JP2004170122A - Method for discriminating gamma ray prevalent incidence direction - Google Patents

Method for discriminating gamma ray prevalent incidence direction Download PDF

Info

Publication number
JP2004170122A
JP2004170122A JP2002333597A JP2002333597A JP2004170122A JP 2004170122 A JP2004170122 A JP 2004170122A JP 2002333597 A JP2002333597 A JP 2002333597A JP 2002333597 A JP2002333597 A JP 2002333597A JP 2004170122 A JP2004170122 A JP 2004170122A
Authority
JP
Japan
Prior art keywords
gamma ray
dominant
shield
incident direction
incidence direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002333597A
Other languages
Japanese (ja)
Inventor
Kenzo Fujimoto
憲三 藤元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Radiological Sciences
Original Assignee
National Institute of Radiological Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Radiological Sciences filed Critical National Institute of Radiological Sciences
Priority to JP2002333597A priority Critical patent/JP2004170122A/en
Publication of JP2004170122A publication Critical patent/JP2004170122A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for determining a prevalent incidence direction (incidence direction from a horizontal direction when an apparatus is installed perpendicularly) of gamma rays on a plane. <P>SOLUTION: In the method for discriminating a prevalent incidence direction of gamma rays, a shielding body for allowing angular response of a cylindrical gamma ray detection section to have directional dependence and to rotate around the detection section for changing the position is covered on the detection section, and then is rotated by a fixed angle, thus determining the prevailing incidence direction according to the difference in a plurality of measurement values being measured each time. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ガンマ線卓越入射方向の弁別方法に関し、特にガンマ線の一平面における卓越入射方向(装置を垂直に設置した場合には水平方向からの入射方向)を求める方法に関するものである。
【0002】
【従来の技術】
従来、狭い視野内における入射方向を弁別する方法が開発されている。また、医療分野においては被検者の周囲に多数の検出器を配置し、それらの検出器で放射線の入射方向を弁別し、体内臓器あるいはガン組織の形状把握に用いられている。
【0003】
しかしながら、前記の狭い視野内の入射方向弁別器では、全方向からの情報を入手するためには多数回の測定を繰り返すか、多数個の測定器を用いる必要があり、測定時間または多額の購入資金が必要となる。また、医学分野で使用されている測定器系は外部から入射してくる放射線を対象とすることはできない。
【0004】
一方、これまでの環境放射線の測定器は方向依存性の無い測定器が理想的な測定器と考えられ、測定地点の線量率を正しく求めるものとして開発されてきたこともあり、放射線の入射方向に関する情報を効率よく取得する方法は開発されていない。
【0005】
【発明が解決しようとする課題】
本発明はこのような現状を省みて、より詳細な環境放射線レベルの研究を押し進めるに当たっては放射線の入射方向に関する情報を入手することが大変重要であるとの考えに基づき検討されたものであり、比較的短時間に、容易にガンマ線の入射方向情報を求めることができる方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、外部から入射するガンマ線の卓越した一方向を求めるように、円筒形検出部に特定の形状の遮蔽体を被せ、検出部の角度応答に方向依存性を持たせ、その遮蔽体の位置を変更した複数回の測定により、卓越したガンマ線の入射方向を求めるようにしたものである。本発明によるガンマ線卓越入射方向の弁別方法によれば短時間の測定によりガンマ線の卓越入射方向を求めることができる。
【0007】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0008】
本発明は、外部から入射するガンマ線の卓越した一方向を円筒形のガンマ線検出部を用いて求めるガンマ線卓越入射方向の弁別方法であり、該検出部の角度応答に方向依存性を持たせ、かつ該検出部の周りを回転して位置を変更しうるように構成された遮蔽体を、該検出部に被せ、ついで該遮蔽体を一定角度回転させ、その都度測定した複数回の計測値の差異より卓越入射方向を求めるものである。この回転は手作業で行なっても、遠隔操作によりモータでゆっくり回転させながら自動計測させてもよい。この測定は計数率、または計数率およびエネルギースペクトルの両方について行なうのが好適である。この測定値に基づいて、計数率の差異または特定のエネルギー領域の計数率の差異を用いて卓越入射方向を求めることができる。
【0009】
上記のように、遮蔽体を一定角度回転させてその都度測定する際に、たとえば90度毎に回転させたときには、合計4回の計測回数を行い、それぞれの計数率をA, B, C, Dとし、(A−C)/((B−D), (B−D)/(A−C)を計算して卓越入射方向が求められうる。
【0010】
本発明のガンマ線卓越入射方向の弁別方法において好適に用いられる弁別器は、外部から入射するガンマ線の卓越した一方向を求めるガンマ線卓越入射方向弁別器であり、円筒形のガンマ線検出部、および該検出部に被せて該検出部の角度応答に方向依存性を持たせうる遮蔽体を備え、該遮蔽体は該検出部の周りを回転して位置を変更しうるように構成されてなる。円筒形のガンマ線検出部は、通常の市販NaI(Tl)シンチレータを用いるのが好適である。そのサイズとしては、たとえば1インチ(2.5cm)×1インチ(2.5cm)φのシンチレータを用い、計数率を計測するシステム、または3インチ(7.6cm)×3インチ(7.6cm)φのシンチレータを用い、計数率およびエネルギースペクトルを計測するシステム、を採用したものが使用される。
【0011】
上記の遮蔽体は、該検出部に被せて該検出部の角度応答に方向依存性を持たせうるものであり、該検出部の周りを回転して位置を変更しうるように構成されている。そして、この遮蔽体は、上記の方向依存性を有するために側部の一部に切欠きを有する円筒形であるのが好適である。このような切欠きの形状は、一側方からみて、一回転中に開口面積が最大値から最小値へとなだらかに減少し、続いてなだらかに増加して元の最大値へ復帰する形状が入射方向弁別能力が向上する点で好ましい。あるいは、円筒を斜めに切断してできる形状のような開口面積を構成するように多数の穴を開けた形状、またはこれらに類する形状であってもよい。また、遮蔽体の形状はシンチレータに被せて回転可能な筒形をなすが、厚みの一定な円筒形のものがデータ処理が容易なのでより好ましい。厚みが一定でない筒形のものを採用する場合は、予め既知の放射線源を対象に回転位置による入力値変化のデータ取りをしておき、それを基に実際の測定時に得られるデータを補正する。
【0012】
ここで、本発明に好適に用いられる弁別器の1態様を図面とともにさらに詳細に説明する。図1は、このようなガンマ線卓越入射方向弁別器を示す概略図である。図1において、検出部1はその検出部を遮蔽体2(三角形の切欠きを有する)に覆われた状態を示す。通常の使用条件としてガンマ線卓越入射方向弁別器は図1に示すように検出部支持台4に検出部固定棒5の固定用金具6を用いて、また水平計7と水平調節ネジ8により垂直に固定され、水平方向からの卓越入射方向を求める。検出部1からの出力は線量率のみを求める場合にはレートメータ9に、エネルギースペクトルも求める場合には波高弁別器10に接続されるものとする。
【0013】
検出部は1インチ(2.5cm)×1インチ(2.5cm)φのNaI(Tl)シンチレータや3インチ(7.6cm)×3インチ(7.6cm)φのNaI(Tl)シンチレータを用いるのが一般的であるが、他のサイズの検出部も使用することができる。検出部の設置方向を再現性あるものとするため、方位決定用に磁石11を支持台に取り付け、設置方向の目安とする。
【0014】
図1に示すように検出部の固定棒5は固定金具6で固定され、上部の遮蔽体2を回転したときに移動しないようにした。また、遮蔽体2の回転位置を正確に定めるため、固定位置のマーク3を設けるとともに、固定位置において安定させる。
【0015】
図2は遮蔽体2をはずした場合の検出部1の構造を示す。検出部1の上部には遮蔽体2を回転させるための回転軸12、ボールベアリング受け口13が取り付けられている。また支持台4への固定するための検出部固定棒5も取り付けられている。
【0016】
図3には遮蔽体2の形状と展開図が示してある。展開図は検出部1が3インチ(7.6cm)×3インチ(7.6cm)φの場合を示しており、プラスαと記載されている寸法はシンチレータの被覆材の厚みを考慮し、サイズを若干大きくした部分を示す。14は遮蔽体回転軸12の支持具、そして15は遮蔽体回転軸12の受け口を示す。
【0017】
遮蔽体2の三角形の切欠き部分は被複に包まれた内部のシンチレータの位置に上下関係が丁度重なるようにする。遮蔽体2の形状を三角形ではなく若干曲率を持たせることにより角度弁別分解能が改善されるが、その効果はあまり大きくないため、単純な三角形のままでよい。遮蔽体2の厚みは対象とするガンマ線のエネルギーにより異なるものとなるが、通常の使用では鉛厚で2cmが適当である。標準的なシンチレータとしてアルミニウムで被覆された1インチ(2.5cm)×1インチ(2.5cm)φまたは3インチ(7.6cm)×3インチ(7.6cm)φのNaI(Tl)を使用する。
【0018】
遮蔽体2を一定角度回転させ、その都度計測した複数回の計測結果の差異より卓越入射方向を求める方法を採用しているため、回転角度を小さくし、計測回数を増やせば入射方向をより精度高く求めることができるが、実用性を考え、ここでは90度回転毎に計測する方法を説明する。
【0019】
図4は本発明方法において、弁別器によるガンマ線の各入射方向に対する4回の計測のレスポンスを示す。4回の測定は90度ずつ位相がずれた状態を示している。ここで数百keV以下の低エネルギーガンマ線に対するレスポンスとして、ガンマ線の入射方向から見た遮蔽体2のない部分の断面積を、数MeV以上のエネルギーガンマ線に対するレスポンスとして、ガンマ線の入射方向から見た時の検出部の内部通過可能長さで重みを付けた遮蔽体2のない部分の積分値を用いた。両者の値はともに遮蔽体2がない場合の値に規格化した時の割合として示してある。高エネルギーのレスポンスが若干大きく振幅する傾向を示している。
【0020】
環境で遭遇する他の中間のエネルギーのガンマ線に対するレスポンスは図4に示す二つの曲線の中間の値を取るものと予想される。図4に示すように低エネルギーと高エネルギーの入射方向による依存性に大きな差異がないことはエネルギーによらず入射方向が求められることを示している。
【0021】
図5は4回の計測結果、それぞれをA, B, C, Dとしたときの差の比、即ち(A−C)/(D−B)と(D−B)/(A−C)のガンマ線の入射方向に対する変化を示している。このように2回の計測の差を求めることにより、共通に計測されるバックグラウンドの値をキャンセルすることができる。この場合にも低エネルギーのガンマ線の場合と高エネルギーのガンマ線の場合を示してあるが、両者の差異はあまり大きくなく、入射方向の決定に大きな差は生じないことが示されている。
図4、図5は、円筒形のシンチレータならば検出部のサイズに依存せず同じ結果が得られることを示す。
【0022】
4回の計測結果をもとに比を求め、図5より卓越ガンマ線の入射方向を求める。このとき、比の値がゼロに近くなると角度弁別能力が悪くなるため、比の絶対値が1より小さい場合にはその逆数を取って、逆数の曲線より角度を読みとることとする。また、比の値だけでは2つの入射方向が求められるので、DとBの大きさの差を補助パラメータとして2つの入射方向のいずれかに決定する。
【0023】
上記の場合には4回の計数率を用いたが、スペクトル計測がなされた場合には特定エネルギー領域の計測数の差異を用いて同じ計算により入射角度を決定することもできる。そのようにエネルギースペクトルを用いた場合には卓越入射方向からのガンマ線のエネルギーまたは核種を同定することもできる。
【0024】
本発明のガンマ線卓越入射方向の弁別方法は、もし卓越したガンマ線入射方向が二方向ある場合には本装置ではそれぞれを弁別することはできず、両者の中間の方向を卓越方向と認識する。例えば、汚染源が同時に2方向に存在し、測定地点において同じ計数率を示す場合にはその中間の方向に汚染源が存在すると判定することとなる。このような判定を避けるためには、汚染源が2箇所以上存在すると疑われる場合には、複数の地点で計測し、より計数率が高くなる方向を特定するのが好適である。
【0025】
【発明の効果】
本発明方法によると、放射性核種によって汚染された箇所がより迅速に特定できる。また、紛失した放射線源の探索や高線量箇所の判別に大変有効なものとなる。
【図面の簡単な説明】
【図1】本発明方法に好適に用いられるガンマ線卓越入射方向弁別器の概略図。
【図2】ガンマ線卓越入射方向弁別器の検出部の構造を示す。
【図3】ガンマ線卓越入射方向弁別器の遮蔽体の構造を示す。
【図4】ガンマ線卓越入射方向弁別器を用いて4方向の計測を行ったときのレスポンス(低エネルギーと高エネルギーのレスポンスを示す)。
【図5】ガンマ線卓越入射方向弁別器を用いて卓越入射角度を決定するためのグラフ。
【符号の説明】
1…検出部
2…遮蔽体
3…遮蔽体位置マーカ
4…検出器支持台
5…検出器固定棒
6…固定金具
7…水平計
9…レートメータ
12…遮蔽体回転軸
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for discriminating the predominant incidence direction of gamma rays, and more particularly to a method for determining the predominant incidence direction in one plane of a gamma ray (the incidence direction from the horizontal direction when the apparatus is installed vertically).
[0002]
[Prior art]
Conventionally, a method of discriminating an incident direction in a narrow visual field has been developed. In the medical field, a large number of detectors are arranged around a subject, and these detectors are used to discriminate the incident direction of radiation, and are used for grasping the shape of internal organs or cancer tissues.
[0003]
However, in the incident direction discriminator in the narrow field of view, it is necessary to repeat a large number of measurements or use a large number of measuring instruments in order to obtain information from all directions. Requires funding. Further, a measuring instrument system used in the medical field cannot target externally incident radiation.
[0004]
On the other hand, conventional environmental radiation measuring instruments are considered to be ideal measuring instruments that have no direction dependence, and have been developed to correctly calculate the dose rate at the measurement point. No method has been developed to efficiently obtain information about
[0005]
[Problems to be solved by the invention]
The present invention, omitting such a current situation, in pursuing a more detailed study of the environmental radiation level, it has been studied based on the idea that it is very important to obtain information on the incident direction of radiation, It is an object of the present invention to provide a method capable of easily obtaining the gamma ray incident direction information in a relatively short time.
[0006]
[Means for Solving the Problems]
The present invention covers a cylindrical detection unit with a shield of a specific shape so as to obtain a prominent direction of gamma rays incident from the outside, and gives direction dependence to the angular response of the detection unit, so that the shield An excellent gamma ray incident direction is obtained by multiple measurements at different positions. According to the gamma ray predominant incidence direction discrimination method of the present invention, the gamma ray predominant incidence direction can be determined by short-time measurement.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0008]
The present invention is a method for discriminating a predominant gamma ray incident from the outside by using a cylindrical gamma ray detection unit to determine a predominant gamma ray incidence direction, giving direction dependency to the angular response of the detection unit, and A cover configured to be able to change its position by rotating around the detector is placed on the detector, and then the shield is rotated by a fixed angle, and the difference between a plurality of measured values measured each time This is to obtain a more prominent incident direction. This rotation may be performed manually or automatically measured while being slowly rotated by a motor by remote control. This measurement is preferably performed on the count rate, or on both the count rate and the energy spectrum. Based on this measurement, the dominant incidence direction can be determined using the difference in count rates or the difference in count rates in a particular energy region.
[0009]
As described above, when the shield is rotated at a fixed angle and measurement is performed each time, for example, when the shield is rotated every 90 degrees, a total of four measurement times are performed, and the count rates are A, B, C, and C, respectively. Let D be (D) and (AC) / ((BD), (BD) / (AC) to calculate the dominant incident direction.
[0010]
The discriminator preferably used in the gamma ray dominant incident direction discriminating method of the present invention is a gamma ray dominant incident direction discriminator for finding a dominant direction of gamma rays incident from the outside, a cylindrical gamma ray detecting unit, and the detection unit. A shield that can be placed over the unit to make the angular response of the detection unit have direction dependence, and the shield is configured to rotate around the detection unit to change the position. For the cylindrical gamma ray detection unit, it is preferable to use a normal commercially available NaI (Tl) scintillator. As the size, for example, a system for measuring a counting rate using a scintillator of 1 inch (2.5 cm) × 1 inch (2.5 cm) φ, or 3 inches (7.6 cm) × 3 inches (7.6 cm) A system that uses a φ scintillator and measures a counting rate and an energy spectrum is used.
[0011]
The above-mentioned shield is capable of covering the detection unit and giving direction dependency to the angular response of the detection unit, and is configured to be able to rotate around the detection unit to change the position. . It is preferable that the shield has a cylindrical shape having a cutout in a part of a side portion to have the above-described direction dependency. When viewed from one side, the shape of such a notch is such that the opening area gradually decreases from the maximum value to the minimum value during one rotation, and then gradually increases to return to the original maximum value. This is preferable in that the ability to discriminate the incident direction is improved. Alternatively, a shape in which many holes are formed so as to form an opening area such as a shape formed by diagonally cutting a cylinder, or a shape similar to these may be used. Further, the shape of the shield is a cylindrical shape that can be rotated over the scintillator, but a cylindrical shape having a constant thickness is more preferable because the data processing is easy. When adopting a cylindrical type with an inconsistent thickness, data of the input value change due to the rotational position is obtained in advance for a known radiation source, and the data obtained at the time of actual measurement is corrected based on it. .
[0012]
Here, one embodiment of the discriminator suitably used in the present invention will be described in more detail with reference to the drawings. FIG. 1 is a schematic diagram showing such a gamma ray dominant incident direction discriminator. FIG. 1 shows a state in which the detection unit 1 is covered with a shield 2 (having a triangular notch). As a normal use condition, the gamma-ray dominant incident direction discriminator is vertically attached to the detector support 4 by using the fixing bracket 6 of the detector fixing rod 5 as shown in FIG. Determine the dominant incidence direction from the fixed, horizontal direction. The output from the detector 1 is connected to the rate meter 9 when only the dose rate is obtained, and to the wave height discriminator 10 when the energy spectrum is also obtained.
[0013]
The detector uses a 1 inch (2.5 cm) × 1 inch (2.5 cm) φ NaI (Tl) scintillator or a 3 inch (7.6 cm) × 3 inch (7.6 cm) φ NaI (Tl) scintillator. However, detectors of other sizes can also be used. In order to make the installation direction of the detection unit reproducible, the magnet 11 is mounted on a support for determining the direction, and is used as a guide of the installation direction.
[0014]
As shown in FIG. 1, the fixing bar 5 of the detection unit is fixed by a fixing bracket 6 so as not to move when the upper shield 2 is rotated. Further, in order to accurately determine the rotational position of the shield 2, a mark 3 at a fixed position is provided, and the mark 3 is stabilized at the fixed position.
[0015]
FIG. 2 shows the structure of the detection unit 1 when the shield 2 is removed. A rotating shaft 12 for rotating the shield 2 and a ball bearing socket 13 are attached to the upper part of the detection unit 1. A detection unit fixing rod 5 for fixing to the support 4 is also attached.
[0016]
FIG. 3 shows the shape and development of the shield 2. The development view shows a case where the detection unit 1 is 3 inches (7.6 cm) × 3 inches (7.6 cm) φ, and the dimension described as “plus α” is the size in consideration of the thickness of the coating material of the scintillator. Indicates a slightly larger portion. Reference numeral 14 denotes a support for the shield rotating shaft 12, and reference numeral 15 denotes a socket for the shield rotating shaft 12.
[0017]
The triangular cutout portion of the shield 2 is set so that the vertical relationship exactly overlaps the position of the internal scintillator wrapped in the double layer. The angle discrimination resolution is improved by making the shape of the shield 2 a little curved instead of a triangle, but the effect is not so great, and a simple triangle may be used. The thickness of the shield 2 varies depending on the energy of the target gamma ray, but for normal use, a lead thickness of 2 cm is appropriate. Uses 1 inch (2.5 cm) x 1 inch (2.5 cm) φ or 3 inch (7.6 cm) x 3 inch (7.6 cm) φ NaI (Tl) coated with aluminum as a standard scintillator I do.
[0018]
The shield 2 is rotated by a fixed angle, and the method of obtaining the dominant incident direction from the difference between the results of multiple measurements measured each time is adopted. Therefore, if the rotation angle is reduced and the number of measurements is increased, the incident direction will be more accurate. Although it can be obtained at a high level, considering the practicality, a method of measuring at every 90-degree rotation will be described here.
[0019]
FIG. 4 shows the response of four measurements for each gamma ray incidence direction by the discriminator in the method of the present invention. The four measurements show a state where the phases are shifted by 90 degrees. Here, as a response to a low-energy gamma ray of several hundred keV or less, a cross-sectional area of a portion without the shield 2 as viewed from the gamma ray incident direction is taken as a response to an energy gamma ray of several MeV or more as viewed from the gamma ray incident direction. The integrated value of the portion without the shield 2 weighted by the length that can pass through the inside of the detection unit is used. Both values are shown as ratios when normalized to the values without the shield 2. The high-energy response shows a tendency to oscillate slightly larger.
[0020]
The response to gamma rays of other intermediate energies encountered in the environment is expected to take a value intermediate between the two curves shown in FIG. As shown in FIG. 4, the fact that there is no significant difference in the dependence of the low energy and the high energy on the incident direction indicates that the incident direction can be obtained regardless of the energy.
[0021]
FIG. 5 shows the ratio of the difference when A, B, C, and D are measured, respectively, that is, (AC) / (DB) and (DB) / (AC). Of the gamma ray with respect to the incident direction. By calculating the difference between the two measurements in this way, the commonly measured background value can be canceled. Also in this case, the case of a low energy gamma ray and the case of a high energy gamma ray are shown, but the difference between them is not so large, and it is shown that there is no large difference in the determination of the incident direction.
4 and 5 show that the same result can be obtained with a cylindrical scintillator regardless of the size of the detection unit.
[0022]
The ratio is determined based on the four measurement results, and the dominant gamma ray incident direction is determined from FIG. At this time, if the value of the ratio is close to zero, the angle discrimination ability deteriorates. Therefore, when the absolute value of the ratio is smaller than 1, the reciprocal thereof is taken, and the angle is read from the reciprocal curve. Further, since two incident directions are obtained only by the value of the ratio, the difference between the magnitudes of D and B is determined as one of the two incident directions as an auxiliary parameter.
[0023]
In the above case, four count rates are used. However, when spectrum measurement is performed, the incident angle can be determined by the same calculation using the difference in the number of measurements in the specific energy region. When such an energy spectrum is used, it is possible to identify the energy or nuclide of gamma rays from the dominant incident direction.
[0024]
In the method for distinguishing the gamma ray dominant incident direction according to the present invention, if there are two dominant gamma ray incident directions, the present apparatus cannot discriminate each of them, and recognizes the intermediate direction between the two as the dominant direction. For example, if the contamination source is present in two directions at the same time and shows the same count rate at the measurement point, it is determined that the contamination source exists in the intermediate direction. In order to avoid such a determination, when it is suspected that two or more contamination sources exist, it is preferable to measure at a plurality of points and specify a direction in which the counting rate becomes higher.
[0025]
【The invention's effect】
According to the method of the present invention, a site contaminated with a radionuclide can be identified more quickly. In addition, it is very effective for searching for a lost radiation source and determining a high-dose location.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a gamma ray dominant incidence direction discriminator suitably used in the method of the present invention.
FIG. 2 shows a structure of a detection unit of a gamma ray dominant incident direction discriminator.
FIG. 3 shows the structure of the shield of the gamma ray dominant incidence direction discriminator.
FIG. 4 shows the response when low-energy and high-energy measurements are performed in four directions using a gamma-ray dominant incident direction discriminator.
FIG. 5 is a graph for determining a dominant incidence angle using a gamma ray dominant incidence direction discriminator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Detection part 2 ... Shield 3 ... Shield position marker 4 ... Detector support 5 ... Detector fixing bar 6 ... Fixture 7 ... Level meter 9 ... Rate meter 12 ... Shield rotation axis

Claims (7)

外部から入射するガンマ線の卓越した一方向を円筒形のガンマ線検出部を用いて求めるガンマ線卓越入射方向の弁別方法において、該検出部の角度応答に方向依存性を持たせ、かつ該検出部の周りを回転して位置を変更しうるように構成された遮蔽体を、該検出部に被せ、ついで該遮蔽体を一定角度毎に計測して得たデータの各計測値の差異より卓越入射方向を求めることを特徴とするガンマ線卓越入射方向の弁別方法。A gamma ray dominant incident direction discrimination method for determining a dominant direction of a gamma ray incident from the outside by using a cylindrical gamma ray detecting unit, wherein the angular response of the detecting unit has direction dependency, and A shield configured to be able to change the position by rotating is placed on the detection unit, and then the dominant incident direction is determined from a difference between each measurement value of data obtained by measuring the shield at a certain angle. A method for discriminating the predominant gamma-ray incident direction, which is characterized by being obtained. 測定が計数率を計測する請求項1記載のガンマ線卓越入射方向の弁別方法。The method for discriminating a gamma ray dominant incident direction according to claim 1, wherein the measurement measures a counting rate. 測定が計数率およびエネルギースペクトルを計測する請求項1記載のガンマ線卓越入射方向の弁別方法。The method of claim 1, wherein the measurement measures a counting rate and an energy spectrum. 特定のエネルギー領域の計数率の差異を用いて卓越入射方向を求める請求項3記載のガンマ線卓越入射方向の弁別方法。4. The method according to claim 3, wherein the dominant incidence direction is determined by using a difference in the count rate of a specific energy region. 遮蔽体が、側部の一部に切欠きを有する円筒形である請求項1記載のガンマ線卓越入射方向の弁別方法。2. The method for distinguishing a gamma ray dominant incident direction according to claim 1, wherein the shield has a cylindrical shape having a notch on a part of a side portion. 切欠きが略三角形である請求項5記載のガンマ線卓越入射方向の弁別方法。6. The method according to claim 5, wherein the notch is substantially triangular. 90度毎に回転させて4回の測定回数を行い、それぞれの計数率をA, B, C, Dとし、(A−C)/((B−D), (B−D)/(A−C)を計算して卓越入射方向を求める請求項2もしくは3記載のガンマ線卓越入射方向の弁別方法。The measurement is performed four times by rotating each 90 degrees, and the respective count rates are A, B, C, and D, and (AC) / ((BD), (BD) / (A The method of claim 2 or 3, wherein -C) is calculated to determine the dominant incident direction.
JP2002333597A 2002-11-18 2002-11-18 Method for discriminating gamma ray prevalent incidence direction Pending JP2004170122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002333597A JP2004170122A (en) 2002-11-18 2002-11-18 Method for discriminating gamma ray prevalent incidence direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002333597A JP2004170122A (en) 2002-11-18 2002-11-18 Method for discriminating gamma ray prevalent incidence direction

Publications (1)

Publication Number Publication Date
JP2004170122A true JP2004170122A (en) 2004-06-17

Family

ID=32698260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002333597A Pending JP2004170122A (en) 2002-11-18 2002-11-18 Method for discriminating gamma ray prevalent incidence direction

Country Status (1)

Country Link
JP (1) JP2004170122A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014529074A (en) * 2011-08-30 2014-10-30 ユーシーエル ビジネス パブリック リミテッド カンパニー Radiation detector
WO2015190602A1 (en) * 2014-06-13 2015-12-17 三菱重工メカトロシステムズ株式会社 Gamma-ray measurement device, and gamma-ray measurement method
WO2018100249A1 (en) * 2016-12-02 2018-06-07 Environics Oy Apparatus, radiation detector, system and method for locating a radiation source
US20220003883A1 (en) * 2018-11-23 2022-01-06 Bae Systems Plc Scintillation detector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014529074A (en) * 2011-08-30 2014-10-30 ユーシーエル ビジネス パブリック リミテッド カンパニー Radiation detector
WO2015190602A1 (en) * 2014-06-13 2015-12-17 三菱重工メカトロシステムズ株式会社 Gamma-ray measurement device, and gamma-ray measurement method
JP2016003892A (en) * 2014-06-13 2016-01-12 三菱重工メカトロシステムズ株式会社 Gamma-ray counting device and gamma-ray counting method
WO2018100249A1 (en) * 2016-12-02 2018-06-07 Environics Oy Apparatus, radiation detector, system and method for locating a radiation source
US20220003883A1 (en) * 2018-11-23 2022-01-06 Bae Systems Plc Scintillation detector
US11650338B2 (en) * 2018-11-23 2023-05-16 Bae Systems Plc Scintillation detector

Similar Documents

Publication Publication Date Title
US7734447B2 (en) Radiation measuring device and data processing method
EP1958230B1 (en) X-ray tube and method for determination of focal spot properties
EA001795B1 (en) Directional radiation detector and imager
EP1815484A2 (en) System and method for an interleaved spiral cone shaping collimation
US8299441B2 (en) Directional gamma radiation detector system
Kessler et al. Characterization of detector-systems based on CeBr3, LaBr3, SrI2 and CdZnTe for the use as dosemeters
Coote et al. A rapid method of obsidian characterisation by inelastic scattering of protons
JP2004170122A (en) Method for discriminating gamma ray prevalent incidence direction
WO2012130335A1 (en) Device and method for calibration, linearization and characterization of gamma detectors based on low performance detector materials
JP2004170121A (en) Discriminator for prevalent incidence direction of gamma ray
JP3009358B2 (en) Measuring method of contamination distribution inside radioactively contaminated piping
JPH01227050A (en) Method and apparatus for measuring density and others of object
JP2007518986A (en) Computer tomograph and radiation detector for measuring light scattered elastically in the object
JPS6315767Y2 (en)
Hsu et al. Skin dose measurement with microspec-2TM
JP6478754B2 (en) Radioactivity measuring device
JP2004170125A (en) Radiation measuring instrument
JPH0759762A (en) X-ray ct system
JPH0949809A (en) Instrument and method for moessbauer spectroscopy
US5703370A (en) Method and apparatus for measuring angular differential dose of ionizing radiation
RU40482U1 (en) DEVICE FOR DETECTING EXPLOSIVES AND DRUGS
JP2008268075A (en) Non-destructive inspection method, and non-destructive inspection device
JP3195046B2 (en) Total reflection state detection method and trace element measuring device
Ostinelli et al. 351. X-ray protective clothings policy
Nichols et al. Decay Scheme of Sc 47

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040830

A977 Report on retrieval

Effective date: 20060427

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060509

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

A131 Notification of reasons for refusal

Effective date: 20070206

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20070612

Free format text: JAPANESE INTERMEDIATE CODE: A02