JP2004170196A - Turbidity measuring instrument - Google Patents

Turbidity measuring instrument Download PDF

Info

Publication number
JP2004170196A
JP2004170196A JP2002335354A JP2002335354A JP2004170196A JP 2004170196 A JP2004170196 A JP 2004170196A JP 2002335354 A JP2002335354 A JP 2002335354A JP 2002335354 A JP2002335354 A JP 2002335354A JP 2004170196 A JP2004170196 A JP 2004170196A
Authority
JP
Japan
Prior art keywords
turbidity
light
sample
absorbance
sample liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002335354A
Other languages
Japanese (ja)
Inventor
Shigesada Iijima
茂定 飯嶋
Hirohito Iijima
宏仁 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IIJIMA DENSHI KOGYO KK
Original Assignee
IIJIMA DENSHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IIJIMA DENSHI KOGYO KK filed Critical IIJIMA DENSHI KOGYO KK
Priority to JP2002335354A priority Critical patent/JP2004170196A/en
Publication of JP2004170196A publication Critical patent/JP2004170196A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent erroneous measurement caused by deterioration of a light emitting diode, a stain and a flaw in glass on a projection part and a photoreceiving part front face, and to cope with various sample liquids. <P>SOLUTION: This turbidity measuring instrument is provided with the projection part, a sample cell through which light emitted from the projection part is transmitted, and a photoreceiving part for detecting the light transmitted through the sample cell, and is provided with a turbidity computing means for finding an absorbance based on a ratio between light intensities detected by the photoreceiving part when no measured sample liquid exists in the sample cell, and when the liquid exists therein, to compute the turbidity based on the absorbance. In the instrument, a plurality of measuring channels are provided, and a plurality of working curves are prepared by calibration to be stored in the respective channels. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は被測定試料液の濁度を測定する濁度測定装置に関する。
【0002】
【従来の技術】
従来、被測定試料液の濁度を測定する方法として「透過光方式」といわれる測定方法が行われている。
【0003】
「透過光方式」とは、試料セルに存在する被測定試料液に投光部から光を投光し、被測定試料液中を通過した透過光の強度を受光部で測定し、あらかじめ作成してある透過光強度−濁度の関係を示す検量線を使って、測定した透過光強度から濁度を換算する測定方法である。
【0004】
図10は上記の従来の濁度測定方法を示す検量線グラフの一例で、横軸に受光部で測定された透過光強度をとり、縦軸には濁度が目盛られている。検量線は被測定試料液の透過光強度と濁度を実際に測定しプロットしたものである。
【0005】
また、従来の濁度測定装置では測定チャンネルは単チャンネルで測定時の校正は2点校正が一般的である。
【0006】
【発明が解決しようとする課題】
しかしながら、上記の透過光強度から濁度検量線を使って濁度を求める方法は、投光部の発光源である発光ダイオードが経時劣化で光量が減少していく。発光ダイオードの温度依存性のため光量が変動する。投光部及び受光部前面のガラスに付着する汚れや傷のため透過光が減少するなどの現象のため、そのまま測定したのでは測定誤差を生じる。
【0007】
例えば、図10の検量線を使用した濁度測定で発光ダイオードの劣化や受光部前面のガラスに付着する汚れや傷のため透過光が減少した場合の実験例では以下のような結果となる。
【0008】
図10の検量線から導き出される透過光強度から濁度を求める式は次のように表される。
【0009】
Y=〔{(P−A)/(P−A)}−1〕×a……………(1)
ここで、
Y :濁度(mg/l)
:試料セルに試料液が存在しない状態の受光の強度(mv)〔入射光強度と する〕
P :試料セルに試料液が存在する状態の受光の強度(mv)〔透過光強度とす る〕
A :オフセット定数(=359)
a :スパン校正定数
である。
【0010】
濁度10000(mg/l)の試料液を使用してPの値を変化させて実験を行い、上記の(1)式を使用して濁度を求めると次のようになる。
【0011】
まず、最初にP=2433(mv)の時に試料セルに試料液を入れて透過光強度を測定するとP=1032(mv)であった。
【0012】
次にPを約1/2として同じ試料液を測定した結果は、P=1218(mv)でP=532(mv)であった。なお、スパン校正定数(a)は、4808である。
【0013】
この実測データから光量の劣化前と劣化後の濁度(Y)を計算すると

Figure 2004170196
となり、光量が減少した場合には測定誤差が非常に大きくなっていることがわかる。従って、従来の濁度測定装置では測定のたびに標準液または標準板を使用して校正を行う必要があった。
【0014】
また、被測定試料液である汚泥は色、粒径など様々であり、特に汚泥の色は好気性、嫌気性、その他管理状況の違いや四季の変化によっても変わってくる。そして、図11の実測データに示すように汚泥の色によって検量線が異なっており、測定チャンネルが単チャンネルでは様々な試料液に充分対応できないという問題があった。
【0015】
本発明は上記の事実に鑑み、測定のたびに標準液または標準板を使用して校正を行うことを必要とせず、しかも正しく精度が保たれており、様々な被測定試料液の測定に対応できる濁度測定装置を提供することを目的としている。
【0016】
【課題を解決するための手段】
このような課題を解決するための手段として、本発明の濁度測定装置は、投光部と該投光部より照射された光が通過する試料セルと該試料セルより透過した光の強度を検出する受光部とを備える計測手段と、該受光部により検出される該試料セルに濁度が測定される試料液が存在しない状態の光の強度P及び該試料セルに該試料液が存在する状態の光の強度Pより吸光度Log(P0/P)を求める吸光度演算手段と、吸光度と濁度との検量線、あるいは、吸光度と濁度との関係式をもちいて、該吸光度Log(P0/P)より濁度を求める濁度演算手段と、を備えている構成としている。
【0017】
本発明の濁度測定装置では、試料セルに試料液が存在しない状態の光の強度P及び試料セルに試料液が存在する状態の光の強度Pより試料液の吸光度Log(P/P)を求め、その吸光度から濁度を演算して求める構成としている。このため、投光部の発光源が経時劣化やその他の理由で光量が減少した場合、あるいは投光部及び受光部前面のガラスの汚れや傷のために光量が減少した場合でも、以下に述べるように、濁度の測定値の変動は小さく問題とならないので、測定のたびに標準液または標準板を使用して校正を行う必要がない。
【0018】
図5〜図7は吸光度を基にした濁度測定方法である本発明を説明したものである。
【0019】
図5は発光ダイオードの光量の劣化がなく、ガラスにも汚れや傷などの光量を減少させる劣化がない場合の吸光度測定のモデルを示している。被測定試料液は光量を1/10に減少させる濁度のものとする。
【0020】
図5(A)は、試料セル7に試料液が存在しない状態での受光素子(図示せず)で受光した光の強度P0(入射光強度とする)と発光ダイオードの照射する光Pinとの関係を示すもので、このときP0=Pinである。
【0021】
図5(B)は、試料セル7に試料液8が存在する状態での受光素子(図示せず)で受光した光の強度P(透過光強度とする)とPinとの関係を示す。
【0022】
試料液8は光量を1/10に減少させる濁度のものであるから、P=(1/10)Pinとなる。
【0023】
従って、この時の吸光度は次のようになる。
Figure 2004170196
次に、図6は発光ダイオードの光量の劣化はないが、ガラスに汚れや傷などの光量を減少させる劣化がある場合の吸光度測定のモデルを示している。ガラスの汚れや傷による光量の変化は1/10に減少するものとする。また、被測定試料液は光量を1/10に減少させる濁度のものとする。
【0024】
図6(A)は、試料セル7に試料液が存在しない状態での受光素子(図示せず)で受光した光の強度P0(入射光強度とする)と発光ダイオードの照射する光Pinとの関係を示すもので、ガラス5及びガラス6で光量が1/10に減少するので、P0=(1/10)Pinである。
【0025】
図6(B)は、試料セル7に試料液8が存在する状態での受光素子(図示せず)で受光した光の強度P(透過光強度とする)とPinとの関係を示す。
【0026】
ガラス5及びガラス6で光量が1/10に減少し、試料液8で光量が1/10に減少するので、P=(1/10)(1/10)Pinとなる。
【0027】
この時の吸光度は次のようになる。
Figure 2004170196
また、図7は発光ダイオードの劣化により発光ダイオードの発光量が1/2に減少したものとし、ガラスにも汚れや傷などの光量を減少させる劣化がある場合の吸光度測定のモデルを示している。ガラスの汚れや傷による光量の変化は1/10に減少するものとする。また、被測定試料液は光量を1/10に減少させる濁度のものとする。
【0028】
図7(A)は、試料セル7に試料液が存在しない状態での受光素子(図示せず)で受光した光の強度P0(入射光強度とする)と光量が減少した発光ダイオードの照射する光との関係を示すもので、照射する光が(1/2)Pinとなり、ガラス5及びガラス6で光量が1/10に減少するので、P0=(1/2)(1/10)Pinである。
【0029】
図7(B)は、試料セル7に試料液8が存在する状態での受光素子(図示せず)で受光した光の強度P(透過光強度とする)とPinとの関係を示す。
【0030】
照射する光が(1/2)Pinで、ガラス5及びガラス6で光量が1/10に減少し、試料液8で光量が1/10に減少するので、P=(1/2)(1/10)(1/10)Pinとなる。
【0031】
この時の吸光度は次のようになる。
Figure 2004170196
以上(2)式、(3)式及び(4)式に示されるように発光ダイオードの劣化による発光ダイオードの発光量の減少、ガラスの汚れや傷による光量の減少などがある場合でも吸光度は発光ダイオード及びガラスの劣化のない場合と同一となるので、吸光度から濁度を求める本発明は、発光ダイオードやガラスの劣化の影響を受けることがない。
【0032】
【発明の実施の形態】
本発明の濁度測定装置は、計測手段と、吸光度演算手段と、濁度演算手段と、を備える。
【0033】
計測手段は、図1に示すように投光部と受光部と試料セル及び投光部に電源を供給し、駆動させるためのLED発光回路とパルス回路とで構成できる。
【0034】
投光部は試料セルに光を照射するためのもので、例えばLED発光回路により構成することができる。試料セルに照射された光は試料セルを通過して受光部に到達し、受光部ではその光の強度を電気信号に変換して出力することができる。
【0035】
吸光度演算手段は、計測手段の受光部から出力されてくる微弱な電気信号(試料セルに試料液が存在しない状態の光の強度P0あるいは試料セルに試料液が存在する状態の光の強度Pが変換されたもの)を必要なレベルに増幅してCPU演算器に送り込み、CPU演算器で吸光度Log(P0/P)を演算するために信号増幅器、データ入出力装置、A/Dコンバータ及びCPU演算器を備えるものとすることができる。
【0036】
濁度演算手段は、吸光度演算手段で求めた吸光度を用いて試料液の濁度を演算するもので、被測定試料液の吸光度と濁度との検量線(あるいは吸光度と濁度との関係式)を記憶しておくメモリーを備え、濁度を演算するためのCPU演算器を持っている。また、複数の検量線の作成や測定時の検量線の選択のための操作機能も備えるものとすることができる。
【0037】
本発明の濁度測定装置では投光部として発光ダイオードを用いることができる。また、本発明の濁度測定装置において、測定チャンネル数を複数チャンネルとし、複数の被測定試料液に対応できるように複数の検量線あるいは複数の濁度演算手段を持ち、かつ、被測定試料液に最適の検量線、あるいは濁度演算手段を選択できるようにしているので濁度の測定誤差を小さくすることができる。これにより複数種類の被測定試料液を1台の濁度測定装置で測定することができる。
【0038】
さらに、本発明の濁度測定装置において、試料液の種類を好気性汚泥試料液と嫌気性汚泥試料液とすることができる。これらは最も代表的な被試料液である。ここで、検量線としては好気性検量線及び嫌気性検量線を用い、濁度演算手段は好気性濁度演算手段及び嫌気性濁度演算手段を用いる。
【0039】
試料液の種類を好気性汚泥試料液と嫌気性汚泥試料液とすることにより本発明の濁度測定装置の活用できる試料液の種類の幅が大きく広がる。例えば、図11に各種試料液である種々の汚泥を実際に測定したデータを示す。図11において、縦軸は吸光度を表し、横軸は濁度を表している。
【0040】
図11のグラフより明らかなように試料液は好気性汚泥試料液と嫌気性汚泥試料液に大きく分けられるので、好気性汚泥試料液あるいは嫌気性汚泥試料液を代表する検量線を作成して、それぞれ分類1、分類2として複数のチャンネルにあらかじめ両方の検量線を記憶させることにより本発明の濁度測定装置の利用価値が大きく高まる。
【0041】
本発明の濁度測定装置には、新たな種類の試料液用の検量線設定手段あるいは濁度演算手段設定手段を持つようにすることもできる。これにより、本発明の濁度測定装置はほぼ全ての試料溶液についてその濁度を測定できるようになる。
【0042】
検量線設定手段は、本発明の濁度測定装置に予め設定されている検量線を基にして、2点校正あるいは3点の校正を行い、新たな試料液に適合する新しい検量線あるいはその検量線から導かれる濁度演算手段を作成しその測定チャンネルに記憶させるものである。
【0043】
図8及び図9は、検量線の2点校正、3点校正について説明したものである。
【0044】
図8の2点校正は、純水中におけるゼロ点と排水原水の2点で校正し作成した検量線21が実線で示されている。それに対して実際に被測定試料液である排水の濃度を変えて測定したデータが鎖線で示されている。この例のように2点校正では校正点以外の濃度で、実際の値との誤差が大きくなる場合もある。
【0045】
一方、図9の3点校正は、純水中におけるゼロ点と排水原水と1/2希釈水の3点で校正したもので、検量線21は実線で示されている。そして被測定試料液である排水の濃度を変えて測定した鎖線で示すデータもほぼこの実線に一致している。 測定チャンネルを複数備えている場合には、新たな被測定試料液に近い検量線を選択できるのでより精度の高い検量線を作ることができ、結果的に新たな試料液の濁度をより正確に測定することができる。
【0046】
【実施例】
以下、本発明の実施の形態を図に基づいて説明する。図1は本発明の濁度測定装置の構成を示す図である。
【0047】
図1に示す如く、本発明の濁度測定装置は被測定試料液に光を照射して通過した光の強度を検出する計測手段と、入射光強度と透過光強度から被測定試料液の吸光度を演算する吸光度演算手段と、吸光度から被測定試料液の検量線を用いて濁度を求める濁度演算手段とを備えた構成となっている。
【0048】
計測手段は、図1及び図2に示すように発光素子である発光ダイオード1を内設した投光部3と受光部4と試料セル7及び発光ダイオード1に駆動電圧を供給しているLED発光回路17とパルス回路18から形成されている。
【0049】
投光部3の受光部4と相対する前面は投光部内部に連通する開口31となっており、開口31には平板状の透明なガラス5が接着剤を用いて接着されている。ガラス5の背面には発光ダイオード1が配設されている。
【0050】
受光部4の前面も内部に連通する開口41が設けられており、開口41には平板状の透明なガラス6が接着剤を用いて接着されている。そして、ガラス6の背面には受光素子2が配設されている。
【0051】
投光部3と受光部4はお互いの先端面が所定の間隔(約数mmの間隔)で固定されており、その間が試料セル7となっており、試料セル7の中には被測定試料液8が満たされる構造となっている。
【0052】
なお、ガラス5及びガラス6は特にガラスに限定されるものではなく、透明な光をよく通すものであればよい。
【0053】
パルス回路18により制御されたLED発光回路17は発光ダイオード1を発光させるためのパルス駆動電圧を供給している。
【0054】
投光部3から照射され試料セル7を通過した入射光または透過光は受光部4の受光素子2によりその強度が電気信号に変換され吸光度演算手段の濁度アンプ9に出力される。
【0055】
吸光度演算手段は濁度アンプ9、マルチプレクサ10、A/Dコンバータ11、CPU演算器12により構成される。
【0056】
濁度アンプ9では入力されてくる受光部4からの電気信号出力を所定の強さに増幅し、マルチプレクサ10に出力する。
【0057】
マルチプレクサ10は濁度アンプ9からの入射光または透過光の電気信号、電源回路19からのバッテリ−チェック信号、CPU演算器12からのチャンネル切り替え信号等を整理してA/Dコンバータ11に出力する。
【0058】
A/Dコンバータ11はマルチプレクサ10からの信号をA/D変換してCPU演算器12に出力する。
【0059】
CPU演算器12では入力してくる入射光及び透過光の電気信号をもとに吸光度を演算する。
【0060】
濁度演算手段はCPU演算器12、EEP−ROM13、操作スイッチ14により構成される。
【0061】
先に述べたようにCPU演算器12で被測定試料液8の吸光度が計算されるので、あらかじめ設定してEEP−ROM13に記憶させてある検量線(または吸光度と濁度との関係式)をCPU演算器12に読み込み、吸光度から被測定試料液8の濁度を演算し、表示部15に出力し、表示する。
【0062】
濁度演算においては測定試料液に最も適した検量線(または吸光度と濁度との関係式)を使用することが測定値の誤差を少なくする上で重要なことである。
【0063】
本発明の濁度測定装置では図3に示すように測定チャンネル数を5チャンネルとし、チャンネル1には検量線「分類1」が、チャンネル2には、検量線「分類2」が記憶されている。検量線「分類1」、「分類2」は図11に示す検量線である。
【0064】
チャンネル3〜チャンネル5には、検量線「分類1」が記憶されていて、測定試料液がチャンネル1の検量線「分類1」あるいは、チャンネル2の検量線「分類2」に当てはまらない場合に、記憶されている「分類1」の検量線をもとに2点校正あるいは3点校正を行うことにより、被測定試料液に最適の検量線を作成して記憶させることができる構成としている。
【0065】
各チャンネルの校正は操作スイッチ14により条件設定され、CPU演算器12で行われる。校正作成された検量線はEEP−ROM13に収納される。
【0066】
なお、チャンネル1及びチャンネル2も検量線の校正及び校正した検量線の記憶が可能な構成となっている。
【0067】
図4は、本発明の濁度測定装置の吸光度をもとにした濁度測定の効果を実験により確認したものである。実験は図1の構成で行った。その他の測定条件はチャンネル1で検量線は分類1を使用し、3点校正を行っている。
【0068】
図4のCASE1は、図1の構成で発光ダイオード1、ガラス5及びガラス6がともに劣化がないものとして正規の状態で試料セル7に測定試料液を入れて測定し、表示部15に表示された値である。
【0069】
CASE2は発光ダイオード1が劣化し光量が減少した場合を想定し、発光ダイオード1の光量を1/2に設定した(試料セル7に試料液がない状態で受光素子2の出力電圧が1/2となるように発光ダイオード1の光量を減らした)。
【0070】
CASE3はガラスが汚れや傷により劣化した場合を想定してガラス5及びガラス6に半透明テープを貼ったものである。発光ダイオード1は、光量の劣化はない状態に設定されている。
【0071】
実験の結果は、測定試料液の濁度の理論値20000(mg/l)に対しCASE1、CASE2、CASE3の測定値は20014(mg/l)、19533(mg/l)、18884(mg/l)であり、これはすべて測定器の許容誤差(±2000mg/l以内)の範囲内にあり、吸光度をもとにした本発明の濁度測定は従来のように測定の度に標準液/標準板による校正を行わなくとも正しい測定値が得られることを示している。
【0072】
【発明の効果】
本発明は以上説明したものであるから、次に述べるような効果がある。
【0073】
被測定試料液に投光される入射光の強度と被測定試料液を通過した透過光の強度から求めた吸光度をもとにして濁度を演算する濁度測定方法なので発光源である発光ダイオードの劣化による光量の減少や投光部や受光部のガラスの汚れや傷による光量の減少の影響が測定値に反映されないので、従来のように測定の度に標準液校正をおこなわずともゼロ校正のみで正確な測定が期待できる。
【0074】
また、測定チャンネル数を複数チャンネルとしたので様々な試料液に最も適した検量線を作成することができ、より正確な測定値を得ることができる。
【0075】
さらに、検量線の校正に用いる校正方法は1点校正、2点校正、3点校正と複数の校正方法をもっているので、それぞれの試料液に合わせた検量線を作成することができる。従って測定値も正確なものとなる。
【図面の簡単な説明】
【図1】本発明の濁度測定装置の構成を示す図である。
【図2】本発明の濁度測定装置の投光部及び受光部の説明図である。
【図3】本発明の濁度測定装置の測定チャンネルと検量線及び校正の関係を示すブロックダイヤである。
【図4】本発明の濁度測定装置の濁度測定実験結果である。
【図5】吸光度測定の説明図である。
【図6】ガラス劣化の場合の吸光度測定の説明図である。
【図7】発光ダイオード、ガラス劣化の場合の吸光度測定の説明図である。
【図8】2点校正の説明図である。
【図9】3点校正の説明図である。
【図10】従来の濁度換算式の説明図である。
【図11】被測定試料液である排水サンプルの分類図である。
【符号の説明】
1:発光ダイオード
16:メンテナンススイッチ
2:受光素子
17:LED発振回路
3:投光部
18:パルス回路
4:受光部
19:電源回路
5:投光部ガラス
20:DC電源
6:受光部ガラス
21:検量線
7:試料セル
31:投光部の開口
8:試料液
41:受光部の開口
9:濁度アンプ
10:マルチプレクサ
11:A/Dコンバータ
12:CPU演算器
13:EEP−ROM
14:操作スイッチ
15:表示部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a turbidity measuring device for measuring turbidity of a sample liquid to be measured.
[0002]
[Prior art]
Conventionally, as a method for measuring the turbidity of a sample liquid to be measured, a measurement method called “transmitted light method” has been performed.
[0003]
The `` transmitted light method '' means that the light is projected from the light projecting unit to the sample liquid to be measured present in the sample cell, the intensity of the transmitted light that has passed through the sample liquid to be measured is measured by the light receiving unit, and the This is a measurement method for converting turbidity from measured transmitted light intensity using a calibration curve showing the relationship between transmitted light intensity and turbidity.
[0004]
FIG. 10 is an example of a calibration curve graph showing the above-described conventional turbidity measuring method, in which the horizontal axis indicates the transmitted light intensity measured by the light receiving section, and the vertical axis indicates the turbidity. The calibration curve is obtained by actually measuring and plotting the transmitted light intensity and turbidity of the sample liquid to be measured.
[0005]
In a conventional turbidity measuring device, the measurement channel is a single channel, and the calibration at the time of measurement is generally a two-point calibration.
[0006]
[Problems to be solved by the invention]
However, in the method of obtaining the turbidity from the transmitted light intensity using the turbidity calibration curve, the light amount of the light emitting diode, which is the light emitting source of the light projecting unit, decreases with time. The light quantity fluctuates due to the temperature dependence of the light emitting diode. Due to a phenomenon such as a decrease in transmitted light due to dirt or scratches attached to the glass on the front surface of the light emitting unit and the light receiving unit, a measurement error occurs if the measurement is performed as it is.
[0007]
For example, the following results are obtained in an experimental example in which the transmitted light is reduced due to deterioration of the light emitting diode and dirt or scratches attached to the glass in front of the light receiving unit in the turbidity measurement using the calibration curve of FIG.
[0008]
An equation for obtaining turbidity from transmitted light intensity derived from the calibration curve of FIG. 10 is expressed as follows.
[0009]
Y = [{(P 0 -A) / ( P-A)} - 1 ] × a ............... (1)
here,
Y: turbidity (mg / l)
P 0 : intensity of received light (mv) when no sample liquid is present in the sample cell [assuming incident light intensity]
P: Intensity of received light (mv) when sample liquid is present in the sample cell [assumed as transmitted light intensity]
A: Offset constant (= 359)
a: Span calibration constant.
[0010]
We conducted an experiment by changing the values of P 0 using a sample solution turbidity 10000 (mg / l), when determining the turbidity using the above equation (1) as follows.
[0011]
First, when P 0 = 2433 (mv), the sample liquid was put into the sample cell, and the transmitted light intensity was measured. As a result, P = 1032 (mv).
[0012]
Next, when the same sample solution was measured with P 0 set to about 2, the result was P 0 = 1218 (mv) and P = 532 (mv). The span calibration constant (a) is 4808.
[0013]
When the turbidity (Y) before and after the deterioration of the light amount is calculated from the actual measurement data,
Figure 2004170196
It can be seen that the measurement error is very large when the amount of light decreases. Therefore, in the conventional turbidity measuring device, it was necessary to perform calibration using a standard solution or a standard plate each time measurement was performed.
[0014]
Also, the sludge that is the sample liquid to be measured has various colors, particle sizes, and the like. In particular, the color of the sludge changes depending on aerobic, anaerobic, other management conditions, and changes in the four seasons. As shown in the actual measurement data in FIG. 11, the calibration curve differs depending on the color of the sludge, and there is a problem that a single measurement channel cannot sufficiently cope with various sample liquids.
[0015]
In view of the above facts, the present invention does not require the use of a standard solution or a standard plate for calibration each time measurement is performed, and the accuracy is maintained correctly, so that the present invention is applicable to measurement of various sample liquids to be measured. It is an object of the present invention to provide a turbidity measuring device that can be used.
[0016]
[Means for Solving the Problems]
As means for solving such a problem, the turbidity measuring device of the present invention includes a light projecting unit, a sample cell through which light emitted from the light projecting unit passes, and an intensity of light transmitted from the sample cell. A measuring unit having a light receiving unit for detecting, and a light intensity P 0 in a state where no sample liquid whose turbidity is measured is present in the sample cell detected by the light receiving unit and the sample liquid is present in the sample cell. The absorbance log (P0 / P) is obtained by using an absorbance calculating means for obtaining the absorbance Log (P0 / P) from the light intensity P in a state where the light absorbs, and a calibration curve of the absorbance and turbidity or a relational expression between the absorbance and turbidity. / P) and a turbidity calculating means for obtaining turbidity from (P).
[0017]
In the turbidity measuring device of the present invention, the absorbance Log (P 0 / P) of the sample liquid is obtained from the light intensity P 0 in a state where the sample liquid is not present in the sample cell and the light intensity P in a state where the sample liquid is present in the sample cell. ) Is calculated, and turbidity is calculated from the absorbance. For this reason, even when the light source of the light emitting unit has decreased in light amount due to aging or other reasons, or in the case where the light amount has decreased due to dirt or scratches on the glass on the front surface of the light emitting unit and the light receiving unit, the following will be described. As described above, since the fluctuation of the measured value of the turbidity is small and does not cause any problem, it is not necessary to perform calibration using a standard solution or a standard plate each time the measurement is performed.
[0018]
5 to 7 illustrate the present invention, which is a method of measuring turbidity based on absorbance.
[0019]
FIG. 5 shows a model of the absorbance measurement in the case where the light quantity of the light emitting diode is not deteriorated and the glass is not deteriorated to reduce the light quantity such as dirt or scratch. The sample liquid to be measured has a turbidity that reduces the light amount to 1/10.
[0020]
FIG. 5 (A), (a incident light intensity) intensity P0 of light received by the light receiving element in a state where the sample solution is not present (not shown) in the sample cell 7 and the light P in the irradiation of the light emitting diode shows the relationship, it is this time P0 = P in.
[0021]
FIG. 5 (B), (a transmitted light intensity) intensity P of the light received by the light receiving element in a state in which the sample liquid 8 is present (not shown) in the sample cell 7 and showing the relationship between the P in.
[0022]
Since the sample solution 8 is of turbidity reducing the amount of light to 1/10, and P = (1/10) P in.
[0023]
Therefore, the absorbance at this time is as follows.
Figure 2004170196
Next, FIG. 6 shows a model of the absorbance measurement when the light amount of the light emitting diode is not deteriorated but the glass is deteriorated to reduce the light amount such as dirt or scratch. The change in the amount of light due to stains and scratches on the glass is reduced to 1/10. The sample liquid to be measured has a turbidity that reduces the light amount to 1/10.
[0024]
6 (A) is (a incident light intensity) intensity P0 of light received by the light receiving element in a state where the sample solution is not present (not shown) in the sample cell 7 and the light P in the irradiation of the light emitting diode shows the relationship, the amount of light in the glass 5 and the glass 6 is reduced to 1/10, and P0 = (1/10) P in.
[0025]
FIG. 6 (B) (a transmitted light intensity) intensity P of the light received by the light receiving element in a state in which the sample liquid 8 is present (not shown) in the sample cell 7 and showing the relationship between the P in.
[0026]
Amount of glass 5 and the glass 6 is reduced to 1/10, since the amount of light in the sample solution 8 is reduced to 1/10, and P = (1/10) (1/10) P in.
[0027]
The absorbance at this time is as follows.
Figure 2004170196
FIG. 7 shows a model of the absorbance measurement in the case where the light emission amount of the light emitting diode is reduced by half due to the deterioration of the light emitting diode, and the glass is deteriorated to reduce the light amount such as dirt or scratch. . The change in the amount of light due to stains and scratches on the glass is reduced to 1/10. The sample liquid to be measured has a turbidity that reduces the light amount to 1/10.
[0028]
FIG. 7A shows the light emitted from the light emitting diode whose light intensity P0 (referred to as the incident light intensity) and the amount of light received by the light receiving element (not shown) in the state where the sample liquid is not present in the sample cell 7 are reduced. shows the relationship between the light, the light is (1/2) P in becomes to be irradiated, since the amount of light in the glass 5 and the glass 6 is reduced to 1/10, P0 = (1/2) ( 1/10) it is a P in.
[0029]
FIG. 7 (B) (a transmitted light intensity) intensity P of the light received by the light receiving element in a state in which the sample liquid 8 is present (not shown) in the sample cell 7 and showing the relationship between the P in.
[0030]
In light irradiation (1/2) P in, the amount of light in the glass 5 and the glass 6 is reduced to 1/10, since the amount of light in the sample solution 8 is reduced to 1/10, P = (1/2) ( 1/10) the (1/10) P in.
[0031]
The absorbance at this time is as follows.
Figure 2004170196
As shown in the above equations (2), (3) and (4), even when there is a decrease in the light emission amount of the light emitting diode due to the deterioration of the light emitting diode, and a decrease in the light amount due to stains or scratches on the glass, the absorbance is emitted. Since it is the same as when there is no deterioration of the diode and the glass, the present invention for determining the turbidity from the absorbance is not affected by the deterioration of the light emitting diode and the glass.
[0032]
BEST MODE FOR CARRYING OUT THE INVENTION
The turbidity measuring device of the present invention includes a measuring unit, an absorbance calculating unit, and a turbidity calculating unit.
[0033]
As shown in FIG. 1, the measuring means can be composed of an LED light emitting circuit and a pulse circuit for supplying and driving power to the light projecting unit, the light receiving unit, the sample cell and the light projecting unit.
[0034]
The light projecting unit is for irradiating the sample cell with light, and can be configured by, for example, an LED light emitting circuit. The light applied to the sample cell passes through the sample cell and reaches the light receiving unit, and the light receiving unit can convert the intensity of the light into an electric signal and output the electric signal.
[0035]
The absorbance calculating means calculates the weak electric signal (the light intensity P0 in a state where the sample liquid does not exist in the sample cell or the light intensity P in a state where the sample liquid exists in the sample cell) output from the light receiving unit of the measuring means. The converted signal is amplified to a required level and sent to a CPU computing unit, where a signal amplifier, a data input / output device, an A / D converter, and a CPU computation are used to compute the absorbance Log (P0 / P) by the CPU computing unit. Can be provided.
[0036]
The turbidity calculating means calculates the turbidity of the sample solution using the absorbance obtained by the absorbance calculating means, and a calibration curve of the absorbance and the turbidity of the sample liquid to be measured (or a relational expression between the absorbance and the turbidity) ) Is stored, and a CPU calculator for calculating turbidity is provided. Further, an operation function for creating a plurality of calibration curves and selecting a calibration curve at the time of measurement can be provided.
[0037]
In the turbidity measuring device of the present invention, a light emitting diode can be used as the light projecting unit. Further, in the turbidity measuring device of the present invention, the number of measurement channels is set to a plurality of channels, and a plurality of calibration curves or a plurality of turbidity calculating means are provided so as to be compatible with a plurality of sample liquids to be measured. The most suitable calibration curve or turbidity calculating means can be selected, so that the turbidity measurement error can be reduced. Thereby, a plurality of types of sample liquids to be measured can be measured by one turbidity measuring device.
[0038]
Furthermore, in the turbidity measuring device of the present invention, the types of the sample liquid can be an aerobic sludge sample liquid and an anaerobic sludge sample liquid. These are the most representative sample liquids. Here, an aerobic calibration curve and an anaerobic calibration curve are used as a calibration curve, and an aerobic turbidity calculation means and an anaerobic turbidity calculation means are used as turbidity calculation means.
[0039]
By using aerobic sludge sample liquid and anaerobic sludge sample liquid as the kinds of sample liquid, the range of types of sample liquid that can be utilized by the turbidity measuring device of the present invention is greatly expanded. For example, FIG. 11 shows data obtained by actually measuring various sludges as various sample liquids. In FIG. 11, the vertical axis represents absorbance, and the horizontal axis represents turbidity.
[0040]
As is clear from the graph of FIG. 11, the sample liquid is roughly divided into an aerobic sludge sample liquid and an anaerobic sludge sample liquid, so that a calibration curve representing an aerobic sludge sample liquid or an anaerobic sludge sample liquid is created. By storing both calibration curves in advance in a plurality of channels as Class 1 and Class 2, respectively, the utility value of the turbidity measuring device of the present invention is greatly increased.
[0041]
The turbidity measuring device of the present invention may have a calibration curve setting means or a turbidity calculating means setting means for a new type of sample liquid. Thus, the turbidity measuring device of the present invention can measure the turbidity of almost all sample solutions.
[0042]
The calibration curve setting means performs a two-point calibration or a three-point calibration based on a calibration curve preset in the turbidity measuring device of the present invention, and obtains a new calibration curve or a new calibration curve suitable for a new sample solution. The turbidity calculation means derived from the line is created and stored in the measurement channel.
[0043]
8 and 9 illustrate two-point calibration and three-point calibration of the calibration curve.
[0044]
In the two-point calibration in FIG. 8, a calibration curve 21 created by calibrating at two points in pure water and two points in raw wastewater is shown by a solid line. On the other hand, data obtained by actually changing the concentration of the wastewater, which is the sample liquid to be measured, is indicated by a chain line. As in this example, in the two-point calibration, an error from the actual value may increase at a density other than the calibration point.
[0045]
On the other hand, the three-point calibration in FIG. 9 is performed by calibrating the zero point in pure water, the three points of raw wastewater and 1/2 dilution water, and the calibration curve 21 is shown by a solid line. The data indicated by the dashed line measured while changing the concentration of the wastewater as the sample liquid to be measured almost coincides with the solid line. If multiple measurement channels are provided, a calibration curve closer to the new sample solution can be selected, so that a more accurate calibration curve can be created, resulting in a more accurate turbidity of the new sample solution. Can be measured.
[0046]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a configuration of the turbidity measuring device of the present invention.
[0047]
As shown in FIG. 1, the turbidity measuring apparatus of the present invention irradiates light to a sample liquid to be measured and detects the intensity of light passing through the turbidity measuring apparatus. And a turbidity calculating means for calculating turbidity from the absorbance using a calibration curve of the sample liquid to be measured.
[0048]
As shown in FIGS. 1 and 2, the measuring means includes a light emitting unit 3 having a light emitting diode 1 as a light emitting element, a light receiving unit 4, a sample cell 7, and an LED emitting a driving voltage to the light emitting diode 1. It comprises a circuit 17 and a pulse circuit 18.
[0049]
The front surface of the light projecting unit 3 facing the light receiving unit 4 is an opening 31 communicating with the inside of the light projecting unit, and the transparent glass plate 5 is adhered to the opening 31 using an adhesive. The light emitting diode 1 is provided on the back of the glass 5.
[0050]
The front surface of the light receiving unit 4 is also provided with an opening 41 communicating with the inside, and a flat transparent glass 6 is bonded to the opening 41 using an adhesive. The light receiving element 2 is provided on the back surface of the glass 6.
[0051]
The light-emitting unit 3 and the light-receiving unit 4 have their tip surfaces fixed at a predetermined interval (an interval of about several mm), and a sample cell 7 is provided between them. The structure is such that the liquid 8 is filled.
[0052]
Note that the glass 5 and the glass 6 are not particularly limited to glass, but may be any as long as they can transmit transparent light well.
[0053]
The LED light emitting circuit 17 controlled by the pulse circuit 18 supplies a pulse driving voltage for causing the light emitting diode 1 to emit light.
[0054]
The intensity of the incident light or transmitted light emitted from the light projecting unit 3 and passed through the sample cell 7 is converted into an electric signal by the light receiving element 2 of the light receiving unit 4 and output to the turbidity amplifier 9 of the absorbance calculating means.
[0055]
The absorbance calculating means includes a turbidity amplifier 9, a multiplexer 10, an A / D converter 11, and a CPU calculator 12.
[0056]
The turbidity amplifier 9 amplifies the input electric signal output from the light receiving unit 4 to a predetermined strength and outputs the amplified electric signal to the multiplexer 10.
[0057]
The multiplexer 10 arranges an electric signal of incident light or transmitted light from the turbidity amplifier 9, a battery check signal from the power supply circuit 19, a channel switching signal from the CPU calculator 12, and outputs the same to the A / D converter 11. .
[0058]
The A / D converter 11 A / D converts the signal from the multiplexer 10 and outputs the signal to the CPU calculator 12.
[0059]
The CPU calculator 12 calculates the absorbance based on the input electric signals of the incident light and the transmitted light.
[0060]
The turbidity calculating means includes a CPU calculator 12, an EEP-ROM 13, and an operation switch 14.
[0061]
As described above, since the absorbance of the sample liquid 8 to be measured is calculated by the CPU calculator 12, the calibration curve (or the relational expression between the absorbance and the turbidity) set in advance and stored in the EEP-ROM 13 is obtained. The turbidity of the sample liquid 8 to be measured is calculated from the absorbance by reading it into the CPU calculator 12, outputting the turbidity to the display unit 15, and displaying it.
[0062]
In the turbidity calculation, it is important to use a calibration curve (or a relational expression between absorbance and turbidity) most suitable for the measurement sample liquid in order to reduce errors in measured values.
[0063]
In the turbidity measuring apparatus of the present invention, as shown in FIG. 3, the number of measurement channels is set to 5, the calibration curve “class 1” is stored in channel 1, and the calibration curve “class 2” is stored in channel 2. . The calibration curves “class 1” and “class 2” are the calibration curves shown in FIG.
[0064]
A calibration curve “Category 1” is stored in the channels 3 to 5, and when the measurement sample liquid does not fit the calibration curve “Category 1” of the channel 1 or the calibration curve “Category 2” of the channel 2, By performing two-point calibration or three-point calibration based on the stored “class 1” calibration curve, an optimal calibration curve for the sample liquid to be measured can be created and stored.
[0065]
The calibration of each channel is set by the operation switch 14 and is performed by the CPU calculator 12. The calibration curve created and calibrated is stored in the EEP-ROM 13.
[0066]
Channel 1 and channel 2 are also configured to be capable of calibrating the calibration curve and storing the calibrated calibration curve.
[0067]
FIG. 4 shows the effect of the turbidity measurement based on the absorbance of the turbidity measuring device of the present invention, which was confirmed by experiments. The experiment was performed with the configuration of FIG. Other measurement conditions are channel 1 and the calibration curve uses classification 1 and three-point calibration is performed.
[0068]
In the case 1 shown in FIG. 4, the light-emitting diode 1, the glass 5 and the glass 6 are assumed to have no deterioration in the configuration shown in FIG. Value.
[0069]
In CASE2, the light amount of the light-emitting diode 1 was set to し (the output voltage of the light-receiving element 2 was 1 / in a state where there was no sample liquid in the sample cell 7), assuming that the light-emitting diode 1 deteriorated and the light amount decreased. The light amount of the light emitting diode 1 was reduced so that
[0070]
CASE 3 is obtained by applying a translucent tape to the glass 5 and the glass 6 on the assumption that the glass has deteriorated due to dirt or scratches. The light emitting diode 1 is set in a state where the light quantity does not deteriorate.
[0071]
The experimental results show that the measured values of CASE1, CASE2, and CASE3 are 20004 (mg / l), 19533 (mg / l), and 18884 (mg / l) with respect to the theoretical turbidity value of the measurement sample liquid of 20000 (mg / l). ), Which are all within the tolerance of the measuring instrument (within ± 2000 mg / l), and the turbidity measurement of the present invention based on the absorbance is carried out as in the conventional method. This shows that correct measurement values can be obtained without performing calibration using a plate.
[0072]
【The invention's effect】
Since the present invention has been described above, the following effects can be obtained.
[0073]
A turbidity measurement method that calculates turbidity based on the absorbance calculated from the intensity of the incident light projected on the sample liquid and the intensity of the transmitted light that has passed through the sample liquid. The effect of the decrease in light intensity due to deterioration of the light and the decrease in light intensity due to stains and scratches on the glass of the light-emitting and light-receiving parts are not reflected in the measured values. Accurate measurement can be expected with only.
[0074]
Further, since the number of measurement channels is set to a plurality, a calibration curve most suitable for various sample solutions can be created, and more accurate measurement values can be obtained.
[0075]
Further, the calibration method used for the calibration of the calibration curve includes a one-point calibration, a two-point calibration, a three-point calibration, and a plurality of calibration methods, so that a calibration curve suitable for each sample solution can be created. Therefore, the measured value is also accurate.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a turbidity measuring device of the present invention.
FIG. 2 is an explanatory diagram of a light projecting unit and a light receiving unit of the turbidity measuring device of the present invention.
FIG. 3 is a block diagram showing a relationship between a measurement channel, a calibration curve, and calibration of the turbidity measuring device of the present invention.
FIG. 4 shows the results of a turbidity measurement experiment of the turbidity measurement device of the present invention.
FIG. 5 is an explanatory diagram of absorbance measurement.
FIG. 6 is an explanatory diagram of absorbance measurement in the case of glass deterioration.
FIG. 7 is an explanatory diagram of light absorbance measurement in the case of light-emitting diode and glass deterioration.
FIG. 8 is an explanatory diagram of two-point calibration.
FIG. 9 is an explanatory diagram of three-point calibration.
FIG. 10 is an explanatory diagram of a conventional turbidity conversion formula.
FIG. 11 is a classification diagram of a drainage sample which is a sample liquid to be measured.
[Explanation of symbols]
1: light emitting diode 16: maintenance switch 2: light receiving element 17: LED oscillation circuit 3: light emitting section 18: pulse circuit 4: light receiving section 19: power supply circuit 5: light emitting section glass 20: DC power supply 6: light receiving section glass 21 : Calibration curve 7: Sample cell 31: Opening of light emitting part 8: Sample liquid 41: Opening of light receiving part 9: Turbidity amplifier 10: Multiplexer 11: A / D converter 12: CPU calculator 13: EEP-ROM
14: Operation switch 15: Display

Claims (5)

投光部と該投光部より照射された光が通過する試料セルと該試料セルより透過した光の強度を検出する受光部とを備える計測手段と、
該受光部により検出される該試料セルに濁度が測定される試料液が存在しない状態の光の強度P及び該試料セルに該試料液が存在する状態の光の強度Pより吸光度Log(P0/P)を求める吸光度演算手段と、
吸光度と濁度との検量線、あるいは、吸光度と濁度との関係式をもちいて、該吸光度Log(P0/P)より濁度を求める濁度演算手段と、
を備えることを特徴とする濁度測定装置。
Measuring means including a light emitting unit, a sample cell through which light emitted from the light emitting unit passes, and a light receiving unit that detects the intensity of light transmitted from the sample cell,
Receiving absorbance than the intensity of light P in a state where the sample liquid to the intensity P 0 and the sample cell in the light of the absence of sample solution turbidity in the sample cell is measured to be detected is present by the light unit Log ( P0 / P);
Turbidity calculating means for obtaining turbidity from the absorbance Log (P0 / P) using a calibration curve between absorbance and turbidity or a relational expression between absorbance and turbidity;
A turbidity measuring device comprising:
前記投光部は発光ダイオードからなる請求項1記載の濁度測定装置。The turbidity measuring device according to claim 1, wherein the light emitting unit includes a light emitting diode. 複数の種類の試料液にそれぞれ対応する複数の前記検量線あるいは複数の前記濁度演算手段と、測定される試料液と同じ試料液の前記検量線あるいは前記濁度演算手段を指定する指定手段とを持つ請求項1又は2記載の濁度測定装置。A plurality of calibration curves or a plurality of turbidity calculation means respectively corresponding to a plurality of types of sample liquids, and a designation means for designating the calibration curve or the turbidity calculation means of the same sample liquid as the sample liquid to be measured; The turbidity measuring device according to claim 1 or 2, further comprising: 前記試料液の種類は好気性汚泥試料液と嫌気性汚泥試料液であり、前記検量線は好気性検量線及び嫌気性検量線であり、前記濁度演算手段は好気性濁度演算手段及び嫌気性濁度演算手段である請求項1〜3記載の濁度測定装置。The types of the sample liquid are an aerobic sludge sample liquid and an anaerobic sludge sample liquid, the calibration curves are an aerobic calibration curve and an anaerobic calibration curve, and the turbidity calculating means is an aerobic turbidity calculating means and an anaerobic 4. The turbidity measuring device according to claim 1, which is a turbidity calculating means. 異なった種類の試料液用の検量線設定手段あるいは濁度演算手段設定手段を持つ請求項1〜4記載の濁度測定装置。5. The turbidity measuring device according to claim 1, further comprising calibration curve setting means or turbidity calculating means setting means for different kinds of sample liquids.
JP2002335354A 2002-11-19 2002-11-19 Turbidity measuring instrument Pending JP2004170196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002335354A JP2004170196A (en) 2002-11-19 2002-11-19 Turbidity measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002335354A JP2004170196A (en) 2002-11-19 2002-11-19 Turbidity measuring instrument

Publications (1)

Publication Number Publication Date
JP2004170196A true JP2004170196A (en) 2004-06-17

Family

ID=32699507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002335354A Pending JP2004170196A (en) 2002-11-19 2002-11-19 Turbidity measuring instrument

Country Status (1)

Country Link
JP (1) JP2004170196A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102004077A (en) * 2010-10-08 2011-04-06 中国农业大学 Turbidity transducer
CN104596990A (en) * 2015-01-23 2015-05-06 中国农业大学 Two-channel optical fiber method and sensor for measuring turbidity
CN112763433A (en) * 2019-11-04 2021-05-07 宝武炭材料科技有限公司 Method for determining transparency of sulfuric acid by using turbidity meter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102004077A (en) * 2010-10-08 2011-04-06 中国农业大学 Turbidity transducer
CN104596990A (en) * 2015-01-23 2015-05-06 中国农业大学 Two-channel optical fiber method and sensor for measuring turbidity
CN104596990B (en) * 2015-01-23 2018-04-03 中国农业大学 Double channel optical fiber turbidimetry method and sensor
CN112763433A (en) * 2019-11-04 2021-05-07 宝武炭材料科技有限公司 Method for determining transparency of sulfuric acid by using turbidity meter

Similar Documents

Publication Publication Date Title
CY1108216T1 (en) OPTICAL BASED SENSOR DEVICES
CN106053391A (en) Turbidity measuring method, turbidity measuring device and turbidimeter
US20100259747A1 (en) Sample detector and measurement device equipped with the same
CN115326725B (en) Chemical oxygen demand detecting system capable of automatically switching high range and low range
US8552401B2 (en) Optical chemical sensor feedback control system
JP2004170196A (en) Turbidity measuring instrument
EP1754443A4 (en) Living body information measuring instrument, standard element, and method of using living body information measuring instrument
CN116734760B (en) Device and method for simultaneously detecting curing depth and light transmittance of UV adhesive
JP2005195354A (en) Instrument and method for measuring oxygen concentration
KR101683266B1 (en) Water quality analysis device
CN201974383U (en) Pulse optical source fibre oxygen detector
US20060040401A1 (en) Method and equipment for measuring the concentration of antiseptic solution
CN202256152U (en) Specific protein measuring apparatus
CN209416914U (en) Forward scattering visibility meter linearity detection device
CN113933268B (en) Optical detection device and optical detection method
CN101504368A (en) Molecularity measurement instrument and molecularity measurement method
CN101639445A (en) Method for detecting blood pyruvate in vitro by using chemiluminescence method
CN102384901A (en) Chemical oxygen demand detection method and device
CN201488947U (en) Detection device of dissolved oxygen in water body
JPH1062349A (en) Optical system with temperature sensor
CN117074345B (en) Detection and calibration method for optical equipment for water quality detection
RU19584U1 (en) DEVICE FOR ANALYSIS OF LIQUID MEDIA BY LUMINESCENT METHOD
RU2313778C1 (en) Device for measuring oxygen content in fluids and gases
CN207472754U (en) A kind of digital display type whiteness instrument
JP3139628B2 (en) Spectrophotometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041124

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20060516

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060922