JP2004170585A - Device for adjusting optical axis, and method for adjusting optical axis between optical element connection interfaces - Google Patents

Device for adjusting optical axis, and method for adjusting optical axis between optical element connection interfaces Download PDF

Info

Publication number
JP2004170585A
JP2004170585A JP2002334809A JP2002334809A JP2004170585A JP 2004170585 A JP2004170585 A JP 2004170585A JP 2002334809 A JP2002334809 A JP 2002334809A JP 2002334809 A JP2002334809 A JP 2002334809A JP 2004170585 A JP2004170585 A JP 2004170585A
Authority
JP
Japan
Prior art keywords
optical
optical element
connection surface
axis
optical power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002334809A
Other languages
Japanese (ja)
Inventor
一登 ▲高▼嶋
Kazuto Takashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002334809A priority Critical patent/JP2004170585A/en
Publication of JP2004170585A publication Critical patent/JP2004170585A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device and method for accurately and speedily adjusting an optical axis for adjusting an angular shift especially between the connection interfaces by active alignment at the time of optical coupling between optical elements, and thereby realizing simplification of the configuration and decrease of a coupling loss. <P>SOLUTION: When coupling a coated optical fiber (11) to a waveguide type optical element (12), a position of a connection interface (12A) is firstly determined by the active alignment as an aligned position when a maximum optical output (I<SB>0</SB>) can be obtained from the wavguide type optical element (12). Next, the connection interface (12A) of the waveguide type optical element (12) is shifted in parallel in the direction of the axis X<SB>0</SB>from the aligned position by +Δx, and an optical output (I<SB>1</SB>) then is defined as the 1st optical power. Further, the connection interface (12A) of the waveguide type optical element (12) is shifted in parallel in the direction of the axis X<SB>0</SB>from the aligned position by -Δx, and an optical output (I<SB>2</SB>) then is defined as the 2nd optical power. An angular shift amount β about the axis Y<SB>0</SB>is obtained based on the ratio of the 1st optical power (I<SB>1</SB>) to the 2nd optical power (I<SB>2</SB>), and then the connection interface (12A) of the waveguide type optical element (12) is turned about the axis Y<SB>0</SB>by the angular shift mount β. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えば光通信又は光計測を含む光技術について、光素子(光部品又は光デバイスともいう)及び光モジュールの相互の結合時、精密な位置合わせ(アライメント)を行うための光軸調整装置、及びそのアライメントの方法に関する。特に、結合対象の光素子についてそれぞれの接続面間の角度ずれを調整する方法に関する。
【0002】
【従来の技術】
光通信では、半導体レーザ若しくは発光ダイオードを含む光源、又はそれと光変調器との組合せが送信器として、光ファイバが伝送路として、フォトダイオードを含む受光素子が受信器として、それぞれ互いに結合し機能する。
これらの光素子の他に、例えば、光増幅器、光分岐器、光結合器、及び光スイッチ等の多種多様な光素子が用いられる。それらの様々な光素子が互いに結合され、モジュール化される。更に、それらの光モジュール同士が光ファイバで互いに結合され、光通信網を形成する。
【0003】
光通信では伝搬途中での光の損失(伝搬損失)を可能な限り抑制しなければならない。光素子間の結合では、例えば、接続面間の微小な隙間、光軸のずれ(軸ずれ)、及び相対的な傾き(角度ずれ)が伝播損失を増大させる。光素子間の結合部分で生じるこれらの損失を結合損失という。
接続面間の角度ずれは更に、いわゆる接続面の片当たりを生じる。そのとき、接続面同士の接触部分には応力が集中し、光素子の破損又は割れ等の劣化を生じ得る。その他に、例えば接続面間の接着層の厚みが不均一であるので、光素子内の温度分布に大きな歪みが生じ、その光素子の温度特性を劣化させ得る。
結合損失の低減及び光素子の劣化防止には、接続面の精密な位置合わせ(アライメント)が必要である。
【0004】
アライメントの方法には、アクティブアライメントとパッシブアライメントとの二種類が含まれる。
アクティブアライメントとは、結合対象の光素子対へ実際に光を入力し、その光素子対による光出力を監視しながら接続面の位置を調整する方法をいう。アクティブアライメントでは、最大の光出力が得られる位置に、光素子対が固定される。
パッシブアライメントとは、アクティブアライメントとは異なり光出力を用いないアライメントをいう。パッシブアライメントには例えば、結合部分の機械的嵌合、又は結合部分に設けられた所定のマークのずれの監視を通し、接続面の位置を調整する方法が含まれる。
アクティブアライメントは、精度の高さで有利である。一方、パッシブアライメントは、工程数の低減と調整時間の短縮とにより量産性の高さで有利である。
【0005】
アクティブアライメントとパッシブアライメントとの両方の利点を取り入れた従来のアライメントとして、例えば次のような方法が知られる(特許文献1参照)。
この方法では、接続面の粗い位置決めをパッシブアライメントでまず行い、次に高精度な軸ずれ調整(単に調心ともいう)をアクティブアライメントで行う。それにより、接続面の目標位置からのずれ、特に接続面間の角度ずれがアクティブアライメントの前に十分低減されるので、アクティブアライメントでの調整時間が短縮される。
【0006】
図5は、単心の光ファイバ11と導波路型光素子12との結合を例として従来のアライメントを説明するための模式図である。
光ファイバ11は結合部分を例えば実質的に直方体型のフェルール13で覆われ、微動ステージ(図示せず)上に真っ直ぐに固定される。一方、導波路型光素子12は固定ステージ(図示せず)上に固定される。そのとき、光ファイバ11と導波路型光素子12とのそれぞれの光軸は水平方向でかつ互いにほぼ一致する。
光ファイバ11の接続面11Aとフェルール13の接続面13Aとは共通の平面上に成形される。更に、図5の例では、光ファイバ11の接続面11A及び導波路型光素子12の接続面12Aは、それぞれの光素子の光軸に対し垂直である。その他に、それぞれの接続面がそれぞれの光軸に対し共通の角度だけ傾いていても良い。
【0007】
光ファイバ11の接続面11Aは微動ステージにより微小変位する。ここで、その接続面11A上に、光軸との交点を原点とするXYZ直交座標系を想定する。その座標系では、Z軸が光軸方向を、X軸が光軸に対し垂直でかつ水平な方向を、Y軸が鉛直方向を、それぞれ示す。
接続面11Aの微小変位は、XYZ座標系の各座標軸方向の並進に対する3自由度、及びX軸とY軸とのそれぞれの周りの回転に対する2自由度(図5の矢印α、矢印βを参照)、の計5自由度を含む。図5の例とは異なり、光軸に対し傾いた接続面間の結合又は多心の光ファイバ(光ファイバアレイ)の結合では、Z軸周りの回転に対する1自由度が上記の5自由度に更に加わる。
【0008】
上記の5自由度を利用し、光ファイバ11の接続面11Aと導波路型光素子12の接続面12Aとが、次のような画像認識を通し粗い精度で位置決めされる。特に、両接続面の間隔がZ軸方向の並進自由度を利用し十分に狭く調整される。更に、両接続面間の平行度がX軸とY軸とのそれぞれの周りの回転自由度を利用し、次のように調整される。
図5に示されるように、光ファイバ11の接続面11Aと導波路型光素子12の接続面12Aとの結合部分近傍を、X軸に平行な方向MXからは第一のカメラ21で、Y軸に平行な方向MYからは第二のカメラ22で、それぞれ観察する。
図6は、第一のカメラ21及び第二のカメラ22のそれぞれで観察される光ファイバ11の接続面11Aと導波路型光素子12の接続面12Aとの結合部分近傍を示す模式図である。図6の(a)が第二のカメラ22の画像、すなわち結合部分の平面図である。図6の(b)が第一のカメラ21の画像、すなわち結合部分の側面図である。
【0009】
図6の(a)のように、フェルール13の接続面13Aが導波路型光素子12の接続面12Aに対し角度βだけ傾いていることが第二のカメラ22の画像から認識されるとき、光ファイバ11の光軸C1は導波路型光素子12の光軸C2から実質的に同じ角度βだけ傾いている。そこで、微動ステージのY軸周りの回転自由度を利用し、フェルール13の接続面13AをY軸周りに回転させる。それにより、第二のカメラ22の画像上で、導波路型光素子12の接続面12Aと平行な位置に調整する。
図6の(b)のように、フェルール13の接続面13Aが導波路型光素子12の接続面12Aに対し角度αだけ傾いていることが第一のカメラ21の画像から認識されるとき、光ファイバ11の光軸C1は導波路型光素子12の光軸C2から実質的に同じ角度αだけ傾いている。そこで、微動ステージのX軸周りの回転自由度を利用し、フェルール13の接続面13AをX軸周りに回転させる。それにより、第一のカメラ21の画像上で、導波路型光素子12の接続面12Aと平行な位置に調整する。
これらのX軸とY軸とのそれぞれの周りの角度調整を交互に反復する。それにより、光ファイバ11の接続面11Aと導波路型光素子12の接続面12Aとの間の角度ずれが低減する。
【0010】
次に、XY平面上での二つの並進自由度を利用し、光ファイバ11と導波路型光素子12との間の高精度な調心が次のように行われる。
まず、光ファイバ11へ光を入射し、その接続面11Aから出射させる。その出射光は導波路型光素子12内へその接続面12Aから入射し、別の出力端(図示せず)から出射される。その出射光の強度を例えば光パワーメータ(図示せず)により計測する。
光ファイバ11の接続面11AをXY平面上で並進させながらこの計測を反復する。それにより、光パワーメータの計測値が実質的に最大となるときの接続面11AのXY平面上の位置を決定する。そのときの光ファイバ11の導波路型光素子12に対する相対位置を、光ファイバ11の調心位置という。光ファイバ11が調心位置にあるとき、軸ずれによる損失が実質的に最小である。
【0011】
【特許文献1】
特開平10−197751号公報
【0012】
【発明が解決しようとする課題】
上記のような従来のアライメントでは、接続面間の角度ずれ調整が、画像認識を利用したパッシブアライメントで行われる。従って、角度ずれ調整の更なる高精度化は、画像認識の精度、光素子の成形精度、及びそれらの位置決め精度の更なる向上を要した。しかし、それらは一般に困難であった。
上記のアライメントでは特に、例えば光ファイバ11と導波路型光素子12とのような結合対象の光素子、及びフェルール13のような結合用部材について、それらの外形形状を厳格に管理し、所定形状からのずれ、例えば歪み及び割れ等の発生を防止しなければならない。更に、例えばフェルール13内への光ファイバ11の接続、又は光ファイバアレイ内への光ファイバの接続では、それぞれの位置決めを高精度に実現しなければならない。それらの形状に関する管理に対し、信頼性の更なる向上は困難であった。
【0013】
上記の画像認識によるアライメントでは、結合対象の光素子が例えばレンズを含み、接続面が曲面等、平面とは異なる形状を含むとき、接続面間の高精度な角度ずれ調整が一般に困難であった。
その上、画像認識の利用は、カメラ、照明、及び画像認識処理用のコンピュータ等、多数の構成要素の複雑な配置、及びそれらの並列制御を要した。従って、光軸調整装置及びそれによる調整工程の簡素化が困難であった。その結果、例えば複数の光素子を互いに結合しモジュール化するとき、その光モジュールの製造コストの更なる低減が困難であった。
【0014】
本発明は、光素子間の結合時、特に接続面間の角度ずれ調整をアクティブアライメントにより高精度でかつ迅速に行い、それにより構成の簡素化と結合損失の更なる低減とを同時に実現する光軸調整装置及びその光軸調整方法、の提供を目的とする。
【0015】
【課題を解決するための手段】
本発明による光軸調整装置は、
(A) 実質的に一定の光パワーを出力するための光源部;
(B) 第一の光素子を固定し、光源部の出射光を第一の光素子の入力端から接続面へ透過させるための第一のステージ;
(C) 第二の光素子を固定し、第一の光素子の接続面からの透過光を第二の光素子の接続面から出力端へ透過させるための第二のステージ;
(D) 第二の光素子の出力端からの透過光を検出し、その光パワーを計測するための光検出器;
(E) 第一のステージ又は第二のステージを所定量だけ微動させるためのステージ駆動部;及び、
(F) (a) 第一の光素子又は第二の光素子のいずれか一方(以下、調整対象光素子という)について、その接続面の光軸を含む実質的な対称面に対し実質的に対称でかつその接続面と実質的に平行な二つの方向(以下、第一の方向と第二の方向という)を選択し、(b) 調整対象光素子を調心位置から第一の方向と第二の方向とのそれぞれへ一定距離だけずらすとき、第二の光素子の出力端からの光パワーをそれぞれ第一の光パワーと第二の光パワーとして計測し、(c) 調整対象光素子の接続面をその対称面との交線(以下、対称軸という)の周りで、第一の光パワーと第二の光パワーとを実質的に等しくする向きに所定の回転角だけ回転させる、ための角度ずれ調整部;
を有する。
【0016】
光素子の調心位置とは、軸ずれによる結合損失が実質的に最小となるときの位置をいい、具体的には、それぞれの光素子の接続面間の間隙でそれぞれの光軸が実質的に(すなわち、測定誤差の範囲内で)一致するときの位置をいう。
第一の光素子と第二の光素子との調心位置は好ましくは、次のようなアクティブアライメントにより決定される。
光源部から第一の光素子の入力端へ光を入力し、第一の光素子又は第二の光素子のいずれかをその接続面と平行に移動させながら、第二の光素子の出力端からの光出力(すなわち、透過光の光パワー)を計測する。それにより、実質的に最大の光出力が得られるときの第一の光素子と第二の光素子とのそれぞれの位置をそれぞれの調心位置として決定する。
【0017】
一般的な光素子の結合では、それぞれの光素子の接続面が光軸を含む実質的な対称面をそれぞれ持つ。
第一の光素子の接続面からの出射光は、その接続面の光軸を含む実質的な対称面に対し実質的に対称な強度分布を示す。一方、第二の光素子の接続面への入射光は、その接続面と光軸を実質的に一致させ、かつその接続面の光軸を含む実質的な対称面に対し実質的に対称な強度分布を示すとき、その接続面へ最も透過しやすい。従って、第一の光素子の接続面と第二の光素子の接続面とがそれぞれの光軸と対称面とをそれぞれ実質的に一致させ、それにより対称性について整合するとき、それらの間の結合損失が抑制される。
【0018】
例えば、第一の光素子の接続面と第二の光素子の接続面とが共に実質的な平面で、かつそれぞれの光軸に対し実質的に対称であるとき、それらの光軸が接続面間の間隙で実質的に一致し、かつそれらの接続面が実質的に平行であれば、それらの接続面はその共通の光軸に対し実質的に対称である。一方、その配置では軸ずれと角度ずれとが共に実質的に最小であるので、それらによる結合損失が実質的に最小である。
【0019】
接続面間での対称性についての整合は上記のように結合損失を低減させる。
そのような整合は更に、例えば接続面間の応力分布及び接着層の厚みのそれぞれの均一性を高める。従って、応力集中又は温度勾配による接続面の歪み又は割れ等の劣化が抑制される。
【0020】
上記の光軸調整装置では角度ずれ調整部により、第一の光素子の接続面と第二の光素子の接続面との間で、対称性についての整合が次のように実現する。
調整対象光素子の接続面について、第一の光パワーの計測時での調心位置からの変位と第二の光パワーの計測時での変位とは、その調心位置での対称面に対し実質的に対称である。従って、その対称面に対し、もう一つの光素子の接続面の対称面が実質的に傾くとき、第一の光パワーと第二の光パワーとの間に実質的な差が生じる。特に、その差は対称面間の傾きに対応する。
角度ずれ調整部は第一の光パワーと第二の光パワーとの実質的な差を検出し、その差を低減する向きに調整対象光素子の接続面を上記の対称軸周りに回転させる。それにより、上記の対称面間の傾きが低減する。こうして、接続面間のその対称軸周りの角度ずれが調整される。
【0021】
ここで、一定の角度ずれについて、第一の光パワーと第二の光パワーとの実質的な差の第一の光パワーに対する比(すなわち、第一の光パワーに対する第二の光パワーの比と1との差)は、その角度ずれによる結合損失そのものの値より十分に大きい。更に、上記の一定距離、すなわち調整対象光素子の接続面の調心位置からの変位の大きさは、第一の光パワーと第二の光パワーとの実質的な差を高精度に計測できるように最適化できる。その結果、上記の光軸調整装置による角度ずれ調整は、従来の装置によるアクティブアライメントより高感度である。
上記の光軸調整装置では、特に好ましくは、第一の方向と第二の方向とが互いに逆向きである。そのとき、一定の角度ずれについて、第一の光パワーと第二の光パワーとの実質的な差が最大である。従って、角度ずれに対する感度が特に高い。
【0022】
上記の光軸調整装置では、角度ずれ調整部が調整対象光素子の接続面に対する上記の対称軸周りの回転角を調節しながら、上記の角度ずれ調整を反復しても良い。例えば、第一の光パワーと第二の光パワーとの実質的な差の増減に合わせ、上記の回転角を増減しても良い。それにより、第一の光パワーと第二の光パワーとが実質的に等しいときの接続面の位置が迅速に決定される。
更に、好ましくは、第一の光素子の接続面と第二の光素子の接続面との間隔をL、上記の一定距離(すなわち、調整対象光素子の接続面の調心位置からの変位の大きさ)をΔx、第一の光パワーをI、第二の光パワーをIとおくとき、角度ずれ調整部が、第一の光素子と第二の光素子との接続面間の上記の対称軸周りの角度ずれ量をL(I/I−1)/(4Δx)で近似し、その角度ずれ量を上記の回転角として決定する。この角度ずれ量の近似は、接続面の間隔Lと調整対象光素子の変位の大きさΔxとの調節により十分に高い。従って、角度ずれ調整が迅速に実行できる。
【0023】
光素子の接続面が上記の対称面を複数有するとき、上記の光軸調整装置はそれぞれの対称面に対し、上記の角度ずれ調整を行っても良い。例えば、楕円コアを持つ光ファイバの結合では、楕円コアの横断面の長軸と短軸とをそれぞれ含む対称面に対し、上記の角度ずれ調整が行われても良い。その他に、長方形状の横断面を持つ光導波路の結合では、その横断面の長辺と短辺とのそれぞれに平行で、かつその横断面の中心を通る対称面に対し、上記の角度ずれ調整が行われても良い。
これらの例のように、複数の対称面について上記の角度ずれ調整が行われるとき、それぞれの角度ずれ調整を交互に反復しても良い。それにより、それぞれの角度ずれ調整の精度による誤差、及び異なる対称面についての角度ずれ調整の相互の影響による誤差(例えば、一方の対称軸周りの角度ずれの低減による、他方の対称軸周りの角度ずれの増大)を低減できる。その結果、角度ずれ調整の安定性が向上する。
【0024】
上記の光軸調整装置は更に、上記の調心を上記の角度ずれ調整と交互に反復しても良い。接続面間に角度ずれが含まれるとき、上記の調心位置は一般に誤差を含む。更に、角度ずれ調整で調整対象光素子の接続面を回転させるとき、その回転軸の位置決め誤差により軸ずれが一般に増大し得る。従って、調心と角度ずれ調整とを交互に反復することで、軸ずれと角度ずれとを更に低減できる。
【0025】
円形状の横断面を持つコアの光ファイバ又は導波路型光素子間の結合では、特に接続面が光軸の周りに回転対称であるとき、角度ずれ調整部が調整対象光素子の接続面と平行な方向を三つ以上選択しても良い。それらの方向の内、どの二方向から成る対も上記の第一の方向と第二の方向との対とみなせる。従って、それらの様々な対のそれぞれについて上記の対称軸とその周りの角度ずれ量とを上記と同様に求め、それらの対称軸と角度ずれ量との合成から、調整対象光素子の接続面に対する所定軸周りの回転角を決定しても良い。
【0026】
楕円コアの光ファイバ、光ファイバアレイ、又は光軸に対し傾いた接続面を持つ光素子間の結合では、接続面が光軸の周りに回転対称でない。そのとき、角度ずれ調整部が調整対象光素子の接続面を、上記の対称軸の他に、光軸周りに所定の回転角だけ回転させても良い。それにより、光軸周りの回転ずれによる結合損失を、上記の角度ずれによる結合損失と同様に低減できる。
【0027】
本発明による光素子接続面間の光軸調整方法は、
(A) 光源部により実質的に一定の光パワーを出力させ、その出射光を、第一のステージへ固定された第一の光素子の入力端から接続面へ透過させ、その透過光を更に、第二のステージへ固定された第二の光素子の接続面から出力端へ透過させ、その透過光の光パワーを計測するステップ;
(B) 第一の光素子又は第二の光素子のいずれかをその接続面と実質的に平行に移動させるごとに光パワーを計測するステップを反復し、それにより得られた光パワーの測定値の中で実質的に最大のものを計測するときの第一の光素子と第二の光素子との位置をそれぞれの調心位置として決定するステップ;
(C) 第一の光素子又は第二の光素子のいずれか一方(以下、調整対象光素子という)について、その接続面の光軸を含む実質的な対称面に対し実質的に対称でかつその接続面と実質的に平行な二つの方向(以下、第一の方向と第二の方向という)を選択するステップ;
(D) 調整対象光素子を調心位置から第一の方向へ一定距離だけずらし、そのときの光パワーを第一の光パワーとして計測するステップ;
(E) 調整対象光素子を調心位置から第二の方向へ一定距離だけずらし、そのときの光パワーを第二の光パワーとして計測するステップ;
(F) 調整対象光素子の接続面をその対称面との交線(以下、対称軸という)の周りで、第一の光パワーと第二の光パワーとを実質的に等しくする向きに所定の回転角だけ回転させるステップ;
を有する。
【0028】
第一の光素子の接続面からの出射光は、その接続面の光軸を含む実質的な対称面に対し実質的に対称な強度分布を示す。一方、第二の光素子の接続面への入射光は、その接続面と光軸を実質的に一致させ、かつその接続面の光軸を含む実質的な対称面に対し実質的に対称な強度分布を示すとき、その接続面へ最も透過しやすい。従って、第一の光素子の接続面と第二の光素子の接続面とがそれぞれの光軸と対称面とをそれぞれ実質的に一致させ、それにより対称性について整合するとき、それらの間の結合損失が抑制される。
接続面間での対称性についての整合は更に、例えば接続面間の応力分布及び接着層の厚みのそれぞれの均一性を高める。従って、応力集中又は温度勾配による接続面の歪み又は割れ等の劣化が抑制される。
【0029】
上記の光軸調整方法では、第一の光素子の接続面と第二の光素子の接続面との間で、対称性についての整合が次のように実現する。
調整対象光素子の接続面について、第一の光パワーの計測時での調心位置からの変位と第二の光パワーの計測時での変位とは、その調心位置での対称面に対し実質的に対称である。従って、その対称面に対し、もう一つの光素子の接続面の対称面が実質的に傾くとき、第一の光パワーと第二の光パワーとの間に実質的な差が生じる。特に、その差は対称面間の傾きに対応する。
調整対象光素子の接続面を上記の対称軸周りに回転させるステップでは、第一の光パワーと第二の光パワーとの実質的な差が検出され、回転の向きがその差を低減する向きに決定される。それにより、上記の対称面間の傾きが低減する。こうして、接続面間のその対称軸周りの角度ずれが調整される。
【0030】
ここで、一定の角度ずれについて、第一の光パワーと第二の光パワーとの実質的な差の第一の光パワーに対する比(すなわち、第一の光パワーに対する第二の光パワーの比と1との差)は、その角度ずれによる結合損失そのものの値より十分に大きい。更に、上記の一定距離、すなわち調整対象光素子の接続面の調心位置からの変位の大きさは、第一の光パワーと第二の光パワーとの実質的な差を高精度に計測できるように最適化できる。その結果、上記の光軸調整方法では、角度ずれに対する感度が従来の方法より高い。
上記の光軸調整方法では、特に好ましくは、第一の方向と第二の方向とが互いに逆向きである。そのとき、一定の角度ずれについて、第一の光パワーと第二の光パワーとの実質的な差が最大である。従って、角度ずれに対する感度が特に高い。
【0031】
上記の光軸調整方法ではそれぞれのステップが、調整対象光素子の接続面に対する上記の対称軸周りの回転角を調節しながら反復されても良い。例えば、第一の光パワーと第二の光パワーとの実質的な差の増減に合わせ、上記の回転角が増減されても良い。それにより、第一の光パワーと第二の光パワーとが実質的に等しいときの接続面の位置が迅速に決定される。
上記の光軸調整方法は更に好ましくは、第一の光素子の接続面と第二の光素子の接続面との間隔をL、上記の一定距離(すなわち、調整対象光素子の接続面の調心位置からの変位の大きさ)をΔx、第一の光パワーをI、第二の光パワーをIとおくとき、第一の光素子と第二の光素子との接続面間の上記の対称軸周りの角度ずれ量をL(I/I−1)/(4Δx)で近似し、上記の回転角として決定するステップを有する。この角度ずれ量の近似は、接続面の間隔Lと調整対象光素子の変位の大きさΔxとの調節により十分に高い。従って、角度ずれ調整が迅速に実行できる。
【0032】
光素子の接続面が上記の対称面を複数有するとき、それぞれの対称面に対し、上記の光軸調整方法が使用されても良い。そのとき、それぞれの角度ずれ調整が交互に反復されても良い。それにより、それぞれの角度ずれ調整の精度による誤差及び異なる対称面についての角度ずれ調整の相互の影響による誤差(例えば、一方の対称軸周りの角度ずれの低減による、他方の対称軸周りの角度ずれの増大)を低減できる。
【0033】
上記の光軸調整方法では特に、角度ずれ調整に関するステップと調心に関するステップとが交互に反復されても良い。接続面間に角度ずれが含まれるとき、上記の調心位置は一般に誤差を含む。更に、調整対象光素子の接続面を回転させるステップでは、その回転軸の位置決め誤差により軸ずれが一般に増大し得る。従って、調心と角度ずれ調整とを交互に反復することで、軸ずれと角度ずれとを更に低減できる。
【0034】
円形状の横断面を持つコアの光ファイバ又は導波路型光素子間の結合では、特に接続面が光軸の周りに回転対称であるとき、上記の光軸調整方法では調整対象光素子の接続面と平行な方向が三つ以上選択されても良い。それらの方向の内、どの二方向から成る対も上記の第一の方向と第二の方向との対とみなせる。従って、それらの様々な対のそれぞれについて上記の対称軸とその周りの角度ずれ量とを上記と同様に求め、それらの対称軸と角度ずれ量との合成から、調整対象光素子の接続面に対する所定軸周りの回転角を決定しても良い。
【0035】
楕円コアの光ファイバ、光ファイバアレイ、又は光軸に対し傾いた接続面を持つ光素子間の結合では、接続面が光軸の周りに回転対称でない。そのとき、調整対象光素子の接続面を、上記の対称軸の他に、光軸周りに所定の回転角だけ回転させても良い。それにより、光軸周りの回転ずれによる結合損失を、上記の角度ずれによる結合損失と同様に低減できる。
【0036】
【発明の実施の形態】
以下、本発明の最適な実施の形態について、その好ましい実施例を挙げて、図面を参照しつつ説明する。
《実施例1》
図1は、本発明の実施例1による光軸調整装置を示すブロック図である。図1では、単心の光ファイバ11と導波路型光素子12との結合が例示される。
レーザ1は好ましくは半導体レーザであり、約1.55μm又は約1.3μmの波長で一定の光出力(約1mW)を安定に供給する。レーザ1の光出力は光ファイバ11の入力端11Bへ入射され、光ファイバ11に沿って伝送され、接続面11Aから出射される。
【0037】
第一のステージ2は固定ステージであり、その台面を実質的に水平に固定される。第一のステージ2上には光ファイバ11の結合部11Cが水平にかつ真っ直ぐに固定される。
第二のステージ3は微動ステージであり、第一のステージ1へ近接して設置される。第二のステージ3はその台面を例えば、その台面に平行な二方向とその台面に対し垂直な一方向のそれぞれへ微小並進させ(精度約0.05μm)、それぞれの方向の周りに微小回転させ得る(精度約0.001°)。第二のステージ3上には導波路型光素子12がその光導波路12Cを水平にして固定される。そのとき特に、光ファイバ11の接続面11Aと導波路型光素子12の接続面12Aとが対向する。
【0038】
副光ファイバ14は導波路型光素子12の出力端12Bと光検出器4との間を結合し、導波路型光素子12の光出力を光検出器4へ伝送する。
光検出器4は好ましくは光パワーメータであり、副光ファイバ14から入力した導波路型光素子12の光出力を計測する。その計測値は制御部5へ出力される。
制御部5は好ましくはパーソナルコンピュータであり、所定のプログラムにより軸ずれ調整部5A及び角度ずれ調整部5Bとして機能する。軸ずれ調整部5Aは光ファイバ11の接続面11Aと導波路型光素子12の接続面12Aとの調心に関するアクティブアライメントを制御する。一方、角度ずれ調整部5Bは両接続面間の角度ずれ調整に関するアクティブアライメントを実行する。制御部5は、それぞれの機能により光検出器4の計測値を処理し、第二のステージ3に対する制御量を決定する。
ドライバ6は、第二のステージ3を実際に微動させるモータに対する駆動装置であり、制御部5からの制御量に従い、第二のステージ3を微小並進又は微小回転させる。
【0039】
光ファイバ11は例えば単心のシングルモード光ファイバであり、直径約10μmの円形断面を持つコアを含む。クラッドを含む光ファイバ11全体の直径は約125μmである。光ファイバ11は更に、約1.55μm又は約1.3μmの波長を持つ光に対し実質的に最低の損失を示す。光ファイバ11はその他に、マルチモード光ファイバであっても良い。
光ファイバ11の接続面11Aはその光軸に対し実質的に垂直であり、かつ実質的に平面である。
導波路型光素子12は例えばリッジ型であり、約10μm四方の矩形断面を持つ光導波路(コア)12Cを含む。導波路型光素子12はその他に埋め込み型であっても良い。更に、導波路型光素子12は光ファイバであっても良い。
導波路型光素子12の接続面12Aはその光導波路12Cの光軸に対し実質的に垂直であり、かつ実質的に平面である。
【0040】
図2は、光ファイバ11と導波路型光素子12との結合部近傍を模式的に示す斜視図である。光ファイバ11の接続面11A上には、直交座標系の三つの座標軸(X軸、Y軸、及びZ軸)が示される。一方、導波路型光素子12の接続面12A上には、別の直交座標系の三つの座標軸(X軸、Y軸、及びZ軸)が示される。
XYZ座標系は光ファイバ11の接続面11Aとそのコア11Cの光軸Cとの交点Pを原点とする。XY平面はその接続面11Aと実質的に平行であり、X軸は水平な方向を、Y軸は鉛直方向を、それぞれ示す。Z軸はその光軸Cの方向を示す。ここで、接続面11AはZ軸周りに回転対称である。
一方、X座標系は導波路型光素子12の接続面12Aとその光導波路12Cの光軸Cとの交点Pを原点とする。X平面はその接続面12Aと実質的に平行であり、X軸は水平な方向を、Y軸は鉛直方向を、それぞれ示す。Z軸はその光軸Cの方向を示す。ここで、接続面12AはX平面及びY平面をそれぞれ対称面とする。
【0041】
第一のステージ2及び第二のステージ3のそれぞれの台面上には、例えば溝又はピン等による位置決め基準が設けられている。それらの位置決め基準に従い、光ファイバ11が第一のステージ2上へ、導波路型光素子12が第二のステージ3へ、それぞれ固定される。更に、第二のステージ3が初期位置に設定されるとき、XYZ座標系とX座標系との間で対応する座標軸同士がほぼ平行である。
【0042】
第二のステージ3は導波路型光素子12の接続面12Aを微小変位させる。その微小変位は、その接続面12Aと実質的に平行なX平面上の並進に対する2自由度、その光導波路12Cの光軸Cの方向(Z軸方向)の並進に対する1自由度、及びX軸とY軸とのそれぞれの周りの回転に対する2自由度(図2の矢印αと矢印βとを参照)の計5自由度を含む。その他に、Z軸周りの回転に対する1自由度が更に加わっても良い。
以下、光ファイバ11の接続面11Aに対する導波路型光素子12の接続面12Aの位置を、X座標系の原点PのXYZ座標で表す。
【0043】
軸ずれ調整部5Aは、第二のステージ3の五つの自由度の内、X平面上での並進自由度を利用し、光ファイバ11の接続面11Aと導波路型光素子12の接続面12Aとの間の調心に関するアクティブアライメントを次のように行う。ここで、光ファイバ11の接続面11Aと導波路型光素子12の接続面12Aとの間隔Lは、Z軸方向の並進自由度を利用し、予め十分に狭く(例えば約25μmに)設定される。
まず、レーザ1から光ファイバ11の入力端11Bへ光を入射し、その接続面11Aから出射させる。その出射光Rは導波路型光素子12内へその接続面12Aから入射し、出力端12Bから副光ファイバ14を通し光検出器4へ伝送される(図1参照)。光検出器4はその出射光の強度を計測する。
座標系の原点PのXYZ座標を(x,y,z)とおくとき、光検出器4により計測される光パワー(以下、受光強度という)IはそのXYZ座標の関数I=I(x,y,z)として表わされる。特に、接続面間の傾きが十分に小さいとき、受光強度Iは次式(1)で高精度に近似される。
【0044】
I(x,y,z)=Aexp{−(Bx+Cy)}/z。 (1)
【0045】
ここで、係数A、B、及びCは、X座標系の原点PのXYZ座標(x,y,z)には実質的には依存しない正の定数である。
接続面間の間隔が一定値Lに維持され、かつXYZ座標系のZ軸、すなわち光ファイバ11の光軸CがX座標系の原点Pを実質的に貫くとき、式(1)から明らかなように、受光強度Iは最大値I=I(0,0,L)=A/Lに達する。
軸ずれ調整部5Aは導波路型光素子12の接続面12AをX平面上で並進させながら以上の計測を反復する。その並進によりX座標系の原点PはXYZ座標を変化させるので、受光強度Iが式(1)に従い変化する。軸ずれ調整部5Aはその変化を監視し、受光強度Iが実質的に最大値I=A/Lに達するときの接続面12AのXY平面上の位置を決定する。こうして、光ファイバ11に対する導波路型光素子12の調心位置が設定される。
【0046】
角度ずれ調整部5Bは、第二のステージ3の五つの自由度の内、X軸とY軸とのそれぞれの周りの回転自由度を利用し、光ファイバ11の接続面11Aと導波路型光素子12の接続面12Aとの間の角度ずれ調整に関するアクティブアライメントを次のように行う。
図3は、光ファイバ11の接続面11Aのコア11C近傍と導波路型光素子12の接続面12Aの光導波路12C近傍とを模式的に示す拡大平面図、すなわち鉛直上方向から見たときの拡大図である。図3では、導波路型光素子12の接続面12Aは光ファイバ11の接続面11Aに対し微小角度βだけ傾いている。すなわち、光ファイバ11の接続面11Aに対する導波路型光素子12の接続面12AのY軸周りの角度ずれ量が微小角度βに等しい。
まず、導波路型光素子12の接続面12Aを調心位置に設定する。そのとき、光ファイバ11の光軸Cと光導波路12Cの光軸Cとが、接続面間の間隙、すなわち点P−Pの間で実質的に一致する。従って、光ファイバ11の光軸Cは導波路型光素子12の接続面12Aと、その接続面12Aと光導波路12Cの光軸Cとの交点Pで実質的に交わるとみなせる。すなわち、X座標系の原点PのXYZ座標(x,y,z)は(0,0,L)と実質的に等しい:(x,y,z)=(0,0,L)。
【0047】
次に、導波路型光素子12の接続面12Aを調心位置からX軸の正方向へ実質的な一定距離Δxだけ並進させる。ここで、その一定距離Δxは光導波路12Cのサイズとほぼ同程度であり、約10μmである。そのとき、導波路型光素子12の接続面12Aとその光導波路12Cの光軸Cとの交点(X座標系の原点)PのXYZ座標(x,y,z)は、原点Pの並進変位の大きさΔx、及び接続面間の間隔Lと傾きβとを用い次式で表される:(x,y,z)=(Δx・cosβ,0,L+Δx・sinβ)。
その配置で、軸ずれ調整部5Aによる調心と同様に、レーザ1から光ファイバ11の入力端11Bへ光を入射し、導波路型光素子12の出力端12Bからの光出力を光検出器4により計測する。その計測値(以下、第一の光パワーという)Iは上記の式(1)により次式(2)で近似される。
【0048】
=I(Δx・cosβ,0,L+Δx・sinβ)
=Aexp{−B(Δx・cosβ)}/(L+Δx・sinβ)。 (2)
【0049】
続いて、導波路型光素子12の接続面12Aを調心位置からX軸の負方向へ、上記の一定距離Δxと実質的に等しい距離だけ並進させる。そのとき、導波路型光素子12の接続面12Aとその光導波路12Cの光軸Cとの交点(X座標系の原点)PのXYZ座標(x,y,z)は、原点Pの並進変位の大きさΔx、及び接続面間の間隔Lと傾きβとを用い次式で表される:(x,y,z)=(−Δx・cosβ,0,L−Δx・sinβ)。
その配置でレーザ1から光ファイバ11の入力端11Bへ光を入射し、導波路型光素子12の出力端12Bからの光出力を光検出器4により計測する。その計測値(以下、第二の光パワーという)Iは上記の式(1)により次式(3)で近似される。
【0050】
=I(−Δx・cosβ,0,L−Δx・sinβ)
=Aexp{−B(Δx・cosβ)}/(L−Δx・sinβ)。 (3)
【0051】
式(2)及び式(3)により、第一の光パワーIと第二の光パワーIとの比は次式(4)で求まる。
【0052】
/I=(L+Δx・sinβ)/(L−Δx・sinβ)。 (4)
【0053】
接続面間の傾き、すなわち角度ずれ量βが十分に微小であるとき、その角度ずれ量βは式(4)から、第一の光パワーIと第二の光パワーIとの比I/I、接続面間の間隔L、及び導波路型光素子12の接続面12Aの並進変位の大きさΔxを用い次式(5)で近似される。
【0054】
β=L(I/I−1)/(4Δx)。 (5)
【0055】
角度ずれ調整部5Bは第二のステージ3により導波路型光素子12の接続面12Aを、式(5)で得られる角度ずれ量βだけY軸周りに回転させる。こうして、鉛直方向から見たときの接続面間の傾き(角度ずれ)βが低減し、X軸とX軸との平行度が向上する。更にYZ平面とY平面との傾きが低減し、それらの平面に対する結合部の対称性が向上する。その結果、角度ずれβによる結合損失が低減する。
【0056】
ここで、一定の角度ずれ量βについて、第一の光パワーIに対する第二の光パワーIの比と1との差(I/I−1)は、その角度ずれ量βによる結合損失そのものの値より十分に大きい。更に、上記の接続面間の間隔Lと一定距離Δxとは、第一の光パワーIと第二の光パワーIとの実質的な差を高精度に計測できるように最適化できる。その結果、上記の角度ずれ調整は、従来の装置によるアクティブアライメントより高感度である。
【0057】
導波路型光素子12の接続面12Aが光ファイバ11の接続面11Aに対しX軸周りに微小角度αだけ傾くとき、すなわちX軸周りの角度ずれ量が微小角度αに等しいとき、角度ずれ調整部5Bは上記の角度ずれ調整をX軸方向に対して同様に実行し、その角度ずれ量αを上記の角度ずれ量βと同様に低減する。それにより、Y軸とY軸との平行度が向上する。更にXZ平面とX平面との傾きが低減し、それらの平面に対する結合部の対称性が向上する。その結果、角度ずれαによる結合損失が低減する。
【0058】
角度ずれ調整部5Bは、X軸周りの角度ずれ調整(すなわち角度ずれ量αの低減)とY軸周りの角度ずれ調整(すなわち角度ずれ量βの低減)とを交互に反復しても良い。それにより、それぞれの角度ずれ調整の精度による誤差、及び異なる対称面についての角度ずれ調整の相互の影響による誤差(例えば、X軸周りの角度ずれ量αの低減によるY軸周りの角度ずれ量βの増大)を低減できる。その結果、角度ずれ調整の安定性が向上する。
【0059】
制御部5は、軸ずれ調整部5Aによる調心と角度ずれ調整部5Bによる角度ずれ調整とを交互に反復しても良い。接続面間に角度ずれが含まれるとき、上記の調心位置は一般に誤差を含む。更に、角度ずれ調整で導波路型光素子12の接続面12Aを回転させるとき、その回転軸(Y軸)の位置決め誤差により軸ずれが一般に増大し得る。従って、調心と角度ずれ調整とを交互に反復することで、軸ずれと角度ずれとを更に低減できる。
【0060】
図4は、実施例1による光軸調整方法のフローチャートである。
<ステップS1>
光ファイバ11を第一のステージ2上の所定位置へ、導波路型光素子12を第二のステージ3上の所定位置へ、それぞれ固定し、第二のステージ3を初期位置へ設定する。そのとき、XYZ座標系とX座標系との間で対応する座標軸同士がほぼ平行である。
更に、光ファイバ11の接続面11Aと導波路型光素子12の接続面12Aとの間隔を、十分に狭い距離Lに設定する。
ここで、レーザ1の光出力を光ファイバ11の入力端11Bへ入射し、導波路型光素子12の出力端12Bからの光出力が光検出器4により検出されるか否かで、第二のステージ3の初期位置を調節しても良い。
【0061】
<ステップS2>
軸ずれ調整部5Aが上記の調心を行い、調心位置を決定する。
<ステップS3>
角度ずれ調整部5Bが導波路型光素子12の接続面12Aを調心位置からX軸の正方向へ一定距離Δxだけ並進させ、そのときの光検出器4の計測値(第一の光パワー)Iを記録する。
<ステップS4>
角度ずれ調整部5Bが導波路型光素子12の接続面12Aを調心位置からX軸の負方向へ一定距離Δxだけ並進させ、そのときの光検出器4の計測値(第二の光パワー)Iを記録する。
<ステップS5>
角度ずれ調整部5Bが第一の光パワーIと第二の光パワーIとの比を計算し、更に式(5)よりY軸周りの角度ずれ量βを決定する。
<ステップS6>
角度ずれ調整部5Bが導波路型光素子12の接続面12AをY軸周りに上記の角度ずれ量βだけ回転させる。
【0062】
<ステップS7>
角度ずれ調整部5Bが導波路型光素子12の接続面12Aを調心位置からY軸の正方向へ一定距離Δyだけ並進させ、そのときの光検出器4の計測値(第三の光パワー)Iを記録する。
<ステップS8>
角度ずれ調整部5Bが導波路型光素子12の接続面12Aを調心位置からY軸の負方向へ一定距離Δyだけ並進させ、そのときの光検出器4の計測値(第四の光パワー)Iを記録する。
<ステップS9>
角度ずれ調整部5Bが第三の光パワーIと第四の光パワーIとの比を計算し、更に次式(6)よりX軸周りの角度ずれ量αを決定する。
【0063】
α=L(I/I−1)/(4Δy)。 (6)
【0064】
<ステップS10>
角度ずれ調整部5Bが導波路型光素子12の接続面12AをX軸周りに上記の角度ずれ量αだけ回転させる。
以上のステップS2〜S10が反復される。
こうして、光ファイバ11の接続面11Aと導波路型光素子12の接続面12Aとの間の軸ずれと角度ずれとが安定に低減し、それらの接続面間の結合損失が大きくかつ迅速に低減する。
【0065】
光ファイバ11の接続面11Aと導波路型光素子12の接続面12Aとは、上記のように軸ずれと角度ずれとを十分に除去された後、例えば接着剤により結合される。このとき、両接続面間では、応力分布及び接着層の厚みがそれぞれ高度に均一である。従って、応力集中又は温度勾配による接続面の歪み又は割れ等の劣化が抑制される。その結果、結合に対する高い信頼性が長期間維持される。
【0066】
実施例1による光軸調整装置は、導波路型光素子12、すなわち光検出器4へ接続される側の光素子を微動ステージへ固定し、微小変位させる。すなわち、光検出器4側の光素子を軸ずれ及び角度ずれの調整対象とする。その他に、光検出器4へ接続される側の光素子を固定ステージへ固定し、レーザ1へ接続される側の光素子を微動ステージへ固定し、微小変位させても良い。
【0067】
上記の光軸調整装置は制御部5により、光検出器4の計測値を自動的に処理し、アクティブアライメントを自動制御する。その他に、光検出器4の計測値を表示し、ユーザが目視によりその計測値を読み取り、マイクロメータ等により手動で微動ステージを駆動しても良い。
【0068】
【発明の効果】
本発明による光軸調整装置は上記の通り、調整対象光素子の接続面について、第一の光パワーの計測時での調心位置からの変位と第二の光パワーの計測時での変位とを、その調心位置での対称面に対し実質的に対称に設定する。更に、調整対象光素子の接続面を、第一の光パワーと第二の光パワーとの実質的な差を低減する向きに、その対称面との交線(すなわち対称軸)周りに回転させる。それにより、対称面間の傾き、すなわち接続面間のその対称軸周りの角度ずれが低減する。その結果、角度ずれによる結合損失が大きく低減し、応力集中と温度勾配とによる劣化が大きく抑制される。
【0069】
この角度ずれ調整は、従来の画像処理によるパッシブアライメントより少ない構成要素で実現できる。更に、アクティブアライメントで行われるので、調整の精度が高い。
特に一定の角度ずれ量について、第一の光パワーに対する第二の光パワーの比と1との差は、その角度ずれ量による結合損失そのものの値より十分に大きい。更に、接続面間の間隔と調心位置からの変位の大きさとを、第一の光パワーと第二の光パワーとの実質的な差を高精度に計測できるように最適化できる。その結果、上記の角度ずれ調整は、従来の装置によるアクティブアライメントより高感度であるので、迅速に達成される。
【図面の簡単な説明】
【図1】本発明の実施例1による光軸調整装置を示すブロック図である。
【図2】本発明の実施例1による光軸調整装置で、光ファイバ11と導波路型光素子12との結合部近傍を模式的に示す斜視図である。
【図3】本発明の実施例1による光軸調整装置で、光ファイバ11の接続面11Aのコア11C近傍と導波路型光素子12の接続面12Aの光導波路12C近傍とを模式的に示す拡大平面図である。
【図4】本発明の実施例1による光軸調整方法のフローチャートである。
【図5】単心の光ファイバ11と導波路型光素子12との結合を例として、従来の光軸調整方法を説明するための模式図である。
【図6】従来の光軸調整方法で、第一のカメラ21及び第二のカメラ22のそれぞれで観察される光ファイバ11の接続面11Aと導波路型光素子12の接続面12Aとの結合部分近傍を示す模式図である。(a)は第二のカメラ22の画像、すなわち結合部分の平面図である。(b)は第一のカメラ21の画像、すなわち結合部分の側面図である。
【符号の説明】
11 光ファイバ
11A 光ファイバ11の接続面
11C 光ファイバ11のコア
C 光ファイバ11の光軸
P 光ファイバ11の光軸Cと接続面11Aとの交点
12 導波路型光素子
12A 導波路型光素子12の接続面
12C 導波路型光素子12の光導波路
L 接続面間の間隔
β 接続面間のY軸周りの角度ずれ量
Δx 導波路型光素子12の接続面12AのX軸方向への変位の大きさ
調心位置での光導波路12Cの光軸
調心位置での光導波路12Cの光軸Cと接続面12Aとの交点
調心位置での導波路型光素子12からの光パワー
軸方向への変位+Δxでの光導波路12Cの光軸
軸方向への変位+Δxでの光導波路12Cの光軸Cと接続面12Aとの交点
第一の光パワー
軸方向への変位−Δxでの光導波路22Cの光軸
軸方向への変位−Δxでの光導波路22Cの光軸Cと接続面22Aとの交点
第二の光パワー
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to optical technology including, for example, optical communication or optical measurement, and optical axis adjustment for performing precise alignment (alignment) when an optical element (also referred to as an optical component or an optical device) and an optical module are mutually coupled. The present invention relates to an apparatus and an alignment method thereof. In particular, the present invention relates to a method for adjusting an angle shift between connection surfaces of optical elements to be coupled.
[0002]
[Prior art]
In optical communication, a light source including a semiconductor laser or a light emitting diode, or a combination thereof with an optical modulator functions as a transmitter, an optical fiber functions as a transmission line, and a light receiving element including a photodiode functions as a receiver. .
In addition to these optical elements, various types of optical elements such as optical amplifiers, optical splitters, optical couplers, and optical switches are used. The various optical elements are coupled together and modularized. Further, the optical modules are connected to each other by an optical fiber to form an optical communication network.
[0003]
In optical communication, light loss (propagation loss) during propagation must be suppressed as much as possible. In the coupling between the optical elements, for example, a minute gap between the connection surfaces, a deviation of the optical axis (axis deviation), and a relative inclination (angle deviation) increase the propagation loss. These losses occurring at the coupling portion between the optical elements are called coupling losses.
The angular deviation between the connecting surfaces also causes a so-called one-sided contact of the connecting surfaces. At that time, stress concentrates on a contact portion between the connection surfaces, and deterioration such as breakage or cracking of the optical element may occur. In addition, for example, since the thickness of the adhesive layer between the connection surfaces is non-uniform, a large distortion occurs in the temperature distribution in the optical element, and the temperature characteristics of the optical element may be deteriorated.
To reduce the coupling loss and prevent the optical element from deteriorating, it is necessary to precisely align the connection surface.
[0004]
There are two types of alignment methods, active alignment and passive alignment.
Active alignment refers to a method in which light is actually input to a pair of optical elements to be coupled and the position of the connection surface is adjusted while monitoring the optical output by the pair of optical elements. In active alignment, an optical element pair is fixed at a position where a maximum light output is obtained.
The passive alignment is an alignment that does not use a light output unlike the active alignment. The passive alignment includes, for example, a method of adjusting the position of the connection surface by monitoring the mechanical fit of the connection portion or the displacement of a predetermined mark provided on the connection portion.
Active alignment is advantageous in its high accuracy. On the other hand, passive alignment is advantageous in terms of mass productivity due to a reduction in the number of steps and a reduction in adjustment time.
[0005]
As a conventional alignment incorporating the advantages of both active alignment and passive alignment, for example, the following method is known (see Patent Document 1).
In this method, coarse positioning of a connection surface is first performed by passive alignment, and then highly accurate axis deviation adjustment (also simply referred to as alignment) is performed by active alignment. Thereby, the deviation of the connection surface from the target position, particularly the angular deviation between the connection surfaces, is sufficiently reduced before the active alignment, so that the adjustment time in the active alignment is reduced.
[0006]
FIG. 5 is a schematic diagram for explaining a conventional alignment in which a single-core optical fiber 11 and a waveguide-type optical element 12 are coupled as an example.
The coupling portion of the optical fiber 11 is covered with, for example, a substantially rectangular parallelepiped ferrule 13 and is fixed straight on a fine movement stage (not shown). On the other hand, the waveguide type optical element 12 is fixed on a fixed stage (not shown). At this time, the optical axes of the optical fiber 11 and the waveguide type optical element 12 are horizontal and substantially coincide with each other.
The connection surface 11A of the optical fiber 11 and the connection surface 13A of the ferrule 13 are formed on a common plane. Further, in the example of FIG. 5, the connection surface 11A of the optical fiber 11 and the connection surface 12A of the waveguide type optical element 12 are perpendicular to the optical axis of each optical element. Alternatively, each connection surface may be inclined by a common angle with respect to each optical axis.
[0007]
The connection surface 11A of the optical fiber 11 is slightly displaced by the fine movement stage. Here, it is assumed that an XYZ orthogonal coordinate system having an origin at an intersection with the optical axis is provided on the connection surface 11A. In the coordinate system, the Z axis indicates an optical axis direction, the X axis indicates a direction perpendicular and horizontal to the optical axis, and the Y axis indicates a vertical direction.
The minute displacement of the connection surface 11A is caused by three degrees of freedom for translation in each coordinate axis direction of the XYZ coordinate system and two degrees of freedom for rotation around the X axis and the Y axis (see arrows α and β in FIG. 5). ), Including a total of 5 degrees of freedom. Unlike the example of FIG. 5, in the coupling between the connection surfaces inclined with respect to the optical axis or in the coupling of a multi-core optical fiber (optical fiber array), one degree of freedom for rotation around the Z axis is reduced to the above five degrees of freedom. Add more.
[0008]
Utilizing the above five degrees of freedom, the connection surface 11A of the optical fiber 11 and the connection surface 12A of the waveguide type optical element 12 are positioned with coarse accuracy through the following image recognition. In particular, the distance between the two connecting surfaces is adjusted to be sufficiently small by utilizing the degree of freedom of translation in the Z-axis direction. Further, the degree of parallelism between the two connection surfaces is adjusted as follows by using the degrees of freedom around the X axis and the Y axis.
As shown in FIG. 5, the vicinity of the joint between the connection surface 11A of the optical fiber 11 and the connection surface 12A of the waveguide-type optical element 12 is determined by the first camera 21 from the direction MX parallel to the X axis. From the direction MY parallel to the axis, the second camera 22 observes each.
FIG. 6 is a schematic diagram showing the vicinity of the joint between the connection surface 11A of the optical fiber 11 and the connection surface 12A of the waveguide-type optical element 12 observed by each of the first camera 21 and the second camera 22. . FIG. 6A is an image of the second camera 22, that is, a plan view of a combined portion. FIG. 6B is an image of the first camera 21, that is, a side view of the combined portion.
[0009]
As shown in FIG. 6A, when it is recognized from the image of the second camera 22 that the connection surface 13A of the ferrule 13 is inclined by the angle β with respect to the connection surface 12A of the waveguide type optical element 12, The optical axis C1 of the optical fiber 11 is inclined by substantially the same angle β from the optical axis C2 of the waveguide type optical element 12. Therefore, the connection surface 13A of the ferrule 13 is rotated around the Y axis using the degree of freedom of rotation of the fine movement stage around the Y axis. Thereby, on the image of the second camera 22, the position is adjusted to a position parallel to the connection surface 12A of the waveguide type optical element 12.
As shown in FIG. 6B, when it is recognized from the image of the first camera 21 that the connection surface 13A of the ferrule 13 is inclined by the angle α with respect to the connection surface 12A of the waveguide-type optical element 12, The optical axis C1 of the optical fiber 11 is inclined by substantially the same angle α from the optical axis C2 of the waveguide type optical element 12. Therefore, the connection surface 13A of the ferrule 13 is rotated around the X axis by utilizing the degree of freedom of rotation of the fine movement stage around the X axis. Thereby, on the image of the first camera 21, the position is adjusted to a position parallel to the connection surface 12A of the waveguide type optical element 12.
The angle adjustment around each of these X axis and Y axis is alternately repeated. Thereby, the angle shift between the connection surface 11A of the optical fiber 11 and the connection surface 12A of the waveguide type optical element 12 is reduced.
[0010]
Next, using the two translational degrees of freedom on the XY plane, highly accurate alignment between the optical fiber 11 and the waveguide-type optical element 12 is performed as follows.
First, light enters the optical fiber 11 and exits from the connection surface 11A. The emitted light enters the waveguide type optical element 12 from the connection surface 12A, and is emitted from another output end (not shown). The intensity of the emitted light is measured by, for example, an optical power meter (not shown).
This measurement is repeated while translating the connection surface 11A of the optical fiber 11 on the XY plane. Thereby, the position on the XY plane of the connection surface 11A when the measured value of the optical power meter becomes substantially the maximum is determined. The relative position of the optical fiber 11 with respect to the waveguide type optical element 12 at that time is referred to as the alignment position of the optical fiber 11. When the optical fiber 11 is in the centered position, the loss due to the misalignment is substantially minimal.
[0011]
[Patent Document 1]
JP-A-10-197751
[0012]
[Problems to be solved by the invention]
In the conventional alignment as described above, the adjustment of the angle deviation between the connection surfaces is performed by passive alignment using image recognition. Therefore, to further improve the accuracy of the angle shift adjustment, it is necessary to further improve the accuracy of image recognition, the accuracy of molding the optical elements, and the accuracy of their positioning. However, they were generally difficult.
In the above alignment, in particular, for the optical element to be coupled such as the optical fiber 11 and the waveguide type optical element 12 and the coupling member such as the ferrule 13, the outer shapes thereof are strictly controlled and the predetermined shape is obtained. Deviations, such as distortion and cracks, must be prevented. Further, for example, in the connection of the optical fiber 11 in the ferrule 13 or the connection of the optical fiber in the optical fiber array, the respective positioning must be realized with high precision. It has been difficult to further improve the reliability of the management of those shapes.
[0013]
In the alignment based on the image recognition described above, when the optical element to be coupled includes, for example, a lens and the connection surface has a shape different from a flat surface such as a curved surface, it is generally difficult to adjust the angle deviation between the connection surfaces with high accuracy. .
Moreover, the use of image recognition required a complex arrangement of many components, such as cameras, lighting, and computers for image recognition processing, and their parallel control. Therefore, it has been difficult to simplify the optical axis adjustment device and the adjustment process using the same. As a result, for example, when a plurality of optical elements are connected to each other to form a module, it has been difficult to further reduce the manufacturing cost of the optical module.
[0014]
SUMMARY OF THE INVENTION The present invention provides an optical device that performs high-precision and quick adjustment of an angle shift between connection surfaces, particularly with active alignment, at the time of coupling between optical elements, thereby simultaneously simplifying the configuration and further reducing the coupling loss. An object of the present invention is to provide an axis adjusting device and an optical axis adjusting method thereof.
[0015]
[Means for Solving the Problems]
The optical axis adjusting device according to the present invention includes:
(A) a light source unit for outputting a substantially constant optical power;
(B) a first stage for fixing the first optical element and transmitting light emitted from the light source section from the input end of the first optical element to the connection surface;
(C) a second stage for fixing the second optical element and transmitting light transmitted from the connection surface of the first optical element to the output end from the connection surface of the second optical element;
(D) a photodetector for detecting transmitted light from the output end of the second optical element and measuring the optical power;
(E) a stage driver for finely moving the first stage or the second stage by a predetermined amount; and
(F) (a) With respect to one of the first optical element and the second optical element (hereinafter, referred to as an optical element to be adjusted), substantially with respect to a substantially symmetric plane including an optical axis of a connection surface thereof. Two directions (hereinafter, referred to as a first direction and a second direction) that are symmetric and substantially parallel to the connection surface are selected, and (b) the optical element to be adjusted is moved from the centering position to the first direction. (C) measuring the optical power from the output end of the second optical element as a first optical power and a second optical power, respectively, when the optical element is shifted by a certain distance to each of the second direction; Is rotated around a line of intersection with the plane of symmetry (hereinafter, referred to as the axis of symmetry) by a predetermined rotation angle in a direction to make the first optical power and the second optical power substantially equal, Angle deviation adjustment unit for:
Having.
[0016]
The centering position of the optical element refers to a position at which the coupling loss due to the axial deviation is substantially minimized. Specifically, each optical axis is substantially aligned in the gap between the connection surfaces of the optical elements. (That is, within the range of the measurement error).
The alignment position between the first optical element and the second optical element is preferably determined by the following active alignment.
Light is input from the light source unit to the input end of the first optical element, and while moving either the first optical element or the second optical element in parallel with its connection surface, the output end of the second optical element The optical output (ie, the optical power of the transmitted light) is measured. Thereby, the respective positions of the first optical element and the second optical element when the substantially maximum light output is obtained are determined as the respective centering positions.
[0017]
In general optical element coupling, the connection surfaces of the respective optical elements each have a substantially symmetric plane including the optical axis.
The light emitted from the connection surface of the first optical element has a substantially symmetric intensity distribution with respect to a substantially symmetric plane including the optical axis of the connection surface. On the other hand, the incident light on the connection surface of the second optical element substantially matches the optical axis with the connection surface, and is substantially symmetric with respect to a substantially symmetric plane including the optical axis of the connection surface. When showing an intensity distribution, it is most easily transmitted to the connection surface. Accordingly, when the connection surface of the first optical element and the connection surface of the second optical element substantially align their respective optical axes and planes of symmetry, and thereby align in terms of symmetry, the space between them Coupling loss is suppressed.
[0018]
For example, when the connection surface of the first optical element and the connection surface of the second optical element are both substantially planar and substantially symmetric with respect to the respective optical axes, those optical axes are connected to each other. If the gaps between them substantially coincide and their connecting surfaces are substantially parallel, their connecting surfaces are substantially symmetric with respect to their common optical axis. On the other hand, in the arrangement, since both the axis shift and the angle shift are substantially minimized, the coupling loss due to them is substantially minimized.
[0019]
Matching for symmetry between connection planes reduces coupling loss as described above.
Such matching further enhances, for example, the respective uniformity of the stress distribution between the connecting surfaces and the thickness of the adhesive layer. Therefore, deterioration such as distortion or cracking of the connection surface due to stress concentration or temperature gradient is suppressed.
[0020]
In the above-described optical axis adjusting device, the symmetry matching between the connection surface of the first optical element and the connection surface of the second optical element is realized by the angle shift adjustment unit as follows.
For the connection surface of the optical element to be adjusted, the displacement from the centering position at the time of measuring the first optical power and the displacement at the time of measuring the second optical power are relative to the plane of symmetry at the centering position. Substantially symmetric. Therefore, when the symmetry plane of the connection surface of another optical element is substantially inclined with respect to the symmetry plane, a substantial difference occurs between the first optical power and the second optical power. In particular, the difference corresponds to the inclination between the planes of symmetry.
The angle shift adjusting unit detects a substantial difference between the first optical power and the second optical power, and rotates the connection surface of the optical element to be adjusted around the above-mentioned axis of symmetry so as to reduce the difference. Thereby, the inclination between the above-mentioned symmetry planes is reduced. In this way, the angular displacement between the connecting surfaces around its axis of symmetry is adjusted.
[0021]
Here, for a certain angle shift, the ratio of the substantial difference between the first optical power and the second optical power to the first optical power (that is, the ratio of the second optical power to the first optical power) Is larger than the value of the coupling loss itself due to the angle shift. Furthermore, the above-mentioned fixed distance, that is, the magnitude of displacement from the centering position of the connection surface of the adjustment target optical element can measure the substantial difference between the first optical power and the second optical power with high accuracy. Can be optimized as follows. As a result, the angle deviation adjustment by the above-described optical axis adjustment device has higher sensitivity than the active alignment by the conventional device.
In the above optical axis adjusting device, the first direction and the second direction are particularly preferably opposite to each other. At that time, for a certain angle shift, the substantial difference between the first optical power and the second optical power is maximum. Therefore, the sensitivity to the angle shift is particularly high.
[0022]
In the above-described optical axis adjustment device, the above-described angle shift adjustment may be repeated while the angle shift adjuster adjusts the rotation angle about the symmetry axis with respect to the connection surface of the optical element to be adjusted. For example, the rotation angle may be increased or decreased in accordance with an increase or decrease in a substantial difference between the first optical power and the second optical power. Thereby, the position of the connection surface when the first optical power and the second optical power are substantially equal is quickly determined.
Further, preferably, the distance between the connection surface of the first optical element and the connection surface of the second optical element is L, and the above-mentioned constant distance (that is, the displacement of the connection surface of the adjustment-target optical element from the centering position). Magnitude) is Δx, and the first optical power is I 1 , The second optical power is I 2 In this case, the angle shift adjusting unit sets the angle shift amount around the symmetry axis between the connection surfaces of the first optical element and the second optical element to L (I 1 / I 2 -1) / (4Δx), and the angle shift amount is determined as the rotation angle. The approximation of the angle shift amount is sufficiently high by adjusting the distance L between the connection surfaces and the magnitude Δx of the displacement of the optical element to be adjusted. Therefore, the angle shift adjustment can be performed quickly.
[0023]
When the connection surface of the optical element has a plurality of the above-mentioned symmetry planes, the above-described optical axis adjustment device may perform the above-described angle shift adjustment on each of the symmetry planes. For example, in the coupling of an optical fiber having an elliptical core, the above-described angle shift adjustment may be performed on a symmetric plane including the major axis and the minor axis of the cross section of the elliptical core. In addition, in the coupling of an optical waveguide having a rectangular cross section, the above-described angle shift adjustment is performed with respect to a symmetric plane which is parallel to each of the long side and the short side of the cross section and passes through the center of the cross section. May be performed.
As in these examples, when the above-described angle shift adjustment is performed on a plurality of symmetry planes, each angle shift adjustment may be alternately repeated. Thereby, an error due to the accuracy of each angle shift adjustment and an error due to the mutual influence of the angle shift adjustment for different symmetry planes (for example, the angle around the other symmetry axis due to the reduction of the angle shift around the other symmetry axis) Increase in displacement) can be reduced. As a result, the stability of the angle shift adjustment is improved.
[0024]
The above-mentioned optical axis adjustment device may further repeat the above-mentioned alignment alternately with the above-mentioned angle shift adjustment. When an angle shift is included between the connection surfaces, the above-described alignment position generally includes an error. Further, when the connection surface of the optical element to be adjusted is rotated by adjusting the angle shift, the axis shift can generally increase due to a positioning error of the rotation axis. Therefore, the axis shift and the angle shift can be further reduced by alternately repeating the alignment and the angle shift adjustment.
[0025]
In the coupling between a core optical fiber or a waveguide type optical element having a circular cross section, particularly when the connection surface is rotationally symmetric around the optical axis, the angle shift adjusting unit is connected to the connection surface of the adjustment target optical device. Three or more parallel directions may be selected. A pair consisting of any two of these directions can be regarded as a pair of the first direction and the second direction. Therefore, for each of these various pairs, the above-mentioned symmetry axis and the amount of angular deviation around it are obtained in the same manner as described above, and from the combination of these symmetry axes and the amount of angular deviation, A rotation angle about a predetermined axis may be determined.
[0026]
In a coupling between an optical fiber having an elliptical core, an optical fiber array, or an optical element having a connection surface inclined with respect to the optical axis, the connection surface is not rotationally symmetric about the optical axis. At that time, the angle shift adjusting unit may rotate the connection surface of the optical element to be adjusted by a predetermined rotation angle around the optical axis in addition to the above-mentioned symmetric axis. Thereby, the coupling loss due to the rotational deviation around the optical axis can be reduced in the same manner as the coupling loss due to the angular deviation described above.
[0027]
The method of adjusting the optical axis between the optical element connection surfaces according to the present invention,
(A) A substantially constant optical power is output by the light source unit, the emitted light is transmitted from the input end of the first optical element fixed to the first stage to the connection surface, and the transmitted light is further transmitted. Transmitting light from the connection surface of the second optical element fixed to the second stage to the output end, and measuring the optical power of the transmitted light;
(B) repeating the step of measuring the optical power each time either the first optical element or the second optical element is moved substantially parallel to its connection surface, and measuring the resulting optical power Determining the positions of the first optical element and the second optical element when measuring the substantially largest value among the values as the respective alignment positions;
(C) One of the first optical element and the second optical element (hereinafter, referred to as an adjustment target optical element) is substantially symmetric with respect to a substantially symmetric plane including the optical axis of the connection surface, and Selecting two directions substantially parallel to the connection surface (hereinafter, referred to as a first direction and a second direction);
(D) shifting the optical element to be adjusted from the centering position in the first direction by a certain distance, and measuring the optical power at that time as the first optical power;
(E) shifting the optical element to be adjusted from the centering position in the second direction by a certain distance, and measuring the optical power at that time as the second optical power;
(F) The connection surface of the optical element to be adjusted is predetermined around a line of intersection with the symmetry plane (hereinafter referred to as a symmetry axis) in a direction in which the first optical power and the second optical power are substantially equal. Rotating by the rotation angle of;
Having.
[0028]
The light emitted from the connection surface of the first optical element has a substantially symmetric intensity distribution with respect to a substantially symmetric plane including the optical axis of the connection surface. On the other hand, the incident light on the connection surface of the second optical element substantially matches the optical axis with the connection surface, and is substantially symmetric with respect to a substantially symmetric plane including the optical axis of the connection surface. When showing an intensity distribution, it is most easily transmitted to the connection surface. Accordingly, when the connection surface of the first optical element and the connection surface of the second optical element substantially align their respective optical axes and planes of symmetry, and thereby align in terms of symmetry, the space between them Coupling loss is suppressed.
The symmetry matching between the connecting surfaces further enhances, for example, the respective uniformity of the stress distribution between the connecting surfaces and the thickness of the adhesive layer. Therefore, deterioration such as distortion or cracking of the connection surface due to stress concentration or temperature gradient is suppressed.
[0029]
In the above optical axis adjustment method, the symmetry matching between the connection surface of the first optical element and the connection surface of the second optical element is realized as follows.
For the connection surface of the optical element to be adjusted, the displacement from the centering position at the time of measuring the first optical power and the displacement at the time of measuring the second optical power are relative to the plane of symmetry at the centering position. Substantially symmetric. Therefore, when the symmetry plane of the connection surface of another optical element is substantially inclined with respect to the symmetry plane, a substantial difference occurs between the first optical power and the second optical power. In particular, the difference corresponds to the inclination between the planes of symmetry.
In the step of rotating the connection surface of the optical element to be adjusted around the axis of symmetry, a substantial difference between the first optical power and the second optical power is detected, and the direction of rotation reduces the difference. Is determined. Thereby, the inclination between the above-mentioned symmetry planes is reduced. In this way, the angular displacement between the connecting surfaces around its axis of symmetry is adjusted.
[0030]
Here, for a certain angle shift, the ratio of the substantial difference between the first optical power and the second optical power to the first optical power (that is, the ratio of the second optical power to the first optical power) Is larger than the value of the coupling loss itself due to the angle shift. Furthermore, the above-mentioned fixed distance, that is, the magnitude of displacement from the centering position of the connection surface of the adjustment target optical element can measure the substantial difference between the first optical power and the second optical power with high accuracy. Can be optimized as follows. As a result, the above-described optical axis adjustment method has higher sensitivity to the angle shift than the conventional method.
In the above optical axis adjustment method, the first direction and the second direction are particularly preferably opposite to each other. At that time, for a certain angle shift, the substantial difference between the first optical power and the second optical power is maximum. Therefore, the sensitivity to the angle shift is particularly high.
[0031]
In the optical axis adjustment method described above, each step may be repeated while adjusting the rotation angle about the symmetry axis with respect to the connection surface of the optical element to be adjusted. For example, the rotation angle may be increased or decreased in accordance with an increase or decrease in a substantial difference between the first optical power and the second optical power. Thereby, the position of the connection surface when the first optical power and the second optical power are substantially equal is quickly determined.
In the above optical axis adjustment method, more preferably, the distance between the connection surface of the first optical element and the connection surface of the second optical element is L, and the above-mentioned fixed distance (that is, the adjustment of the connection surface of the optical element to be adjusted). Δx, and the first optical power is I 1 , The second optical power is I 2 In this case, the amount of angular displacement around the axis of symmetry between the connection surfaces of the first optical element and the second optical element is L (I 1 / I 2 -1) / (4Δx) and determining the rotation angle. The approximation of the angle shift amount is sufficiently high by adjusting the distance L between the connection surfaces and the magnitude Δx of the displacement of the optical element to be adjusted. Therefore, the angle shift adjustment can be performed quickly.
[0032]
When the connection surface of the optical element has a plurality of the above-mentioned symmetry planes, the above-described optical axis adjustment method may be used for each of the symmetry planes. At that time, the respective angle shift adjustments may be repeated alternately. Thereby, errors due to the accuracy of the respective angle deviation adjustments and errors due to the mutual influence of the angle deviation adjustments for different symmetry planes (for example, the angle deviation about the other symmetry axis due to the reduction of the angle deviation about the other symmetry axis) Increase) can be reduced.
[0033]
In the above-described optical axis adjustment method, in particular, the step relating to the angle deviation adjustment and the step relating to the alignment may be alternately repeated. When an angle shift is included between the connection surfaces, the above-described alignment position generally includes an error. Further, in the step of rotating the connection surface of the optical element to be adjusted, the axis deviation may generally increase due to a positioning error of the rotation axis. Therefore, the axis shift and the angle shift can be further reduced by alternately repeating the alignment and the angle shift adjustment.
[0034]
In the coupling between a core optical fiber or a waveguide type optical element having a circular cross section, particularly when the connection surface is rotationally symmetric about the optical axis, the connection of the optical element to be adjusted is performed by the above optical axis adjustment method. Three or more directions parallel to the plane may be selected. A pair consisting of any two of these directions can be regarded as a pair of the first direction and the second direction. Therefore, for each of these various pairs, the above-mentioned symmetry axis and the amount of angular deviation around it are obtained in the same manner as described above, and from the combination of these symmetry axes and the amount of angular deviation, A rotation angle about a predetermined axis may be determined.
[0035]
In a coupling between an optical fiber having an elliptical core, an optical fiber array, or an optical element having a connection surface inclined with respect to the optical axis, the connection surface is not rotationally symmetric about the optical axis. At this time, the connection surface of the optical element to be adjusted may be rotated around the optical axis by a predetermined rotation angle in addition to the above-mentioned symmetry axis. Thereby, the coupling loss due to the rotational deviation around the optical axis can be reduced in the same manner as the coupling loss due to the angular deviation described above.
[0036]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings by way of preferred embodiments.
<< Example 1 >>
FIG. 1 is a block diagram showing an optical axis adjusting device according to Embodiment 1 of the present invention. FIG. 1 illustrates the coupling between a single-core optical fiber 11 and a waveguide-type optical element 12.
The laser 1 is preferably a semiconductor laser and stably supplies a constant light output (about 1 mW) at a wavelength of about 1.55 μm or about 1.3 μm. The optical output of the laser 1 enters the input end 11B of the optical fiber 11, is transmitted along the optical fiber 11, and is emitted from the connection surface 11A.
[0037]
The first stage 2 is a fixed stage, and its base is fixed substantially horizontally. On the first stage 2, a coupling portion 11C of the optical fiber 11 is fixed horizontally and straight.
The second stage 3 is a fine movement stage and is set close to the first stage 1. The second stage 3 slightly translates the table surface in, for example, two directions parallel to the table surface and one direction perpendicular to the table surface (accuracy: about 0.05 μm), and rotates the table slightly around each direction. (Accuracy about 0.001 °). On the second stage 3, a waveguide type optical element 12 is fixed with its optical waveguide 12C horizontal. At this time, particularly, the connection surface 11A of the optical fiber 11 and the connection surface 12A of the waveguide type optical element 12 face each other.
[0038]
The sub optical fiber 14 couples between the output end 12B of the waveguide type optical element 12 and the photodetector 4, and transmits the optical output of the waveguide type optical element 12 to the photodetector 4.
The photodetector 4 is preferably an optical power meter, and measures the optical output of the waveguide type optical element 12 input from the sub optical fiber 14. The measured value is output to the control unit 5.
The control unit 5 is preferably a personal computer, and functions as an axis deviation adjustment unit 5A and an angle deviation adjustment unit 5B by a predetermined program. The axis deviation adjusting unit 5A controls active alignment relating to alignment between the connection surface 11A of the optical fiber 11 and the connection surface 12A of the waveguide type optical element 12. On the other hand, the angle shift adjusting unit 5B executes active alignment related to the angle shift adjustment between the two connection surfaces. The control unit 5 processes the measurement value of the photodetector 4 by each function, and determines a control amount for the second stage 3.
The driver 6 is a driving device for a motor that actually finely moves the second stage 3, and slightly translates or rotates the second stage 3 according to a control amount from the control unit 5.
[0039]
The optical fiber 11 is, for example, a single-core single-mode optical fiber, and includes a core having a circular cross section with a diameter of about 10 μm. The diameter of the entire optical fiber 11 including the clad is about 125 μm. The optical fiber 11 also exhibits substantially the lowest loss for light having a wavelength of about 1.55 μm or about 1.3 μm. Alternatively, the optical fiber 11 may be a multimode optical fiber.
The connection surface 11A of the optical fiber 11 is substantially perpendicular to its optical axis and is substantially planar.
The waveguide type optical element 12 is, for example, a ridge type and includes an optical waveguide (core) 12C having a rectangular cross section of about 10 μm square. The waveguide type optical element 12 may be a buried type. Further, the waveguide type optical element 12 may be an optical fiber.
The connection surface 12A of the waveguide type optical element 12 is substantially perpendicular to the optical axis of the optical waveguide 12C and is substantially planar.
[0040]
FIG. 2 is a perspective view schematically showing the vicinity of a coupling portion between the optical fiber 11 and the waveguide type optical element 12. On the connection surface 11A of the optical fiber 11, three coordinate axes (X axis, Y axis, and Z axis) of a rectangular coordinate system are shown. On the other hand, on the connection surface 12A of the waveguide type optical element 12, three coordinate axes (X 0 Axis, Y 0 Axis and Z 0 Axis) is shown.
The origin of the XYZ coordinate system is an intersection P between the connection surface 11A of the optical fiber 11 and the optical axis C of the core 11C. The XY plane is substantially parallel to the connection surface 11A, the X axis indicates a horizontal direction, and the Y axis indicates a vertical direction. The Z axis indicates the direction of the optical axis C. Here, the connection surface 11A is rotationally symmetric about the Z axis.
On the other hand, X 0 Y 0 Z 0 The coordinate system is composed of a connection surface 12A of the waveguide type optical element 12 and an optical axis C of the optical waveguide 12C. 0 Intersection P with 0 Is the origin. X 0 Y 0 The plane is substantially parallel to its connecting surface 12A and X 0 The axis is horizontal, Y 0 The axes indicate the vertical direction, respectively. Z 0 The axis is the optical axis C 0 The direction of is shown. Here, the connection surface 12A is X 0 Z 0 Plane and Y 0 Z 0 Let each plane be a plane of symmetry.
[0041]
On each of the first stage 2 and the second stage 3, a positioning reference using, for example, a groove or a pin is provided. The optical fiber 11 is fixed on the first stage 2 and the waveguide type optical element 12 is fixed on the second stage 3 according to the positioning standards. Further, when the second stage 3 is set at the initial position, the XYZ coordinate system and X 0 Y 0 Z 0 Corresponding coordinate axes between the coordinate system and the coordinate system are substantially parallel.
[0042]
The second stage 3 slightly displaces the connection surface 12A of the waveguide type optical element 12. The minute displacement is caused by X substantially parallel to the connection surface 12A. 0 Y 0 Two degrees of freedom for translation on a plane, the optical axis C of the optical waveguide 12C 0 Direction (Z 0 One degree of freedom for translation in the axial direction) and X 0 Axis and Y 0 Includes a total of five degrees of freedom, two degrees of freedom (see arrows α and β in FIG. 2) for rotation about each of the axes. In addition, Z 0 One degree of freedom for rotation about the axis may be further added.
Hereinafter, the position of the connection surface 12A of the waveguide type optical element 12 with respect to the connection surface 11A of the optical fiber 11 is represented by X 0 Y 0 Z 0 Coordinate system origin P 0 XYZ coordinates.
[0043]
The axis misalignment adjusting unit 5A is configured to control the X 0 Y 0 Using the degree of freedom of translation on a plane, active alignment relating to alignment between the connection surface 11A of the optical fiber 11 and the connection surface 12A of the waveguide type optical element 12 is performed as follows. Here, the distance L between the connection surface 11A of the optical fiber 11 and the connection surface 12A of the waveguide type optical element 12 is Z 0 It is set to be sufficiently narrow (for example, about 25 μm) in advance by utilizing the degree of freedom of translation in the axial direction.
First, light enters the input end 11B of the optical fiber 11 from the laser 1 and is emitted from the connection surface 11A. The emitted light R enters the waveguide type optical element 12 from its connection surface 12A, and is transmitted from the output end 12B to the photodetector 4 through the sub optical fiber 14 (see FIG. 1). The photodetector 4 measures the intensity of the emitted light.
X 0 Y 0 Z 0 Coordinate system origin P 0 Is defined as (x, y, z), the optical power (hereinafter, referred to as received light intensity) I measured by the photodetector 4 is expressed as a function I = I (x, y, z) of the XYZ coordinate. Is represented. In particular, when the inclination between the connection surfaces is sufficiently small, the received light intensity I is approximated with high accuracy by the following equation (1).
[0044]
I (x, y, z) = Aexp {− (Bx 2 + Cy 2 )} / Z 2 . (1)
[0045]
Here, coefficients A, B, and C are X 0 Y 0 Z 0 Coordinate system origin P 0 Is a positive constant that does not substantially depend on the XYZ coordinates (x, y, z).
The distance between the connection surfaces is maintained at a constant value L, and the Z axis of the XYZ coordinate system, that is, the optical axis C of the optical fiber 11 is X 0 Y 0 Z 0 Coordinate system origin P 0 Is substantially pierced, as is apparent from the equation (1), the received light intensity I becomes the maximum value I 0 = I (0,0, L) = A / L 2 Reach
The axis deviation adjusting unit 5A sets the connection surface 12A of the waveguide type optical element 12 to X 0 Y 0 The above measurement is repeated while translating on a plane. The translation gives X 0 Y 0 Z 0 Coordinate system origin P 0 Changes the XYZ coordinates, so that the received light intensity I changes according to equation (1). The axis deviation adjusting unit 5A monitors the change, and when the received light intensity I is substantially the maximum value I 0 = A / L 2 Is determined on the XY plane of the connection surface 12A when the contact surface 12A is reached. Thus, the centering position of the waveguide type optical element 12 with respect to the optical fiber 11 is set.
[0046]
The angle shift adjusting unit 5B is configured to select X out of the five degrees of freedom of the second stage 3. 0 Axis and Y 0 Using the degree of freedom of rotation about each of the axes, active alignment relating to the adjustment of the angle deviation between the connection surface 11A of the optical fiber 11 and the connection surface 12A of the waveguide type optical element 12 is performed as follows.
FIG. 3 is an enlarged plan view schematically showing the vicinity of the core 11C of the connection surface 11A of the optical fiber 11 and the vicinity of the optical waveguide 12C of the connection surface 12A of the waveguide-type optical element 12, that is, when viewed from vertically upward. It is an enlarged view. In FIG. 3, the connection surface 12A of the waveguide type optical element 12 is inclined by a small angle β with respect to the connection surface 11A of the optical fiber 11. That is, Y of the connection surface 12A of the waveguide type optical element 12 with respect to the connection surface 11A of the optical fiber 11 0 The angle shift amount around the axis is equal to the minute angle β.
First, the connection surface 12A of the waveguide type optical element 12 is set at the centering position. At this time, the optical axis C of the optical fiber 11 and the optical axis C of the optical waveguide 12C 0 Is the gap between the connecting surfaces, ie, the point PP 0 A substantial match between Therefore, the optical axis C of the optical fiber 11 is equal to the connection surface 12A of the waveguide type optical element 12, and the optical axis C of the connection surface 12A and the optical waveguide 12C. 0 Intersection P with 0 Can be regarded as substantially intersecting. That is, X 0 Y 0 Z 0 Coordinate system origin P 0 The XYZ coordinates (x, y, z) of are substantially equal to (0, 0, L): (x, y, z) = (0, 0, L).
[0047]
Next, the connecting surface 12A of the waveguide type optical element 12 is moved X from the centering position. 0 The translation is made by a substantially constant distance Δx in the positive direction of the axis. Here, the fixed distance Δx is substantially the same as the size of the optical waveguide 12C, and is about 10 μm. At this time, the connection surface 12A of the waveguide type optical element 12 and the optical axis C of the optical waveguide 12C 1 Intersection (X 0 Y 0 Z 0 Origin of coordinate system) P 1 XYZ coordinates (x, y, z) of the origin P 1 Using the translational displacement magnitude Δx and the distance L between the connecting surfaces and the inclination β, the following expression is obtained: (x, y, z) = (Δx · cosβ, 0, L + Δx · sinβ).
In this arrangement, similarly to the alignment performed by the axis deviation adjusting unit 5A, light enters the input end 11B of the optical fiber 11 from the laser 1 and the light output from the output end 12B of the waveguide type optical element 12 is detected by a photodetector. Measure with 4. The measured value (hereinafter referred to as first optical power) I 1 Is approximated by the following equation (2) by the above equation (1).
[0048]
I 1 = I (Δx · cosβ, 0, L + Δx · sinβ)
= Aexp {-B (Δx · cosβ) 2 } / (L + Δx · sinβ) 2 . (2)
[0049]
Subsequently, the connecting surface 12A of the waveguide type optical element 12 is moved from the centered position by X. 0 The translation is performed in the negative direction of the axis by a distance substantially equal to the constant distance Δx. At this time, the connection surface 12A of the waveguide type optical element 12 and the optical axis C of the optical waveguide 12C 2 Intersection (X 0 Y 0 Z 0 Origin of coordinate system) P 2 XYZ coordinates (x, y, z) of the origin P 2 Using the translational displacement magnitude Δx and the distance L between the connecting surfaces and the inclination β, the following expression is obtained: (x, y, z) = (− Δx · cosβ, 0, L−Δx · sinβ) .
In this arrangement, light enters the input end 11B of the optical fiber 11 from the laser 1 and the light output from the output end 12B of the waveguide type optical element 12 is measured by the photodetector 4. The measured value (hereinafter, referred to as second optical power) I 2 Is approximated by the following equation (3) by the above equation (1).
[0050]
I 2 = I (−Δx · cosβ, 0, L−Δx · sinβ)
= Aexp {-B (Δx · cosβ) 2 } / (L-Δx · sinβ) 2 . (3)
[0051]
From the equations (2) and (3), the first optical power I 1 And the second optical power I 2 Is determined by the following equation (4).
[0052]
I 1 / I 2 = (L + Δx · sinβ) 2 / (L-Δx · sinβ) 2 . (4)
[0053]
When the inclination between the connection surfaces, that is, the angle shift amount β is sufficiently small, the angle shift amount β is obtained from the first optical power I from the equation (4). 1 And the second optical power I 2 Ratio I 1 / I 2 , The distance L between the connection surfaces, and the magnitude Δx of the translational displacement of the connection surface 12A of the waveguide type optical element 12, and are approximated by the following equation (5).
[0054]
β = L (I 1 / I 2 -1) / (4Δx). (5)
[0055]
The angle shift adjusting unit 5B moves the connection surface 12A of the waveguide type optical element 12 by the second stage 3 by the angle shift amount β obtained by Expression (5). 0 Rotate around an axis. Thus, the inclination (angle shift) β between the connection surfaces when viewed from the vertical direction is reduced, and the X-axis and the X-axis 0 The parallelism with the axis is improved. Furthermore, the YZ plane and Y 0 Z 0 The inclination with respect to the planes is reduced, and the symmetry of the joint with respect to those planes is improved. As a result, the coupling loss due to the angle shift β is reduced.
[0056]
Here, for a fixed angle shift amount β, the first optical power I 1 Second optical power I for 2 Difference between the ratio of 1 and 1 (I 1 / I 2 -1) is sufficiently larger than the value of the coupling loss itself due to the angle shift amount β. Further, the distance L between the connection surfaces and the fixed distance Δx are the first optical power I 1 And the second optical power I 2 Can be optimized so that a substantial difference from the measurement can be measured with high accuracy. As a result, the above-described angle shift adjustment has higher sensitivity than active alignment by a conventional apparatus.
[0057]
The connection surface 12A of the waveguide type optical element 12 is set to X with respect to the connection surface 11A of the optical fiber 11. 0 When tilted by a small angle α around the axis, ie, X 0 When the angle shift amount around the axis is equal to the minute angle α, the angle shift adjustment unit 5B performs the angle shift adjustment X 0 The same process is performed in the axial direction, and the angle shift amount α is reduced in the same manner as the above-described angle shift amount β. Thereby, the Y axis and Y 0 The parallelism with the axis is improved. XZ plane and X 0 Z 0 The inclination with respect to the planes is reduced, and the symmetry of the joint with respect to those planes is improved. As a result, the coupling loss due to the angle shift α is reduced.
[0058]
The angle shift adjusting unit 5B 0 Adjustment of the angle shift around the axis (that is, reduction of the angle shift amount α) and Y 0 Adjustment of the angle shift around the axis (that is, reduction of the angle shift amount β) may be alternately repeated. Thereby, an error due to the accuracy of each angle shift adjustment and an error due to mutual influence of the angle shift adjustment for different symmetry planes (for example, X 0 Y by reducing the amount of angular deviation α around the axis 0 Increase in the amount of angular deviation β around the axis). As a result, the stability of the angle shift adjustment is improved.
[0059]
The control unit 5 may alternately repeat the alignment by the axis deviation adjustment unit 5A and the angle deviation adjustment by the angle deviation adjustment unit 5B. When an angle shift is included between the connection surfaces, the above-described alignment position generally includes an error. Further, when the connection surface 12A of the waveguide type optical element 12 is rotated by adjusting the angle shift, the rotation axis (Y 0 Axial misalignment can generally increase due to the positioning error of the axle). Therefore, the axis shift and the angle shift can be further reduced by alternately repeating the alignment and the angle shift adjustment.
[0060]
FIG. 4 is a flowchart of the optical axis adjustment method according to the first embodiment.
<Step S1>
The optical fiber 11 is fixed at a predetermined position on the first stage 2, and the waveguide type optical element 12 is fixed at a predetermined position on the second stage 3, and the second stage 3 is set to an initial position. Then, the XYZ coordinate system and X 0 Y 0 Z 0 Corresponding coordinate axes between the coordinate system and the coordinate system are substantially parallel.
Further, the distance between the connection surface 11A of the optical fiber 11 and the connection surface 12A of the waveguide type optical element 12 is set to a sufficiently small distance L.
Here, the optical output of the laser 1 is incident on the input end 11B of the optical fiber 11, and the optical output from the output end 12B of the waveguide type optical element 12 is detected by the photodetector 4 to determine whether The initial position of the stage 3 may be adjusted.
[0061]
<Step S2>
The axis deviation adjusting unit 5A performs the above-described alignment, and determines the alignment position.
<Step S3>
The angle shift adjusting unit 5B moves the connection surface 12A of the waveguide type optical element 12 from the centering position by X. 0 Translated by a fixed distance Δx in the positive direction of the axis, and the measured value (first optical power) I of the photodetector 4 at that time is I 1 Record
<Step S4>
The angle shift adjusting unit 5B moves the connection surface 12A of the waveguide type optical element 12 from the centering position by X. 0 Translated by a fixed distance Δx in the negative direction of the axis, and the measured value (second optical power) I of the photodetector 4 at that time I 2 Record
<Step S5>
When the angle shift adjusting unit 5B has the first optical power I 1 And the second optical power I 2 Is calculated, and Y is calculated from Expression (5). 0 The amount of angular deviation β around the axis is determined.
<Step S6>
The angle shift adjusting unit 5B sets the connection surface 12A of the waveguide type optical element 12 to Y. 0 It is rotated around the axis by the angle shift amount β.
[0062]
<Step S7>
The angle shift adjusting unit 5B moves the connecting surface 12A of the waveguide type optical element 12 from the centering position by Y. 0 Translated by a fixed distance Δy in the positive direction of the axis, and the measured value (third optical power) I of the photodetector 4 at that time is I 3 Record
<Step S8>
The angle shift adjusting unit 5B moves the connecting surface 12A of the waveguide type optical element 12 from the centering position by Y. 0 Translated by a fixed distance Δy in the negative direction of the axis, and the measured value (fourth optical power) I of the photodetector 4 at that time is I 4 Record
<Step S9>
The angle shift adjusting unit 5B has the third optical power I 3 And the fourth optical power I 4 Is calculated, and X is calculated from the following equation (6). 0 The amount of angular deviation α around the axis is determined.
[0063]
α = L (I 3 / I 4 -1) / (4Δy). (6)
[0064]
<Step S10>
The angle shift adjusting unit 5B moves the connection surface 12A of the waveguide type optical element 12 to X 0 It is rotated about the axis by the angle shift amount α.
The above steps S2 to S10 are repeated.
Thus, the axial displacement and the angular displacement between the connection surface 11A of the optical fiber 11 and the connection surface 12A of the waveguide type optical element 12 are stably reduced, and the coupling loss between the connection surfaces is large and quickly reduced. I do.
[0065]
The connection surface 11A of the optical fiber 11 and the connection surface 12A of the waveguide-type optical element 12 are bonded together by, for example, an adhesive after the axis shift and the angle shift are sufficiently removed as described above. At this time, the stress distribution and the thickness of the adhesive layer are highly uniform between the two connection surfaces. Therefore, deterioration such as distortion or cracking of the connection surface due to stress concentration or temperature gradient is suppressed. As a result, high reliability for the connection is maintained for a long time.
[0066]
In the optical axis adjusting device according to the first embodiment, the waveguide type optical element 12, that is, the optical element connected to the photodetector 4 is fixed to the fine movement stage and slightly displaced. That is, the optical element on the side of the photodetector 4 is to be adjusted for the axis shift and the angle shift. In addition, the optical element on the side connected to the photodetector 4 may be fixed to the fixed stage, and the optical element on the side connected to the laser 1 may be fixed on the fine movement stage and slightly displaced.
[0067]
The optical axis adjusting device automatically processes the measurement value of the photodetector 4 by the control unit 5 and automatically controls the active alignment. Alternatively, the measured value of the photodetector 4 may be displayed, the user may visually read the measured value, and manually drive the fine movement stage using a micrometer or the like.
[0068]
【The invention's effect】
As described above, the optical axis adjustment device according to the present invention, for the connection surface of the optical element to be adjusted, the displacement from the alignment position at the time of measuring the first optical power and the displacement at the time of measuring the second optical power. Is set substantially symmetric with respect to the symmetry plane at the centering position. Furthermore, the connecting surface of the optical element to be adjusted is rotated around the line of intersection with the plane of symmetry (that is, the axis of symmetry) in such a direction as to reduce the substantial difference between the first optical power and the second optical power. . Thereby, the inclination between the symmetry planes, that is, the angle shift between the connection planes around the symmetry axis is reduced. As a result, the coupling loss due to the angle shift is greatly reduced, and the deterioration due to the stress concentration and the temperature gradient is largely suppressed.
[0069]
This angle shift adjustment can be realized with fewer components than the conventional passive alignment by image processing. Further, since the adjustment is performed by active alignment, the accuracy of the adjustment is high.
In particular, for a certain amount of angular deviation, the difference between the ratio of the second optical power to the first optical power and 1 is sufficiently larger than the value of the coupling loss itself due to the amount of angular deviation. Further, the distance between the connection surfaces and the magnitude of the displacement from the centering position can be optimized so that the substantial difference between the first optical power and the second optical power can be measured with high accuracy. As a result, the above-described angle shift adjustment is achieved more quickly because it has higher sensitivity than active alignment by the conventional apparatus.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating an optical axis adjusting device according to a first embodiment of the present invention.
FIG. 2 is a perspective view schematically showing the vicinity of a joint between an optical fiber 11 and a waveguide type optical element 12 in the optical axis adjusting apparatus according to the first embodiment of the present invention.
FIG. 3 schematically shows the optical axis adjusting device according to the first embodiment of the present invention, in the vicinity of the core 11C of the connection surface 11A of the optical fiber 11 and in the vicinity of the optical waveguide 12C of the connection surface 12A of the waveguide type optical element 12. It is an enlarged plan view.
FIG. 4 is a flowchart of an optical axis adjustment method according to the first embodiment of the present invention.
FIG. 5 is a schematic diagram for explaining a conventional optical axis adjustment method, taking as an example the coupling between a single-core optical fiber 11 and a waveguide-type optical element 12.
FIG. 6 shows the connection between the connection surface 11A of the optical fiber 11 and the connection surface 12A of the waveguide type optical element 12, which are observed by the first camera 21 and the second camera 22, respectively, by the conventional optical axis adjustment method. It is a schematic diagram which shows a part vicinity. (A) is an image of the second camera 22, that is, a plan view of a combined portion. (B) is an image of the first camera 21, that is, a side view of the connection portion.
[Explanation of symbols]
11 Optical fiber
11A Connection surface of optical fiber 11
11C Core of optical fiber 11
C Optical axis of optical fiber 11
P Intersection between optical axis C of optical fiber 11 and connection surface 11A
12. Waveguide type optical device
12A Connection surface of waveguide type optical element 12
12C Optical waveguide of waveguide type optical element 12
L Spacing between connection surfaces
β Y between connecting surfaces 0 Angle shift around axis
Δx X of connection surface 12A of waveguide type optical element 12 0 Axial displacement magnitude
C 0 Optical axis of optical waveguide 12C at the centering position
P 0 Optical axis C of optical waveguide 12C at the centering position 0 Point of intersection with the connecting surface 12A
I 0 Optical power from the waveguide type optical element 12 at the centering position
C 1 X 0 Optical axis of optical waveguide 12C at axial displacement + Δx
P 1 X 0 Optical axis C of optical waveguide 12C at axial displacement + Δx 1 Point of intersection with the connecting surface 12A
I 1 First optical power
C 2 X 0 Optical axis of optical waveguide 22C at axial displacement-Δx
P 2 X 0 Optical axis C of optical waveguide 22C at axial displacement -Δx 2 Point of intersection with the connecting surface 22A
I 2 Second optical power

Claims (6)

(A) 実質的に一定の光パワーを出力するための光源部;
(B) 第一の光素子を固定し、前記光源部の出射光を前記第一の光素子の入力端から接続面へ透過させるための第一のステージ;
(C) 第二の光素子を固定し、前記第一の光素子の接続面からの透過光を前記第二の光素子の接続面から出力端へ透過させるための第二のステージ;
(D) 前記第二の光素子の出力端からの透過光を検出し、その光パワーを計測するための光検出器;
(E) 前記第一のステージ又は前記第二のステージを所定量だけ微動させるためのステージ駆動部;及び、
(F) (a) 前記第一の光素子又は前記第二の光素子のいずれか一方(以下、調整対象光素子という)について、その接続面の光軸を含む実質的な対称面に対し実質的に対称でかつその接続面と実質的に平行な二つの方向(以下、第一の方向と第二の方向という)を選択し、(b) 前記調整対象光素子を調心位置から前記第一の方向と前記第二の方向とのそれぞれへ一定距離だけずらすとき、前記第二の光素子の出力端からの光パワーをそれぞれ第一の光パワーと第二の光パワーとして計測し、(c) 前記調整対象光素子の接続面を前記対称面との交線(以下、対称軸という)の周りで、前記第一の光パワーと前記第二の光パワーとを実質的に等しくする向きに所定の回転角だけ回転させる、ための角度ずれ調整部;
を有する光軸調整装置。
(A) a light source unit for outputting a substantially constant optical power;
(B) a first stage for fixing a first optical element and transmitting light emitted from the light source section from an input end of the first optical element to a connection surface;
(C) a second stage for fixing the second optical element and transmitting light transmitted from the connection surface of the first optical element to the output end from the connection surface of the second optical element;
(D) a photodetector for detecting transmitted light from the output end of the second optical element and measuring the light power;
(E) a stage drive unit for finely moving the first stage or the second stage by a predetermined amount; and
(F) (a) With respect to one of the first optical element and the second optical element (hereinafter, referred to as an adjustment target optical element), substantially with respect to a substantially symmetric plane including an optical axis of a connection surface thereof. Two directions (hereafter, referred to as a first direction and a second direction) which are symmetrically and substantially parallel to the connection surface thereof, and (b) move the optical element to be adjusted from the centering position to the second direction. When shifting by a certain distance to each of the one direction and the second direction, the optical power from the output end of the second optical element is measured as a first optical power and a second optical power, respectively, c) A direction in which the first optical power and the second optical power are substantially equal around a line of intersection (hereinafter, referred to as a symmetry axis) of the connection surface of the optical element to be adjusted with the symmetry plane. An angle shift adjustment unit for rotating the camera by a predetermined rotation angle;
An optical axis adjusting device having:
前記第一の方向と前記第二の方向とが互いに逆向きである、請求項1記載の光軸調整装置。The optical axis adjustment device according to claim 1, wherein the first direction and the second direction are opposite to each other. 前記第一の光素子の接続面と前記第二の光素子の接続面との間隔をL、前記一定距離をΔx、前記第一の光パワーをI、前記第二の光パワーをIとおくとき、前記角度ずれ調整部が、前記第一の光素子と前記第二の光素子との接続面間の前記対称軸周りの角度ずれ量をL(I/I−1)/(4Δx)で近似し、その角度ずれ量を前記回転角として決定する、請求項2記載の光軸調整装置。The distance between the connection surface of the first optical element and the connection surface of the second optical element is L, the fixed distance is Δx, the first optical power is I 1 , and the second optical power is I 2 In this case, the angle shift adjusting unit sets the angle shift amount around the symmetry axis between the connection surfaces of the first optical element and the second optical element to L (I 1 / I 2 −1) / 3. The optical axis adjustment device according to claim 2, wherein the rotation angle is approximated by (4.DELTA.x), and the angle shift amount is determined as the rotation angle. (A) 光源部により実質的に一定の光パワーを出力させ、その出射光を、第一のステージへ固定された第一の光素子の入力端から接続面へ透過させ、その透過光を更に、第二のステージへ固定された前記第二の光素子の接続面から出力端へ透過させ、その透過光の光パワーを計測するステップ;
(B) 前記第一の光素子又は前記第二の光素子のいずれかをその接続面と実質的に平行に移動させるごとに前記光パワーを計測するステップを反復し、それにより得られた前記光パワーの測定値の中で実質的に最大のものを計測するときの前記第一の光素子と前記第二の光素子との位置をそれぞれの調心位置として決定するステップ;
(C) 前記第一の光素子又は前記第二の光素子のいずれか一方(以下、調整対象光素子という)について、その接続面の光軸を含む実質的な対称面に対し実質的に対称でかつその接続面と実質的に平行な二つの方向(以下、第一の方向と第二の方向という)を選択するステップ;
(D) 前記調整対象光素子を前記調心位置から前記第一の方向へ一定距離だけずらし、そのときの前記光パワーを第一の光パワーとして計測するステップ;
(E) 前記調整対象光素子を前記調心位置から前記第二の方向へ前記一定距離だけずらし、そのときの前記光パワーを第二の光パワーとして計測するステップ;
(F) 前記調整対象光素子の接続面を前記対称面との交線(以下、対称軸という)の周りで、前記第一の光パワーと前記第二の光パワーとを実質的に等しくする向きに所定の回転角だけ回転させるステップ;
を有する光素子接続面間の光軸調整方法。
(A) A substantially constant optical power is output by the light source unit, the emitted light is transmitted from the input end of the first optical element fixed to the first stage to the connection surface, and the transmitted light is further transmitted. Transmitting light from the connection surface of the second optical element fixed to the second stage to the output end, and measuring the optical power of the transmitted light;
(B) repeating the step of measuring the optical power each time one of the first optical element or the second optical element is moved substantially parallel to the connection surface thereof, and Determining a position of the first optical element and a position of the second optical element when measuring a substantially largest one of the measured values of optical power as respective alignment positions;
(C) One of the first optical element and the second optical element (hereinafter referred to as an adjustment target optical element) is substantially symmetric with respect to a substantially symmetric plane including an optical axis of a connection surface thereof. Selecting two directions substantially parallel to the connecting surface (hereinafter referred to as a first direction and a second direction);
(D) shifting the optical element to be adjusted from the centering position by a certain distance in the first direction, and measuring the optical power at that time as a first optical power;
(E) displacing the adjustment target optical element from the alignment position in the second direction by the predetermined distance, and measuring the optical power at that time as a second optical power;
(F) The first optical power and the second optical power are made substantially equal around a line of intersection (hereinafter, referred to as a symmetry axis) of the connection surface of the optical element to be adjusted with the symmetry plane. Rotating in a predetermined direction by a predetermined rotation angle;
An optical axis adjustment method between optical element connection surfaces, comprising:
前記第一の方向と前記第二の方向とが互いに逆向きである、請求項4記載の光素子接続面間の光軸調整方法。The method of adjusting an optical axis between optical element connection surfaces according to claim 4, wherein the first direction and the second direction are opposite to each other. 前記第一の光素子の接続面と前記第二の光素子の接続面との間隔をL、前記一定距離をΔx、前記第一の光パワーをI、前記第二の光パワーをIとおくとき、前記第一の光素子と前記第二の光素子との接続面間の前記対称軸回りの角度ずれ量をL(I/I−1)/(4Δx)で近似し、その角度ずれ量を前記回転角として決定するステップ、を有する、請求項5記載の光素子接続面間の光軸調整方法。The distance between the connection surface of the first optical element and the connection surface of the second optical element is L, the fixed distance is Δx, the first optical power is I 1 , and the second optical power is I 2 In this case, the amount of angular displacement around the symmetry axis between the connecting surfaces of the first optical element and the second optical element is approximated by L (I 1 / I 2 -1) / (4Δx), The method of adjusting an optical axis between optical element connection surfaces according to claim 5, further comprising the step of determining the amount of angular deviation as the rotation angle.
JP2002334809A 2002-11-19 2002-11-19 Device for adjusting optical axis, and method for adjusting optical axis between optical element connection interfaces Pending JP2004170585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002334809A JP2004170585A (en) 2002-11-19 2002-11-19 Device for adjusting optical axis, and method for adjusting optical axis between optical element connection interfaces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002334809A JP2004170585A (en) 2002-11-19 2002-11-19 Device for adjusting optical axis, and method for adjusting optical axis between optical element connection interfaces

Publications (1)

Publication Number Publication Date
JP2004170585A true JP2004170585A (en) 2004-06-17

Family

ID=32699093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002334809A Pending JP2004170585A (en) 2002-11-19 2002-11-19 Device for adjusting optical axis, and method for adjusting optical axis between optical element connection interfaces

Country Status (1)

Country Link
JP (1) JP2004170585A (en)

Similar Documents

Publication Publication Date Title
CN111492282B (en) Connection device, optical connector manufacturing device, connection method, and optical connector manufacturing method
US10809461B2 (en) Photonic input/output coupler alignment
US20020131699A1 (en) Collimator array and method and system for aligning optical fibers to a lens array
KR20180130519A (en) Optical alignment of optic subassemblies to optoelectronic devices
US9753221B2 (en) Optical coupler for a multicore fiber
US10816735B2 (en) Lensed connector ferrule assemblies and methods of fabricating the same
JP2006208929A (en) Optical power monitor and its manufacturing method
Xu et al. 3D-printed facet-attached microlenses for advanced photonic system assembly
JP2013054116A (en) Method for coupling multi-core fiber
JP2004279618A (en) Optical collimator structure
EP3671297A1 (en) Electro-optical assembly
JPH10123356A (en) Method for measuring position of optical transmission member and method for manufacturing optical device
US7123355B2 (en) Method for determining core positions of optical element array and an apparatus for determining core positions thereof
CN110955002A (en) Silicon photonic chip optical power measuring device, equipment, system and measuring method
JP3927063B2 (en) Optical member array core position measuring method and core position measuring apparatus
JP2000111756A (en) Device for aligning optical fiber block and plane optical waveguide element and its controlling method
JP2004170585A (en) Device for adjusting optical axis, and method for adjusting optical axis between optical element connection interfaces
JPH10282355A (en) Method and device for connecting optical parts
JP3670654B2 (en) Optical circuit components
US11803015B2 (en) Optical probe for optoelectronic integrated circuits
JP2000162469A (en) Optical coupling method for coupling optical fiber array with optical waveguide, and optical component
JP2013130771A (en) Optical axis alignment method for optical component
JPH0990158A (en) Optical module and its assembly method
CN115683081A (en) Sensitive ring coupling structure and coupling method
JP3574714B2 (en) Optical element connection method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050523