JP2004170334A - Raman scattering measuring sensor, and its manufacturing method - Google Patents

Raman scattering measuring sensor, and its manufacturing method Download PDF

Info

Publication number
JP2004170334A
JP2004170334A JP2002338921A JP2002338921A JP2004170334A JP 2004170334 A JP2004170334 A JP 2004170334A JP 2002338921 A JP2002338921 A JP 2002338921A JP 2002338921 A JP2002338921 A JP 2002338921A JP 2004170334 A JP2004170334 A JP 2004170334A
Authority
JP
Japan
Prior art keywords
raman scattering
particles
particle layer
substrate
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002338921A
Other languages
Japanese (ja)
Inventor
Osamu Sato
治 佐藤
Chutaku Ko
忠沢 顧
Akira Fujishima
昭 藤嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Academy of Science and Technology
Japan Science and Technology Agency
Original Assignee
Kanagawa Academy of Science and Technology
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Academy of Science and Technology, Japan Science and Technology Agency filed Critical Kanagawa Academy of Science and Technology
Priority to JP2002338921A priority Critical patent/JP2004170334A/en
Publication of JP2004170334A publication Critical patent/JP2004170334A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high intensifying effect for Raman scattering, to make uniformity and reproducibility excellent, and to allow very simple and inexpensive production. <P>SOLUTION: This Raman scattering measuring sensor concerned in the present invention is provided with particle layers arrayed periodically with a plurality of particles having the same shape and the same size coated with metal on each surface thereof, to have a clearance into which a substance to measure Raman scattering is able to enter at least among the respective particles and to form periodical uneven parts on a surface of the particle layer, on a substrate. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ラマン散乱の測定に用いられるセンサ及びその製造方法に関する。
【0002】
【従来の技術】
物質に光を照射した時に入射光と異なるエネルギを持つ散乱光がある方向に散乱されるというラマン散乱現象が生じることは知られている。
このラマン散乱が生じる波数は物質によって異なるため、ラマン散乱を用いて物質の状態変化を測定することが考えられ、そのため、高い測定感度、再現性及び一様性が求められる。
このラマン散乱は、測定基板の表面に凹凸があると散乱強度が増強するため、従来は、測定基板を電気化学的に酸化還元させ、それを繰り返すことで測定基板の表面に強制的に凹凸を形成していた。
【0003】
【発明が解決しようとする課題】
しかし、上記した従来の測定基板の製造方法は、単に表面を電気化学的に酸化還元させることにより表面に凹凸を形成するため、基板表面に形成された凹凸は当然一様性はなく、そのため、この方法で製造された基板は、ラマン散乱強度は高くはなるが、その強度に一様性はなく、また、再現性も極めて低いため実用性がないものであった。
出願人は、上記した従来の問題点に鑑みて、ラマン散乱に対する高い増強効果をもち、かつ、一様性及び再現性があり、さらに、非常に簡単にかつ安価に製造することができるラマン散乱測定センサ及びその製造方法を提供することを目的としている。
【0004】
【課題を解決するための手段】
上記した目的を達成するために、本発明に係るラマン散乱測定センサは、基板上に、表面に金属をコーティングした複数の同形同寸の粒子を少なくとも各粒子間にラマン散乱を測定すべき物質が入り得る隙間を有し、かつ、粒子層の表面に周期的な凹凸を形成できるように周期的に配列した粒子層を備えていることを特徴とする。
前記基板の材質又は寸法は、測定すべき物質のラマン散乱の測定に影響を及ぼさない材質又は寸法であれば任意に決めることができ、例えば、ガラス、セラミック又は酸化チタンを基板の材料として用いることができる。
さらに、前記粒子の材質は、測定すべき物質のラマン散乱の測定に影響を及ぼさない材質であれば任意に決めることができ、例えば、シリカ、セラミック又は酸化チタンを材料として用いることができる。
さらにまた、前記粒子の形状は、周期的に配列した時に、各粒子間にラマン散乱を測定すべき物質が入り得る隙間を形成することができ、かつ、粒子層の表面に周期的な凹凸を形成できる形状であれば任意の形状でよく、例えば、球体が用いられる。
また、粒子の大きさは、測定すべき物質のラマン散乱の測定に影響を及ぼすことなく、粒子層の表面に測定すべき物質のラマン散乱を増強させることが可能な凹凸を形成できる大きさであれば任意の大きさに設定することが可能である。
前記粒子層は、各粒子間に測定すべき物質が入り得る隙間を有し、かつ、粒子層の表面に周期的な凹凸を形成できるように粒子を周期的に配列して形成されていれば1層でも、複数層でもよい。
前記したシリカ粒子の表面をコーティングする金属は、測定すべき物質のラマン散乱の測定に影響を及ぼさない材質であれば任意の材質でよく、好ましくは、金又は銀を用いることができるが、これに限定されることなく、例えば、銅、ニッケル、チタン、パラジウム、アルミニウム又はアルカリ金属類でもよい。
また、本発明に係るラマン散乱測定センサの製造方法は、基板上に、同形同寸の粒子を少なくとも各粒子間にラマン散乱を測定すべき物質が入り得る隙間を有し、かつ、粒子層の表面に周期的な凹凸を形成できるように周期的に配列した粒子層を形成し、前記基板に形成された粒子層を、金属及びポリマーを含有した溶液中に入れ、前記溶液から粒子層を取り出して乾燥させた後、ポリマーを焼却でき、かつ、金属の微粒子が凝集することなく金属をシリカ粒子に固定することができる温度で粒子層を焼成し、個々のシリカ粒子の表面に金属が固定され、かつ、個々のシリカ粒子間に微細な隙間が形成された粒子層を形成することを特徴とする。
前記粒子層は、1層であっても、2層以上であっても、基板上に粒子を、各粒子間にラマン散乱を測定すべき物質が入り得る隙間を有し、かつ、粒子層の表面に周期的な凹凸を形成できるように周期的に配列し得る方法であれば任意の方法で形成することができ、例えば、ディッピング法、垂直堆積法、自然沈殿法、毛管法又は移流集積法により形成され得る。
前記焼成温度は、採用する金属に応じて、ポリマーを焼却でき、かつ、金属の微粒子が凝集することなく金属をシリカ粒子に固定することができる温度範囲で任意に設定され得、例えば、金属として銀又は金を用いる場合には、300°〜400°の範囲が好ましい。
【0005】
【発明の実施の形態】
以下、添付図面に示した実施例を参照して本発明に係るラマン散乱測定センサの実施の形態について説明していく。
【0006】
始めに図1及び図2を用いて本発明に係るラマン散乱測定センサの製造方法について説明していく。
まず、シリカ粒子を含有した溶液中にガラス基板を垂直に浸し、このガラス基板を所定の速度で垂直に引き上げることにより基板上にシリカ粒子が細密に配列された粒子層を3層最密に積層した周期性多層膜を作製する。垂直堆積法により形成された多層膜は、図1に示すように同じサイズのシリカ粒子1が周期的に最密に配列されたものになっている。尚、図中2はシリカ粒子間にあいた隙間を示している。
次に図2(a)〜(e)を用いてガラス基板に形成された多層膜の各シリカ粒子の表面を銀でコーティングする工程について説明していく。
図2(a)は、シリカ粒子の多層膜が形成されたガラス基板を示している。
始めに、銀ナノ粒子4及びポリマー3を含有した溶液の中にガラス基板を浸ける(図2(b))。
そして、溶液中に浸けられたガラス基板を2mm/minの速度で引き上げて乾燥させる(図2(b)及び(c))。このガラス基板を引き上げた時に、毛細管力と対流とによって銀ナノ粒子4とポリマー3とがシリカ粒子間の隙間に完全に充填される。
そして、最後に、ポリマー3を焼却でき、銀ナノ粒子4が凝集することなく銀をシリカ粒子の表面に固定できる温度でガラス基板を焼成する(図2(d))。これにより、シリカ粒子の表面に金が固定され、かつ、シリカ粒子1間の隙間2に混入していたポリマー3が焼却されてなくなるので、シリカ粒子1間に微細な隙間2(ナノ空間)があいたラマン散乱測定センサが完成する(図2(e))。
尚、図2中、符号5はシリカ粒子1の表面に固定された金膜を示している。
【0007】
上記したように構成されたラマン散乱測定センサを用いて、実際にラマン散乱を測定した結果を以下に示す。
測定に使用するラマン散乱測定センサは、ガラス基板上に、触媒化成工業株式会社製の単分散のシリカ粒子(粒径300nm)を複数層最密に積層し、その後、平均粒径10nmの銀ナノ粒子17wt%とポリマー13wt%とを含むアルコール性コロイド溶液に基板を浸し、次いで、基板を一定速度で引き上げて乾燥させた後、空気中で300℃で焼成することによって製造した。
図3は、上記したラマン散乱測定センサの分光学的情報を得るためにUV−Visスペクトルの測定をした結果を示している。銀の強いプラズモン吸収が440nmに観察され、銀ナノ粒子がシリカ粒子に固定されていることが確認できる。645nmに観察される吸収ピークは、最密積層された多層膜(コロイド結晶)のストップバンドによるものである。
【0008】
次に、上記したラマン散乱測定センサに、モデル化合物として、p−トルエンチオールを装飾して、実際にラマン散乱を測定した結果を示す。
ラマン散乱測定センサは以下の手順によりp−トルエンチオールで修飾した。まず、センサをp−トルエンチオールの1mMエタノール溶液に24時間浸し、次に、基板を取り出し、窒素雰囲気下で乾燥した。
ラマンスペクトルはReninshaw社製の「Reninshaw System 2000 imaging microscope」によって空気中で測定した。
励起光として、514.5nmのArレーザーを用いた。レーザー光はオリンパス社製のBH−2顕微鏡に接続された50倍の対物レンズによって試料に集光した。スポットの大きさは直径約2μmである。
測定結果を図4に示す。1080cm−1と1580cm−1のピークはp−トルエンチオールに特徴的なものであり、この化合物が基板に吸着していることを示している。2560cm−1のピークはS−H伸縮振動に特徴的なものであり、粉末試料では観察されたが、ラマン散乱測定用センサを用いた試料では観察されなかった。この結果から、p−トルエンチオール分子が、チオール基と銀表面との間の結合により、銀の表面に単分子膜を形成していることが分かる。
【0009】
本発明に係るラマン散乱測定センサのラマン散乱増強効果を評価するため、従来の2種類のラマン散乱測定センサ(真空蒸着によってガラス上に作製した平滑な膜を有するセンサと、電気化学的に酸化還元処理を行って表面を粗くした膜を有するセンサ)を用意し、同様の手順によりp−トルエンチオールで修飾し、測定に用いた。図4は、3種類の基板により得られたラマンスペクトルである。1000−1700cm−1のブロードなバックグラウンドはラマン散乱増強においてしばしば観察されるものであり、レーザーによって吸着物が分解されることによって金属表面に形成される分解化合物に帰属される。本発明に係るラマン散乱測定用センサのスペクトルに観察される1700cm−1のピークも分解化合物によるものと考えられる。3種類の基板の中では、あきらかに本発明に係るラマン散乱測定センサが最もバックグラウンドが小さく最も強いラマン増強効果を示している。本発明に係るラマン散乱測定センサから得られる信号強度は平滑な銀の膜から得られるものよりも約40倍の強さであり、酸化還元処理を行った従来のセンサと比べても約3倍大きい。
このような大きな信号の増強には3つの理由が考えられる。第一に、本発明に係るラマン散乱測定センサの広い表面積である。本発明に係るラマン散乱測定センサは三次元の多孔性の膜であり、その表面積は平滑な膜や酸化還元処理を行った膜よりも非常に大きい。その結果、本発明に係るラマン散乱測定センサの表面に吸着する分子の数は、従来の2種類のセンサに吸着するものよりも多くなる。第二の理由は、本発明に係るラマン散乱測定センサに特有の構造的特徴である。図1に示されるように、本発明に係るラマン散乱測定センサの基本的な構造は最密充填した粒子の集合であり、これによって膜の表面に多くの均一な凹凸が形成される。このような表面の凹凸がラマン散乱の増強に非常に適していることは、Garc■a−VidalとPendryによって理論的に計算され報告されている。
さらに、第三の理由は、金属ナノ粒子が固定されることによって本発明に係るラマン散乱測定センサの表面がナノメーターのオーダーでの粗さを持っていることである。このような粗さもラマン散乱を増強することができる。
【0010】
次に、本発明に係るラマン散乱測定センサの一様性を確認するために、本発明に係るラマン散乱測定センサと、酸化還元処理を行った従来のセンサとを用いて、基板中の異なる場所でラマンスペクトルを測定した結果を図5に示す。
本発明に係るラマン散乱測定センサは、異なる点で測定したスペクトルは、すべてほとんど同じ強度と形を示しているのに対し、酸化還元処理をした従来の基板では非常にばらついていることが分かる。1580cm−1のピークにおける強度の標準偏差は、本発明に係るラマン散乱測定センサが0.04であるのに対して、酸化還元処理をした従来のセンサでは0.71である。この結果から、明らかに本発明に係るラマン散乱測定センサの標準偏差が、酸化還元処理をした従来のセンサのそれよりも非常に小さいことが分かる。このことは、基板のどの位置で測定しても同じ結果が得られることを意味しており、SERSイメージングのような技術には非常に重要なことである。このようなラマン散乱強度の一様性は、本発明に係るラマン散乱測定センサの構造的な一様性によるものである。本発明に係るラマン散乱測定センサを構成するオパール膜は単分散の粒子から構成されており、構造因子は同じ膜のどの場所でも、あるいは異なる膜についても、同じである。
【0011】
以上説明した実施例では、本発明に係るラマン散乱測定センサを、ガラス基板上にシリカ粒子を複数層最密に積層した例を挙げて説明しているが、前記シリカ粒子により形成される粒子層は、本実施例に限定されることなく、1層でも同じ効果が得られる。
また、本実施例では、シリカ粒子より成る粒子層をシリカ粒子を含有した溶液中にガラス基板を垂直に浸し、このガラス基板を所定の速度で垂直に引き上げることにより作製しているが、この方法には、使用する溶媒や雰囲気温度に応じて、垂直堆積法とディッピング法とがあり、どちらの方法を用いてもよい。また、粒子層の形成方法は、本実施例に限定されることなく、例えば、自然沈殿法、毛管法又は移流集積法を用いてもよい。
さらに、本実施例では、シリカ粒子の表面を銀でコーティングする例を挙げて説明しているが、シリカ粒子の表面をコーティングする金属は本実施例に限定されることなく任意の金属でよく、例えば、金でコーティングしてもよい。
また、本実施例では、球状の粒子を最密に配列することにより、粒子間に隙間があり、かつ、表面に凹凸を有する粒子層を形成しているが、粒子の形状は本実施例に限定されることなく、周期的に配列した時に、粒子間に隙間を有し、かつ、表面に周期的な凹凸を備えた粒子層を形成することができる形状であれば任意の形状でよい。
さらにまた、本実施例では、粒子の材質としてシリカを用いた例を挙げて説明しているが、粒子の材質は、測定すべき物質のラマン散乱の測定に影響を及ぼさない材質であれば任意に決めることができ、例えば、セラミック又は酸化チタンを材料として用いることもできる。
また、本実施例では、基板の材質としてガラスを用いた例を挙げて説明しているが、基板の材質は測定すべき物質のラマン散乱の測定に影響を及ぼさない材質であれば任意に決めることができ、例えば、セラミック又は酸化チタンを材料として用いることもできる。
【0012】
【発明の効果】
以上説明したように、本発明に係るラマン散乱測定センサは、基板上に、表面に金属をコーティングした複数の同形同寸の粒子を少なくとも各粒子間にラマン散乱を測定すべき物質が入り得る隙間を有し、かつ、粒子層の表面に周期的な凹凸を形成できるように周期的に配列した粒子層を備えているので、ラマン散乱に対する高い増強効果をもち、かつ、一様性及び再現性があるという効果を奏する。
また、本発明に係るラマン散乱測定センサの製造方法は基板上に、同形同寸の粒子を少なくとも各粒子間にラマン散乱を測定すべき物質が入り得る隙間を有し、かつ、粒子層の表面に周期的な凹凸を形成できるように周期的に配列した粒子層を形成し、前記基板に形成された粒子層を、金属及びポリマーを含有した溶液中に入れ、前記溶液から粒子層を取り出して乾燥させた後、ポリマーを焼却でき、かつ、金属の微粒子が凝集することなく金属をシリカ粒子に固定することができる温度で粒子層を焼成し、個々のシリカ粒子の表面に金属が固定され、かつ、個々のシリカ粒子間に微細な隙間が形成された粒子層を形成するので、ラマン散乱に対する高い増強効果をもち、かつ、一様性及び再現性を持つ非常に実用性に優れたラマン散乱測定センサを、簡単に安価に製造することが可能になる。
【図面の簡単な説明】
【図1】ガラス基板に形成されシリカ粒子の多層膜の概略側面図である。
【図2】(a)〜(e)はガラス基板に形成された多層膜の各シリカ粒子の表面を金でコーティングする工程を示す概略図である。
【図3】本発明に係るラマン散乱測定センサをUV−Visスペクトルの測定をした結果を示すグラフである。
【図4】本発明に係るラマン散乱測定センサ、真空蒸着によってガラス上に作製した平滑な膜を有する従来のセンサ及び電気化学的に酸化還元処理を行って表面を粗くした膜を有する従来のセンサの各々をp−トルエンチオールで装飾してラマンスペクトルを測定した結果を示すグラフである。
【図5】(a)及び(b)は、本発明に係るラマン散乱測定センサと、電気化学的に酸化還元処理を行って表面を粗くした膜を有する従来のセンサとの各々をp−トルエンチオールで装飾したものを用いて、幾つかの異なる位置でラマンスペクトルを測定した結果を示すグラフである。
【符号の説明】
1 シリカ粒子
2 隙間(ナノ空間)
3 ポリマー
4 銀ナノ粒子
5 銀粒子膜
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sensor used for measuring Raman scattering and a method for manufacturing the sensor.
[0002]
[Prior art]
It is known that when a substance is irradiated with light, a Raman scattering phenomenon occurs in which scattered light having energy different from that of incident light is scattered in a certain direction.
Since the wave number at which this Raman scattering occurs differs depending on the substance, it is conceivable to measure the change in the state of the substance using Raman scattering. Therefore, high measurement sensitivity, reproducibility and uniformity are required.
In Raman scattering, if the surface of the measurement substrate has irregularities, the scattering intensity increases.Therefore, conventionally, the measurement substrate is electrochemically oxidized and reduced, and by repeating this, the irregularities are forcibly formed on the surface of the measurement substrate. Had formed.
[0003]
[Problems to be solved by the invention]
However, in the above-described conventional method for manufacturing a measurement substrate, since the surface is formed by simply electrochemically oxidizing and reducing the surface, the unevenness formed on the substrate surface is of course not uniform. Although the substrate manufactured by this method has high Raman scattering intensity, it is not practical because the intensity is not uniform and reproducibility is extremely low.
In view of the above-mentioned conventional problems, the Applicant has a high enhancing effect on Raman scattering, has uniformity and reproducibility, and can be manufactured very easily and inexpensively. It is an object of the present invention to provide a measurement sensor and a method for manufacturing the same.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, a Raman scattering measurement sensor according to the present invention comprises a substrate, a plurality of particles of the same shape and the same size coated with a metal on the surface of which at least Raman scattering is to be measured between the particles. And a particle layer that is periodically arranged so as to form periodic irregularities on the surface of the particle layer.
The material or dimension of the substrate can be arbitrarily determined as long as the material or dimension does not affect the measurement of Raman scattering of the substance to be measured.For example, glass, ceramic or titanium oxide is used as the material of the substrate. Can be.
Further, the material of the particles can be arbitrarily determined as long as it does not affect the measurement of the Raman scattering of the substance to be measured. For example, silica, ceramic or titanium oxide can be used as the material.
Furthermore, the shape of the particles, when arranged periodically, can form a gap between the particles into which a substance to be measured for Raman scattering can enter, and periodic irregularities are formed on the surface of the particle layer. Any shape can be used as long as it can be formed, and for example, a sphere is used.
In addition, the size of the particles is a size that can form irregularities that can enhance Raman scattering of the substance to be measured on the surface of the particle layer without affecting the measurement of Raman scattering of the substance to be measured. If so, it can be set to any size.
The particle layer has a gap in which a substance to be measured can enter between the particles, and is formed by periodically arranging the particles so that periodic irregularities can be formed on the surface of the particle layer. One layer or a plurality of layers may be used.
The metal coating the surface of the silica particles described above may be any material as long as it does not affect the Raman scattering measurement of the substance to be measured, and preferably gold or silver can be used. For example, copper, nickel, titanium, palladium, aluminum or alkali metals may be used.
Further, the method for manufacturing a Raman scattering measurement sensor according to the present invention, on the substrate, at least particles having the same shape and the same size have a gap in which a substance to be measured for Raman scattering can enter between each particle, and a particle layer Forming a particle layer that is periodically arranged so as to be able to form periodic irregularities on the surface of the substrate, placing the particle layer formed on the substrate in a solution containing a metal and a polymer, and removing the particle layer from the solution. After taking out and drying, the particle layer is baked at a temperature that can incinerate the polymer and fix the metal to the silica particles without agglomeration of the metal fine particles, and the metal is fixed to the surface of each silica particle. And forming a particle layer in which fine gaps are formed between individual silica particles.
Even if the particle layer is a single layer, even if it is two or more layers, the particles on the substrate, having a gap between the particles into which a substance to be measured for Raman scattering can enter, and Any method can be used as long as it can be arranged periodically so that periodic irregularities can be formed on the surface. For example, a dipping method, a vertical deposition method, a natural precipitation method, a capillary method, or an advection accumulation method can be used. Can be formed by
The calcination temperature can be arbitrarily set in a temperature range in which the polymer can be incinerated and the metal particles can be fixed to the silica particles without agglomeration of the metal fine particles, depending on the metal to be employed. When silver or gold is used, the range is preferably 300 ° to 400 °.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the Raman scattering measurement sensor according to the present invention will be described with reference to examples shown in the accompanying drawings.
[0006]
First, a method for manufacturing a Raman scattering measurement sensor according to the present invention will be described with reference to FIGS.
First, a glass substrate is vertically immersed in a solution containing silica particles, and the glass substrate is vertically pulled up at a predetermined speed, whereby three layers of finely arranged silica particles are laminated on the substrate in the closest density. A periodic multilayer film is manufactured. In the multilayer film formed by the vertical deposition method, silica particles 1 of the same size are periodically and densely arranged as shown in FIG. In the figure, reference numeral 2 denotes a gap between the silica particles.
Next, a process of coating the surface of each silica particle of the multilayer film formed on the glass substrate with silver will be described with reference to FIGS.
FIG. 2A shows a glass substrate on which a multilayer film of silica particles is formed.
First, a glass substrate is immersed in a solution containing silver nanoparticles 4 and polymer 3 (FIG. 2B).
Then, the glass substrate immersed in the solution is pulled up at a speed of 2 mm / min and dried (FIGS. 2B and 2C). When this glass substrate is pulled up, the gap between the silica particles is completely filled with the silver nanoparticles 4 and the polymer 3 by the capillary force and the convection.
Finally, the glass substrate is fired at a temperature at which the polymer 3 can be incinerated and silver can be fixed to the surface of the silica particles without the silver nanoparticles 4 aggregating (FIG. 2D). As a result, the gold is fixed on the surface of the silica particles, and the polymer 3 mixed in the gaps 2 between the silica particles 1 is not burned out, so that the fine gaps 2 (nano space) between the silica particles 1 are formed. The finished Raman scattering measurement sensor is completed (FIG. 2E).
In FIG. 2, reference numeral 5 indicates a gold film fixed on the surface of the silica particles 1.
[0007]
The results of actual measurement of Raman scattering using the Raman scattering measurement sensor configured as described above are shown below.
The Raman scattering measurement sensor used for the measurement is formed by laminating a plurality of layers of monodisperse silica particles (particle size: 300 nm) manufactured by Catalyst Chemical Industry Co., Ltd. on a glass substrate, and thereafter, silver nano particles having an average particle size of 10 nm. The substrate was immersed in an alcoholic colloid solution containing 17% by weight of particles and 13% by weight of a polymer, then the substrate was pulled up at a constant speed, dried, and fired at 300 ° C. in air.
FIG. 3 shows a result of measurement of a UV-Vis spectrum in order to obtain spectroscopic information of the Raman scattering measurement sensor described above. Strong plasmon absorption of silver is observed at 440 nm, confirming that the silver nanoparticles are fixed to the silica particles. The absorption peak observed at 645 nm is attributable to the stop band of the multilayer film (colloidal crystal) stacked closest.
[0008]
Next, the Raman scattering measurement sensor described above was decorated with p-toluenethiol as a model compound, and the results of actual Raman scattering measurement are shown.
The Raman scattering measurement sensor was modified with p-toluenethiol according to the following procedure. First, the sensor was immersed in a 1 mM ethanol solution of p-toluenethiol for 24 hours, and then the substrate was taken out and dried under a nitrogen atmosphere.
The Raman spectrum was measured in air using a “Reninshaw System 2000 imaging microscope” manufactured by Reninshaw.
As the excitation light, an Ar + laser of 514.5 nm was used. The laser beam was condensed on the sample by a 50 × objective lens connected to an Olympus BH-2 microscope. The size of the spot is about 2 μm in diameter.
FIG. 4 shows the measurement results. The peaks at 1080 cm -1 and 1580 cm -1 are characteristic of p-toluenethiol, indicating that this compound is adsorbed on the substrate. The peak at 2560 cm −1 is characteristic of SH stretching vibration, and was observed in the powder sample but not in the sample using the sensor for Raman scattering measurement. From this result, it can be seen that the p-toluenethiol molecule forms a monomolecular film on the silver surface due to the bond between the thiol group and the silver surface.
[0009]
In order to evaluate the Raman scattering enhancement effect of the Raman scattering measurement sensor according to the present invention, two types of conventional Raman scattering measurement sensors (a sensor having a smooth film formed on glass by vacuum evaporation, A sensor having a film whose surface was roughened by a treatment) was prepared, modified with p-toluenethiol by the same procedure, and used for measurement. FIG. 4 shows Raman spectra obtained with three types of substrates. A broad background of 1000-1700 cm -1 is often observed in Raman scattering enhancement and is attributed to decomposed compounds formed on the metal surface as the adsorbate is decomposed by the laser. The peak at 1700 cm −1 observed in the spectrum of the sensor for Raman scattering measurement according to the present invention is also considered to be due to the decomposed compound. Clearly, among the three types of substrates, the Raman scattering measurement sensor according to the present invention has the smallest background and the strongest Raman enhancement effect. The signal intensity obtained from the Raman scattering measurement sensor according to the present invention is about 40 times stronger than that obtained from a smooth silver film, and is about 3 times as large as that of a conventional sensor that has been subjected to an oxidation-reduction treatment. large.
There are three possible reasons for such a large signal enhancement. First, the large surface area of the Raman scattering measurement sensor according to the present invention. The Raman scattering measurement sensor according to the present invention is a three-dimensional porous film, and its surface area is much larger than a smooth film or a film subjected to an oxidation-reduction treatment. As a result, the number of molecules adsorbed on the surface of the Raman scattering measurement sensor according to the present invention is larger than that adsorbed on the conventional two types of sensors. The second reason is a structural feature unique to the Raman scattering measurement sensor according to the present invention. As shown in FIG. 1, the basic structure of the Raman scattering measurement sensor according to the present invention is a set of particles that are closest packed, whereby many uniform irregularities are formed on the surface of the film. It has been theoretically calculated and reported by Garc ■ a-Vidal and Pendry that such surface irregularities are very suitable for enhancing Raman scattering.
Furthermore, the third reason is that the surface of the Raman scattering measurement sensor according to the present invention has a roughness on the order of nanometers by fixing the metal nanoparticles. Such roughness can also enhance Raman scattering.
[0010]
Next, in order to confirm the uniformity of the Raman scattering measurement sensor according to the present invention, using the Raman scattering measurement sensor according to the present invention and a conventional sensor that has been subjected to an oxidation-reduction treatment, FIG. 5 shows the results of the measurement of the Raman spectrum.
In the Raman scattering measurement sensor according to the present invention, it can be seen that the spectra measured at different points all show almost the same intensity and shape, whereas the conventional substrates subjected to the oxidation-reduction treatment vary greatly. The standard deviation of the intensity at the peak at 1580 cm −1 is 0.04 in the Raman scattering measurement sensor according to the present invention, while it is 0.71 in the conventional sensor subjected to the oxidation-reduction treatment. From these results, it is apparent that the standard deviation of the Raman scattering measurement sensor according to the present invention is much smaller than that of the conventional sensor subjected to the oxidation-reduction treatment. This means that the same result can be obtained at any position on the substrate, which is very important for techniques such as SERS imaging. Such uniformity of the Raman scattering intensity is due to the structural uniformity of the Raman scattering measurement sensor according to the present invention. The opal film that constitutes the Raman scattering measurement sensor according to the present invention is composed of monodisperse particles, and the structural factor is the same anywhere in the same film or in different films.
[0011]
In the embodiments described above, the Raman scattering measurement sensor according to the present invention is described with an example in which a plurality of silica particles are stacked on a glass substrate in a close-packed manner, but a particle layer formed by the silica particles is described. Is not limited to this embodiment, and the same effect can be obtained with one layer.
Further, in the present embodiment, the particle layer made of silica particles is vertically immersed in a solution containing the silica particles, and the glass substrate is vertically pulled up at a predetermined speed. There are a vertical deposition method and a dipping method depending on the solvent used and the ambient temperature, and either method may be used. The method for forming the particle layer is not limited to the present embodiment, and for example, a spontaneous precipitation method, a capillary method, or an advection accumulation method may be used.
Further, in the present embodiment, an example in which the surface of the silica particles is coated with silver is described, but the metal that coats the surface of the silica particles may be any metal without being limited to the present embodiment. For example, it may be coated with gold.
Further, in the present embodiment, by arranging the spherical particles in the closest density, there is a gap between the particles, and a particle layer having irregularities on the surface is formed. The shape is not limited, and any shape may be used as long as it has a gap between particles and can form a particle layer having periodic irregularities on the surface when arranged periodically.
Furthermore, in this embodiment, an example in which silica is used as the material of the particles is described, but the material of the particles may be any material that does not affect the Raman scattering measurement of the substance to be measured. For example, ceramic or titanium oxide can be used as a material.
Further, in the present embodiment, an example in which glass is used as the material of the substrate is described, but the material of the substrate is arbitrarily determined as long as the material does not affect the Raman scattering measurement of the substance to be measured. For example, ceramic or titanium oxide can be used as a material.
[0012]
【The invention's effect】
As described above, the Raman scattering measurement sensor according to the present invention may include, on a substrate, a plurality of particles of the same shape and the same size whose surfaces are coated with a metal, at least a substance to be measured for Raman scattering between the particles. Since there is a gap and a particle layer that is periodically arranged so that periodic irregularities can be formed on the surface of the particle layer, it has a high enhancement effect on Raman scattering, and uniformity and reproduction There is an effect that there is.
Further, the method for producing a Raman scattering measurement sensor according to the present invention, on the substrate, at least particles having the same shape and the same size have a gap in which a substance to be measured for Raman scattering can enter between each particle, and the particle layer Form a particle layer that is periodically arranged so that periodic irregularities can be formed on the surface, put the particle layer formed on the substrate in a solution containing a metal and a polymer, and take out the particle layer from the solution After drying, the particle layer is fired at a temperature at which the polymer can be incinerated and the metal can be fixed to the silica particles without agglomeration of the metal fine particles, and the metal is fixed to the surface of each silica particle. In addition, since a particle layer in which fine gaps are formed between individual silica particles is formed, a Raman scattering having a high enhancing effect on Raman scattering, and having excellent uniformity and reproducibility and excellent in practicality. Scatter measurement The capacitors, it is possible to easily and inexpensively manufactured.
[Brief description of the drawings]
FIG. 1 is a schematic side view of a multilayer film of silica particles formed on a glass substrate.
FIGS. 2A to 2E are schematic views showing a step of coating the surface of each silica particle of a multilayer film formed on a glass substrate with gold.
FIG. 3 is a graph showing a result of measuring a UV-Vis spectrum of the Raman scattering measurement sensor according to the present invention.
FIG. 4 shows a Raman scattering measurement sensor according to the present invention, a conventional sensor having a smooth film formed on glass by vacuum evaporation, and a conventional sensor having a film whose surface is roughened by electrochemical oxidation-reduction treatment. 5 is a graph showing the results of measuring Raman spectra by decorating each with p-toluenethiol.
FIGS. 5A and 5B show p-toluene of a Raman scattering measurement sensor according to the present invention and a conventional sensor having a film whose surface is roughened by electrochemical oxidation-reduction treatment, respectively. It is a graph which shows the result of having measured the Raman spectrum in several different positions using what was decorated with thiol.
[Explanation of symbols]
1 silica particles 2 gaps (nano space)
3 polymer 4 silver nanoparticles 5 silver particle film

Claims (16)

基板上に、表面に金属をコーティングした複数の同形同寸の粒子を少なくとも各粒子間にラマン散乱を測定すべき物質が入り得る隙間を有し、かつ、粒子層の表面に周期的な凹凸を形成できるように周期的に配列した粒子層を備えている
ことを特徴とするラマン散乱測定センサ。
On a substrate, a plurality of particles of the same shape and the same size coated with a metal on the surface have at least a gap between each particle into which a substance to be measured for Raman scattering can enter, and periodic irregularities on the surface of the particle layer. A Raman scattering measurement sensor comprising a particle layer that is periodically arranged so as to form particles.
前記基板が、ガラス、セラミック又は酸化チタンから成る
ことを特徴とする請求項1に記載のラマン散乱測定センサ。
The Raman scattering measurement sensor according to claim 1, wherein the substrate is made of glass, ceramic, or titanium oxide.
前記粒子が、シリカ、セラミック又は酸化チタンから成る
ことを特徴とする請求項1又は2に記載のラマン散乱測定センサ。
The Raman scattering measurement sensor according to claim 1, wherein the particles are made of silica, ceramic, or titanium oxide.
前記粒子が球体であり、前記粒子層が前記球体粒子を最密に配列して成る
ことを特徴とする請求項1〜3の何れか一項に記載のラマン散乱測定センサ。
The Raman scattering measurement sensor according to any one of claims 1 to 3, wherein the particles are spherical, and the particle layer has the spherical particles arranged in the closest density.
前記粒子層が、1層又は複数の層より成る
ことを特徴とする請求項1〜4の何れか一項に記載のラマン散乱測定センサ。
The Raman scattering measurement sensor according to claim 1, wherein the particle layer includes one layer or a plurality of layers.
前記金属が銀である
ことを特徴とする請求項1〜5の何れか一項に記載のラマン散乱測定センサ。
The Raman scattering measurement sensor according to claim 1, wherein the metal is silver.
前記金属が金である
ことを特徴とする請求項1〜5の何れか一項に記載のラマン散乱測定センサ。
The Raman scattering measurement sensor according to claim 1, wherein the metal is gold.
基板上に、同形同寸の粒子を少なくとも各粒子間にラマン散乱を測定すべき物質が入り得る隙間を有し、かつ、粒子層の表面に周期的な凹凸を形成できるように周期的に配列した粒子層を形成し、
前記基板に形成された粒子層を、金属及びポリマーを含有した溶液中に入れ、
前記溶液から粒子層を取り出して乾燥させた後、
ポリマーを焼却でき、かつ、金属の微粒子が凝集することなく金属をシリカ粒子に固定することができる温度で粒子層を焼成し、
個々のシリカ粒子の表面に金属が固定され、かつ、個々のシリカ粒子間に微細な隙間が形成された粒子層を形成する
ことを特徴とするラマン散乱測定センサの製造方法。
On the substrate, at least particles having the same shape and the same size have a gap in which a substance to be measured for Raman scattering can enter at least between each particle, and are periodically formed so that periodic irregularities can be formed on the surface of the particle layer. Forming an array of particle layers,
Put the particle layer formed on the substrate in a solution containing a metal and a polymer,
After removing the particle layer from the solution and drying,
Baking the particle layer at a temperature at which the polymer can be incinerated and the metal can be fixed to the silica particles without the metal fine particles aggregating,
A method for manufacturing a Raman scattering measurement sensor, comprising forming a particle layer in which a metal is fixed on the surface of individual silica particles and fine gaps are formed between the individual silica particles.
前記基板に、ガラス、セラミック又は酸化チタンを用いる
ことを特徴とする請求項8に記載の製造方法。
The method according to claim 8, wherein glass, ceramic, or titanium oxide is used for the substrate.
前記粒子に、シリカ、セラミック又は酸化チタンを用いる
ことを特徴とする請求項8又は9に記載の製造方法。
The method according to claim 8, wherein silica, ceramic, or titanium oxide is used for the particles.
前記粒子が球体であり、前記粒子層を前記球体粒子を最密に配列して形成する
ことを特徴とする請求項8〜10の何れか一項に記載の製造方法。
The method according to any one of claims 8 to 10, wherein the particles are spherical, and the particle layer is formed by arranging the spherical particles in the closest density.
前記粒子層を、1層又は複数の層で形成する
ことを特徴とする請求項8〜11の何れか一項に記載の製造方法。
The method according to any one of claims 8 to 11, wherein the particle layer is formed of one layer or a plurality of layers.
前記基板を粒子を含有した溶液中に垂直に浸し、前記基板を所定の速度で垂直に引き上げることにより基板上に粒子を周期的に堆積させて前記粒子層を形成する
ことを特徴とする請求項8〜12の何れか一項に記載の製造方法。
The method according to claim 1, wherein the substrate is vertically immersed in a solution containing particles, and the substrate is vertically pulled up at a predetermined speed to periodically deposit particles on the substrate to form the particle layer. The production method according to any one of 8 to 12.
前記金属が銀である
ことを特徴とする請求項8〜13の何れか一項に記載の製造方法。
The method according to any one of claims 8 to 13, wherein the metal is silver.
前記金属が金である
ことを特徴とする請求項8〜13の何れか一項に記載の製造方法。
The method according to claim 8, wherein the metal is gold.
焼成の温度範囲が300°〜400°である
ことを特徴とする請求項14又は15に記載の製造方法。
The method according to claim 14 or 15, wherein the firing temperature range is 300 ° to 400 °.
JP2002338921A 2002-11-22 2002-11-22 Raman scattering measuring sensor, and its manufacturing method Pending JP2004170334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002338921A JP2004170334A (en) 2002-11-22 2002-11-22 Raman scattering measuring sensor, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002338921A JP2004170334A (en) 2002-11-22 2002-11-22 Raman scattering measuring sensor, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004170334A true JP2004170334A (en) 2004-06-17

Family

ID=32702002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002338921A Pending JP2004170334A (en) 2002-11-22 2002-11-22 Raman scattering measuring sensor, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004170334A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005219184A (en) * 2004-02-09 2005-08-18 National Institute Of Advanced Industrial & Technology Method of forming array substrate of metal nanotriangular prism structure for monomolecular raman spectrography and monomolecular analyzing method using the same
JP2006250924A (en) * 2005-02-14 2006-09-21 Fuji Photo Film Co Ltd Device for raman spectroscopy and raman spectroscope
WO2008010442A1 (en) 2006-07-20 2008-01-24 Fujifilm Corporation Microstructure and its fabrication method, sensor device, and raman spectroscopy device
US7623231B2 (en) 2005-02-14 2009-11-24 Fujifilm Corporation Device for Raman spectroscopy and Raman spectroscopic apparatus
JP2010532472A (en) * 2007-06-29 2010-10-07 コリア アドバンスト インスティテュート オブ サイエンス アンド テクノロジー Optical sensor for surface-enhanced Raman spectroscopy
US7956995B2 (en) 2005-01-07 2011-06-07 Kyoto University Optical sensor and method for manufacturing the same
CN107012428A (en) * 2017-03-20 2017-08-04 徐州赛恩斯源新材料科技有限公司 A kind of preparation of surface enhanced substrate and the method for demarcation performance
CN112748098A (en) * 2019-10-30 2021-05-04 天津大学 Reusable specific surface enhanced Raman sensor and preparation method thereof
WO2022054907A1 (en) 2020-09-14 2022-03-17 株式会社ダイセル Surface-enhanced raman scattering agent

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005219184A (en) * 2004-02-09 2005-08-18 National Institute Of Advanced Industrial & Technology Method of forming array substrate of metal nanotriangular prism structure for monomolecular raman spectrography and monomolecular analyzing method using the same
US7956995B2 (en) 2005-01-07 2011-06-07 Kyoto University Optical sensor and method for manufacturing the same
JP2006250924A (en) * 2005-02-14 2006-09-21 Fuji Photo Film Co Ltd Device for raman spectroscopy and raman spectroscope
US7623231B2 (en) 2005-02-14 2009-11-24 Fujifilm Corporation Device for Raman spectroscopy and Raman spectroscopic apparatus
JP4685650B2 (en) * 2005-02-14 2011-05-18 富士フイルム株式会社 Raman spectroscopy device and Raman spectroscopy apparatus
WO2008010442A1 (en) 2006-07-20 2008-01-24 Fujifilm Corporation Microstructure and its fabrication method, sensor device, and raman spectroscopy device
US8502970B2 (en) 2006-07-20 2013-08-06 Fujifilm Corporation Microstructured body, process for producing the microstructured body, sensor device, and Raman spectrometry device
JP2010532472A (en) * 2007-06-29 2010-10-07 コリア アドバンスト インスティテュート オブ サイエンス アンド テクノロジー Optical sensor for surface-enhanced Raman spectroscopy
CN107012428A (en) * 2017-03-20 2017-08-04 徐州赛恩斯源新材料科技有限公司 A kind of preparation of surface enhanced substrate and the method for demarcation performance
CN112748098A (en) * 2019-10-30 2021-05-04 天津大学 Reusable specific surface enhanced Raman sensor and preparation method thereof
CN112748098B (en) * 2019-10-30 2022-09-16 天津大学 Reusable specific surface enhanced Raman sensor and preparation method thereof
WO2022054907A1 (en) 2020-09-14 2022-03-17 株式会社ダイセル Surface-enhanced raman scattering agent

Similar Documents

Publication Publication Date Title
US20150049332A1 (en) Gold nanoisland arrays
Wu et al. Surface-enhanced Raman scattering active gold nanoparticle/nanohole arrays fabricated through electron beam lithography
Oldenburg et al. Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates
Cintra et al. Sculpted substrates for SERS
CN107490570B (en) Preparation method of surface enhanced Raman scattering substrate
CN108844943B (en) SERS unit and preparation method and application thereof
KR101448111B1 (en) A substrate for surface-enhanced Raman scattering spectroscopy and a preparing method thereof
US8129199B2 (en) Surface enhanced Raman spectroscopy using shaped gold nanoparticles
Chattopadhyay et al. Surface-enhanced Raman spectroscopy using self-assembled silver nanoparticles on silicon nanotips
AU2013358693B2 (en) Metal-nanoparticle-arrays and production of metal-nanoparticle-arrays
Dong et al. Polymer-single-crystal@ nanoparticle nanosandwich for surface enhanced Raman spectroscopy
KR20170066089A (en) method for manufacturing of metal nanostructure and substrate for surface enhanced raman scattering including the metal nanostructure by manufacturing the same method
CN110132940B (en) Array type flexible SERS substrate and preparation method thereof
Zheng et al. Surface‐Enhanced Raman Scattering (SERS) Substrate based on large‐area well‐defined gold nanoparticle arrays with high SERS uniformity and stability
JP2004170334A (en) Raman scattering measuring sensor, and its manufacturing method
CN111175285B (en) Surface enhanced Raman substrate with layered micro/nano structure and detection method thereof
Gómez et al. Surface enhanced Raman scattering (SERS) in the visible range on scalable aluminum-coated platforms
Lertvachirapaiboon et al. Transmission surface plasmon resonance signal enhancement via growth of gold nanoparticles on a gold grating surface
Wang et al. Flexible and superhydrophobic silver nanoparticles decorated aligned silver nanowires films as surface-enhanced raman scattering substrates
Bechelany et al. Extended domains of organized nanorings of silver grains as surface-enhanced Raman scattering sensors for molecular detection
CN110146485B (en) Gold triangular pit array material and preparation method and application thereof
Fu et al. Ni/Au hybrid nanoparticle arrays as a highly efficient, cost-effective and stable SERS substrate
Tebbe et al. SERS platforms of plasmonic hydrophobic surfaces for analyte concentration: Hierarchically assembled gold nanorods on anodized aluminum
Zhao et al. Silica cladding of Ag nanoparticles for high stability and surface-enhanced Raman spectroscopy performance
WO2020054780A1 (en) Analysis substrate