や医薬品等の材料として、様々な分野で使用されている。その場合、これらはそれぞれ単独で用いられる場合もあるが、より効能を高める観点から、これら両者の併用も試みられている。RNAと、ゼラチンやコラーゲン・ペプチドとを含む健康食品等は、一般に原料となる精製酵母RNAと、精製ゼラチンもしくは精製コラーゲン・ペプチドとを別々に製造し、製造されたそれらを所定の配合比で混合することにより製造されている。即ち、上記の健康食品等の製造にあっては、RNAとゼラチンもしくはコラーゲン・ペプチドの各々独立した製造及び精製過程を経る必要があり、製造工程数が多く、生産費を上げる要因の一つとなっていた。
また、従来酵母からRNAを単離し、それを最終用途となる健康食品等に材料として提供するため、酵母から抽出されるRNAはできるだけ精製されていることが必要であった。
【0003】
通常、酵母には、RNAが2〜4重量%含まれており、これを利用するためのRNAの抽出精製作業は一般に、食塩水溶液を用いて行い(例えば、特許文献1)、その後、抽出溶液の食塩分を除く工程を経て行われている。しかし、この食塩分の除去には複雑な工程が必要であり、多大なコストがかかるため、従来の酵母RNA製品には、完全に塩分除去されない10重量%以上のかなりの塩分を含む製品として製造されているものも知られている。このような製品を健康食品等の原料として使用する場合には、脱塩等の前処理を要することもある。
【0004】
また、他にも酵母からのRNA抽出法として、酸やアルカリ、ドデシル硫酸ソーダ(SDS)等の界面活性剤や、フェノール等の抽出剤を使用する方法、その他リゾチームを使用する生化学的方法、超音波、ガラスビーズ、ボールミル、高圧噴射衝撃、等を使用する方法が知られている。例えば特許文献2には、酵母菌体を含有する懸濁液を破壊処理することにより得られた酵母スラリーに塩類を添加し、さらにアルカリ性(pH9〜9.5)で90℃〜110℃で15ないし60分加熱抽出し、それをpH2以下の硫酸酸性下で沈殿させ分離することによる高純度のリボ核酸を製造する方法が開示されている。
上述のような酵母からのRNA抽出方法では、脱塩や抽出後、さらなるRNA精製が必要となる。また、使用する抽出剤には食品製造に適しない抽出剤も多い。
【0005】
【特許文献1】
特開昭50−135274号公報(第1〜2頁)
【特許文献2】
特開平10−117794号公報(第2〜4頁)
【0006】
【発明が解決しようとする課題】
本発明はかかる事情の下なされたもので、RNAと、ゼラチンもしくはコラーゲン・ペプチドの双方の性能特性を満足に発揮するものであって、かつ、これらの混合物を用いた場合と比較してより経済的に、しかも高品質に製造されうるところの新規RNA−ゼラチン複合体を提供することを課題とするものである。また、本発明はかかる新規RNA−ゼラチン複合体を利用した従来に無い健康食品の提供をも課題とするものである。
【0007】
【課題を解決するための手段】
本発明者らは酵母RNAと、ゼラチンもしくはコラーゲン・ペプチドに関し、様々な研究を重ねていたところ、酵母菌体を含有する懸濁液を破砕処理して得られたスラリーに塩類を添加し、ゼラチンもしくはコラーゲン・ペプチドと共存させた酸性懸濁液中で、酵母RNAと、ゼラチンもしくはコラーゲン・ペプチドとが水難溶性の新規な複合体を形成することを見出した。そこで本発明者らはこの知見に基づいて鋭意検討し、酵母RNAと、ゼラチンもしくはコラーゲン・ペプチドの作用を併せ持つことが期待できる、RNA−ゼラチン複合体であって、健康食品等のための材料として利用可能な本発明を完成させた。
従って、本発明は特に酵母由来のRNAとゼラチンもしくはコラーゲン・ペプチドとから、これら両者の活性が消失することなく複合形成されてなるRNA−ゼラチン複合体ならびに、酵母菌体を含有する懸濁液を破砕処理して得られたスラリーに塩類を添加し、それに酸を加えて酸性にした懸濁液にゼラチンもしくはコラーゲン・ペプチドを加えることにより、RNA−ゼラチン複合体を得る、該RNA−ゼラチン複合体の製造方法に関する。また、本発明は酵母RNA抽出物の酸性溶液にゼラチンもしくはコラーゲン・ペプチドを加えることによる、RNA−ゼラチン複合体の製造方法にも関する。
前述のように健康食品の材料として、酵母RNAと、ゼラチンもしくはコラーゲン・ペプチドとを配合したものは既に知られているが、本発明のようなRNA−ゼラチン複合体を含む健康食品は知られていない。
【0008】
本発明における酵母は食品として利用できる種類のものであれば、特に制限されることはないが、代表的にはビール酵母、パン酵母、乳酵母として知られるSaccharomyces 属、Kluyveromyces属の他、場合によってPichia属、Hansenula属およびCandida属等の酵母等も挙げられる。特にビール酵母(Saccharomyces cervisiae)が好ましい。
本発明における複合体のRNA源としては、酵母菌体を直接破砕処理して得られたスラリーに塩類を添加することにより得た懸濁液やそれから菌体を除去したRNA抽出物を使用することもできるが、市販の酵母RNAエキスを使用でき、乾燥粉末では水に溶解して利用することができる。さらに、都合の良いことには例えば、塩化ナトリウムを約10〜15重量%で使用することによって得られた高濃度の塩分を含む酵母由来のRNA抽出物を原料として使用しても、得られた本発明の複合体中の元素分析によるClの検出はほとんどみられず、塩分濃度は非常に低いことが見いだされた。即ち、本発明は一般的に使用されている塩化ナトリウムを用いたRNA抽出法により得られた、塩分濃度は高いが、核酸RNAの含有率の高い抽出物を材料に使用しても、塩化ナトリウム含有量が低濃度のRNA−ゼラチン複合体を得ることができる。
なお、酵母菌体を含有する懸濁液を破砕処理して得られたスラリー等に添加する塩類は、上述のような塩化ナトリウムの他、塩化カリウム、塩化リチウム、過塩素酸ナトリウム、硫酸ナトリウム、炭酸ナトリウム、硫酸アンモニウム等がある。
【0009】
また、本発明で使用するゼラチンは、動物の皮、じん帯又は腱などに含まれているコラーゲンから製造され、特に牛皮、骨、豚皮由来のゼラチンであり、商業的に入手できる。またコラーゲン・ペプチドはゼラチンをさらに酸や酵素によって加水分解し、低分子化したものであり、商業的に入手できる。
【0010】
なお、本発明のRNA−ゼラチン複合体は、ポリアニオン性天然高分子であるRNAやDNAに対し、ポリカチオン性高分子であるゼラチンもしくはコラーゲン・ペプチドを加えることにより形成されるものと考えられる。
従って、本発明のRNAと複合体を形成するゼラチンやコラーゲン・ペプチドはポリカチオン性高分子であるが、本発明に関連して、RNAとの複合体はゼラチンもしくはコラーゲン・ペプチド以外にも他のポリカチオン性の天然高分子または合成高分子が使用できる。これらの例としては、キトサン等の天然多糖及びその誘導体、リシンやアルギニンなどの塩基性アミノ酸を多く含むタンパク質、例えばプロタミン等また、ポリエチレンアミンなどの合成高分子も使用できる。
【0011】
RNA−ゼラチン複合体形成は、酵母菌体を含有する懸濁液を破砕処理して得られたスラリーに塩類を添加したものまたは市販等の酵母RNA抽出物と、ゼラチンもしくはコラーゲン・ペプチドとを水性媒体中で懸濁溶解し、反応を促進するために酸を添加して、pH1〜6.5、好ましくはpH3〜4の酸性条件下で行う。pHが1より低い場合には、RNAの加水分解が起こるために好ましくなく、また、pH6.5以上では反応促進効果が無くなる。これらのpH調整のための酸は塩酸、硫酸、酢酸、クエン酸、酒石酸などが適当である。
また、反応温度は10〜90℃が適当であり、室温でも十分進行可能である。
上記条件下で、反応を20〜30分ないし4〜5時間おこなうことにより目的の複合体が得られる。
【0012】
本発明のRNA−ゼラチン複合体は、形成後は水洗のみでさらなる脱塩等の工程を必要とすることなく、健康食品等のにそのまま利用できる。本発明のRNA−ゼラチン複合体は水難溶性で、水溶液中で沈殿するのでろ過、遠心分離等により、容易に溶液から分離できる。分離後、乾燥し、粉末状、顆粒状、固形状または懸濁溶液状の健康食品や他の可能な用途、例えば化粧品等の材料として使用することができ、RNAとゼラチンの両方の効力が期待できる健康食品用の材料とすることができる。
従って、本発明はさらに上記RNA−ゼラチン複合体を含む健康食品にも関する。これらは例えば、錠剤、タブレット、機能性食品、各種飲料等の原料として使用できる。
【0013】
【実施例】
以下、本発明を限定することを目的としない実施例によって、本発明をより詳細に説明する。
実施例1
固形分15%ビール酵母懸濁水溶液を高圧噴射衝撃式ホモジナイザーを用いて、1000kgf/cm2の圧力で1回破砕処理した。この酵母懸濁液150mlに水50〜200mlおよび食塩5〜20g加え十分に混合した後、100℃のオートクレーブに1時間かけ、室温まで水冷して懸濁スラリーを得た。これとは別にゼラチン(和光純薬製)1gを100mlの水に溶解し24時間振とうさせて1重量%ゼラチン水溶液を調製した。室温下、前記懸濁スラリー20mlに、酢酸(和光純薬製)を滴下してpHを約3に調整後、前記1重量%ゼラチン水溶液6mlを滴下した。得られた混合液を室温で4時間振とうさせた。得られたサンプルを3000rpmで30分遠心分離した後、沈殿物を10mlの蒸留水で3回洗浄し、40℃で真空乾燥させた。
約0.12g(例えば食塩20g使用の場合)の黄色い固体が得られたが、この複合体にはそのまま実際の食品に使用しても支障のない程度の塩分が含まれるにすぎなかった。
また、この複合体の赤外分光分析(装置:HORIBA FT−210、(株)堀場製作所製、条件:KBr法)を行ったところ、下記、図1のビール酵母由来のRNAが示した波数1535cm−1、1473cm−1、1235cm−1、1050cm−1の位置と同じ位置にピークがみられることから、この沈殿物はビール酵母由来のRNAの特徴を示すことが判る。
【0014】
実施例2
ビール酵母より抽出したRNA〔商品名:酵母RNA、北京燕京中科生物技術有限公司製、中国、北京、塩化ナトリウム12重量%含有、赤外分光スペクトル(装置:HORIBA FT−210、(株)堀場製作所製、条件:KBr法)を図1に示す。)〕0.5gを99.5mlの水に溶かし24時間振とうさせて(ラボシェーカー、井内盛栄堂(株)製を使用)、0.5重量%RNA水溶液を調製した。ゼラチン(和光純薬製)1gを100mlの水に溶解させ、一度80℃にまで温度を昇温後、室温で24時間振とうさせて1重量%のゼラチン水溶液を調製した。次いで室温下、前記0.5重量%RNA水溶液10mlに酢酸(和光純薬製)0.5mlを滴下した後、前記1重量%のゼラチン水溶液6mlを滴下した。得られた混合液を室温で4時間振とうさせた。得られたサンプルを3000rpmで30分遠心分離した後、沈殿物を2mlの蒸留水で洗浄し、40℃で真空乾燥させた。
0.1088gの黄色固体が得られ、塩素の元素分析(フラスコ燃焼法)では塩素は検出されなかった。従って、この複合体には実質的に塩化ナトリウムが含まれないと考えることができる。
さらに、この複合体の赤外分光分析(装置:HORIBA FT−210、(株)堀場製作所製、条件:KBr法)を行ったところ、図2に示すスペクトルが得られ、図1の酵母エキス由来のRNAが示した波数1535cm−1、1473cm−1、1235cm−1、1050cm−1の位置と同じ位置にピークがみられることから、この沈殿物は酵母エキス由来のRNAの特徴を示すことが判る。
【0015】
【発明の効果】
本発明では、従来、健康食品等において精製酵母RNAと精製ゼラチンもしくは精製コラーゲン・ペプチドをそれぞれ加える場合に比べ、2つの機能を併せ持つRNA−ゼラチン複合体を精製酵母RNAの製造過程で高純度で製造することができるので健康食品等の製造工程数をより少なくすることができる。また、本発明のRNA−ゼラチン複合体は、酸性下で酵母懸濁液に直接ゼラチンもしくはコラーゲン・ペプチドを加えるという簡素な方法で形成でき、しかも水難溶性のため分離が容易である。さらに例え、従来から知られた塩化ナトリウムにより抽出された酵母RNA抽出物を使用しても、本発明の方法により得られたRNA−ゼラチン複合体は殆ど塩分を含まないので、そのまま脱塩処理を要せずに、健康食品用の材料として利用できる。
従って本発明により、健康食品をより経済的に、効率良く提供することができる。
【図面の簡単な説明】
【図1】実施例2で使用した酵母由来のRNAの赤外分光スペクトルを示す。
【図2】実施例2で得られた酵母由来のRNA−ゼラチン複合体の赤外分光スペクトルを示す。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an RNA-gelatin complex comprising RNA and gelatin or a collagen peptide, a method for producing the RNA-gelatin complex, and a health food containing the RNA-gelatin complex.
[0002]
[Prior art]
Conventionally, nucleic acids extracted from yeast, particularly RNA, have been known as nutrients to assist the metabolism of their cells. On the other hand, “collagen”, which is generally called in the food market, is a water-soluble inducible protein by heat denaturation of collagen. Certain "gelatin" or "collagen peptide", which is a lower molecular form of gelatin, is effective in preventing hypertension, reducing osteoporosis, healing arthritis, promoting collagen synthesis in the body, rejuvenating the skin, It is said that it has beauty effects such as increased moisturizing properties and has been receiving attention in recent years. These are used in various fields as materials for cosmetics, pharmaceuticals, etc. in addition to health foods. In that case, each of them may be used alone, but from the viewpoint of further increasing the efficacy, the use of both of them has also been attempted. For health foods containing RNA, gelatin and collagen peptides, generally, purified yeast RNA, which is a raw material, and purified gelatin or purified collagen peptides are separately produced, and the produced products are mixed at a predetermined mixing ratio. It is manufactured by doing. That is, in the production of the above-mentioned health foods and the like, it is necessary to go through independent production and purification steps of RNA and gelatin or collagen peptide, and the number of production steps is large, which is one of the factors that increase production costs. I was
In addition, in order to isolate RNA from yeast and provide it as a material to health foods and the like, which are final uses, it has been necessary that RNA extracted from yeast be purified as much as possible.
[0003]
Usually, yeast contains 2 to 4% by weight of RNA, and extraction and purification of RNA to use the RNA is generally performed using a saline solution (for example, Patent Document 1). Is carried out through a step of removing salt. However, the removal of this salt requires complicated steps and is very costly, so that conventional yeast RNA products are manufactured as products containing a considerable amount of salt of 10% by weight or more that are not completely desalted. Some are known. When such a product is used as a raw material for health foods or the like, pretreatment such as desalting may be required.
[0004]
Other methods for extracting RNA from yeast include a method using an acid, an alkali, a surfactant such as sodium dodecyl sulfate (SDS), a method using an extractant such as phenol, other biochemical methods using lysozyme, Methods using ultrasonic waves, glass beads, ball mills, high pressure jet impact, etc. are known. For example, Patent Literature 2 discloses that a salt is added to a yeast slurry obtained by disrupting a suspension containing yeast cells, and the mixture is further alkalinized (pH 9 to 9.5) at 90 ° C to 110 ° C and 15 ° C. A method for producing high-purity ribonucleic acid by heating and extracting for 60 minutes or less, and precipitating and separating it under sulfuric acid at pH 2 or less.
In the method for extracting RNA from yeast as described above, further desalination and extraction, and then further RNA purification is required. In addition, many of the extractants used are not suitable for food production.
[0005]
[Patent Document 1]
JP-A-50-135274 (pages 1 and 2)
[Patent Document 2]
JP-A-10-117794 (pages 2 to 4)
[0006]
[Problems to be solved by the invention]
The present invention has been made under such circumstances, and satisfactorily exhibits the performance characteristics of both RNA and gelatin or collagen peptide, and is more economical than the case where a mixture thereof is used. It is an object of the present invention to provide a novel RNA-gelatin complex that can be produced specifically and with high quality. Another object of the present invention is to provide an unprecedented health food using such a novel RNA-gelatin complex.
[0007]
[Means for Solving the Problems]
The present inventors have been conducting various studies on yeast RNA and gelatin or collagen peptide, and added salts to a slurry obtained by crushing a suspension containing yeast cells, adding gelatin to the slurry. Alternatively, it has been found that yeast RNA and gelatin or collagen peptide form a novel complex with poor water solubility in an acidic suspension coexisting with collagen peptide. Therefore, the present inventors have conducted intensive studies based on this finding, and are an RNA-gelatin complex that can be expected to have both the functions of yeast RNA and gelatin or collagen peptide, and as a material for health foods and the like. The present invention that can be used has been completed.
Accordingly, the present invention particularly provides an RNA-gelatin complex formed by complexing yeast-derived RNA and gelatin or collagen peptide without losing the activity of both, and a suspension containing yeast cells. The RNA-gelatin complex is obtained by adding salts or salts to the slurry obtained by the crushing treatment and adding gelatin or collagen peptide to the acidified suspension. And a method for producing the same. The present invention also relates to a method for producing an RNA-gelatin complex by adding gelatin or collagen peptide to an acidic solution of yeast RNA extract.
As described above, as a health food material, a mixture of yeast RNA and gelatin or collagen peptide is already known, but a health food containing an RNA-gelatin complex as in the present invention is known. Absent.
[0008]
The yeast in the present invention is not particularly limited as long as it is of a type that can be used as food, but typically, brewer's yeast, baker's yeast, genus Saccharomyces known as milk yeast, other than the genus Kluyveromyces , and in some cases, Yeasts such as the genus Pichia, the genus Hansenula and the genus Candida are also included. Particularly, brewer's yeast ( Saccharomyces cervisiae ) is preferable.
As the RNA source of the complex in the present invention, a suspension obtained by adding salts to a slurry obtained by directly crushing yeast cells or an RNA extract from which the cells have been removed is used. Alternatively, a commercially available yeast RNA extract can be used, and a dry powder can be used by dissolving it in water. In addition, advantageously, for example, the use of a yeast-derived RNA extract containing a high concentration of salt obtained by using about 10 to 15% by weight of sodium chloride as a raw material can also be used. Almost no Cl was detected by elemental analysis in the complex of the present invention, and the salt concentration was found to be very low. That is, the present invention provides a method for extracting RNA, which has a high salt concentration but a high content of nucleic acid RNA obtained by a commonly used RNA extraction method using sodium chloride. An RNA-gelatin complex having a low content can be obtained.
Salts added to the slurry and the like obtained by crushing the suspension containing the yeast cells, in addition to sodium chloride as described above, potassium chloride, lithium chloride, sodium perchlorate, sodium sulfate, Examples include sodium carbonate and ammonium sulfate.
[0009]
The gelatin used in the present invention is produced from collagen contained in animal skin, ligament or tendon, and is particularly gelatin derived from cow skin, bone and pig skin, and is commercially available. Collagen peptide is obtained by further hydrolyzing gelatin with an acid or an enzyme to reduce the molecular weight, and is commercially available.
[0010]
The RNA-gelatin complex of the present invention is considered to be formed by adding a polycationic polymer, gelatin or collagen peptide, to a polyanionic natural polymer, RNA or DNA.
Accordingly, gelatin and collagen peptides forming a complex with the RNA of the present invention are polycationic polymers, but in the context of the present invention, complexes with RNA are other than gelatin or collagen peptides. Polycationic natural or synthetic polymers can be used. Examples thereof include natural polysaccharides such as chitosan and derivatives thereof, proteins containing a large amount of basic amino acids such as lysine and arginine, such as protamine, and synthetic polymers such as polyethyleneamine.
[0011]
RNA-gelatin complex formation is carried out by subjecting a suspension obtained by crushing a suspension containing yeast cells to a salt obtained by adding salts or a yeast RNA extract such as commercially available, and gelatin or collagen peptide to an aqueous solution. The suspension is dissolved in a medium, and an acid is added to promote the reaction, and the reaction is performed under acidic conditions of pH 1 to 6.5, preferably pH 3 to 4. When the pH is lower than 1, hydrolysis of RNA occurs, which is not preferable. When the pH is 6.5 or higher, the reaction promoting effect is lost. Suitable acids for adjusting the pH are hydrochloric acid, sulfuric acid, acetic acid, citric acid, tartaric acid and the like.
The reaction temperature is suitably from 10 to 90 ° C., and the reaction can proceed sufficiently even at room temperature.
The desired complex can be obtained by conducting the reaction under the above conditions for 20 to 30 minutes to 4 to 5 hours.
[0012]
After formation, the RNA-gelatin complex of the present invention can be used as it is in health foods and the like without washing and further steps such as desalting. Since the RNA-gelatin complex of the present invention is hardly soluble in water and precipitates in an aqueous solution, it can be easily separated from the solution by filtration, centrifugation or the like. After separation, it can be dried and used as powdered, granular, solid or suspension solution health foods and other possible applications, such as cosmetics, and both RNA and gelatin are expected to be effective It can be used as a material for health food.
Therefore, the present invention further relates to a health food containing the above-mentioned RNA-gelatin complex. These can be used, for example, as raw materials for tablets, tablets, functional foods, various beverages, and the like.
[0013]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples which are not intended to limit the present invention.
Example 1
An aqueous suspension of beer yeast having a solid content of 15% was crushed once at a pressure of 1000 kgf / cm 2 using a high-pressure jet impact type homogenizer. After 50-200 ml of water and 5-20 g of common salt were added to 150 ml of the yeast suspension and mixed well, the mixture was autoclaved at 100 ° C. for 1 hour and cooled to room temperature with water to obtain a suspension slurry. Separately, 1 g of gelatin (manufactured by Wako Pure Chemical Industries) was dissolved in 100 ml of water and shaken for 24 hours to prepare a 1% by weight aqueous gelatin solution. At room temperature, acetic acid (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise to 20 ml of the suspension slurry to adjust the pH to about 3, and then 6 ml of the 1% by weight gelatin aqueous solution was added dropwise. The resulting mixture was shaken at room temperature for 4 hours. After the obtained sample was centrifuged at 3000 rpm for 30 minutes, the precipitate was washed three times with 10 ml of distilled water and dried in vacuum at 40 ° C.
About 0.12 g (for example, when using 20 g of sodium chloride) of a yellow solid was obtained, but this complex contained only a salt that would not hinder use in actual foods.
The complex was subjected to infrared spectroscopic analysis (apparatus: HORIBA FT-210, manufactured by HORIBA, Ltd., conditions: KBr method). -1, 1473cm -1, 1235cm -1, since the peak is observed at the same position as the position of 1050 cm -1, the precipitate is seen to exhibit a characteristic of RNA from brewer's yeast.
[0014]
Example 2
RNA extracted from brewer's yeast [Product name: Yeast RNA, manufactured by Beijing Yanjing Middle Biotechnology Co., Ltd., Beijing, China, containing 12% by weight of sodium chloride, infrared spectrum (apparatus: HORIBA FT-210, Inc.) FIG. 1 shows HORIBA, Ltd., conditions: KBr method. )] 0.5 g was dissolved in 99.5 ml of water and shaken for 24 hours (using a laboratory shaker, manufactured by Inuchi Seieido Co., Ltd.) to prepare a 0.5% by weight aqueous RNA solution. 1 g of gelatin (manufactured by Wako Pure Chemical Industries) was dissolved in 100 ml of water, and the temperature was once raised to 80 ° C., followed by shaking at room temperature for 24 hours to prepare a 1% by weight aqueous gelatin solution. Then, at room temperature, 0.5 ml of acetic acid (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise to 10 ml of the 0.5% by weight aqueous RNA solution, and then 6 ml of the 1% by weight aqueous gelatin solution was added dropwise. The resulting mixture was shaken at room temperature for 4 hours. After centrifuging the obtained sample at 3000 rpm for 30 minutes, the precipitate was washed with 2 ml of distilled water and dried in vacuum at 40 ° C.
0.1088 g of a yellow solid was obtained, and no chlorine was detected by chlorine elemental analysis (flask combustion method). Therefore, it can be considered that this complex is substantially free of sodium chloride.
Further, the complex was subjected to infrared spectroscopic analysis (apparatus: HORIBA FT-210, manufactured by HORIBA, Ltd., condition: KBr method). As a result, the spectrum shown in FIG. the wavenumber 1535cm -1 RNA showed, 1473cm -1, 1235cm -1, since the peak is observed at the same position as the position of 1050 cm -1, the precipitate is seen to exhibit a characteristic of RNA from yeast extract .
[0015]
【The invention's effect】
In the present invention, an RNA-gelatin complex having both functions is produced with high purity in the process of producing purified yeast RNA as compared with the case where purified yeast RNA and purified gelatin or purified collagen peptide are added to health foods and the like. Therefore, the number of manufacturing steps for health foods and the like can be further reduced. Further, the RNA-gelatin complex of the present invention can be formed by a simple method of adding gelatin or collagen peptide directly to a yeast suspension under acidic conditions, and is easily separated due to poor water solubility. Furthermore, even if a yeast RNA extract extracted with sodium chloride, which is conventionally known, is used, since the RNA-gelatin complex obtained by the method of the present invention contains almost no salt, the desalting treatment can be carried out as it is. It can be used as a health food material without the need.
Therefore, according to the present invention, health food can be provided more economically and efficiently.
[Brief description of the drawings]
FIG. 1 shows an infrared spectrum of yeast-derived RNA used in Example 2.
FIG. 2 shows an infrared spectrum of the yeast-derived RNA-gelatin complex obtained in Example 2.