JP2004170120A - Radar installation - Google Patents

Radar installation Download PDF

Info

Publication number
JP2004170120A
JP2004170120A JP2002333545A JP2002333545A JP2004170120A JP 2004170120 A JP2004170120 A JP 2004170120A JP 2002333545 A JP2002333545 A JP 2002333545A JP 2002333545 A JP2002333545 A JP 2002333545A JP 2004170120 A JP2004170120 A JP 2004170120A
Authority
JP
Japan
Prior art keywords
radar
wave
threat
unit
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002333545A
Other languages
Japanese (ja)
Other versions
JP3767542B2 (en
Inventor
Katsunori Kawana
川名克則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002333545A priority Critical patent/JP3767542B2/en
Publication of JP2004170120A publication Critical patent/JP2004170120A/en
Application granted granted Critical
Publication of JP3767542B2 publication Critical patent/JP3767542B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that, when electronic equipment such as a radar apparatus and an interference system are mounted on an air craft or the like, since it is necessary to effectively use limited mounting space and power in the air craft, in addition to target sensing function, an interference function is given to the radar apparatus, thereby using effectively the mounting space of the electronic apparatuses, however, an adverse influence is exerted on the target sensing function of the radar apparatus when transmitted radar wave of the radar apparatus interfers with threat radar wave and a disturbance is generated. <P>SOLUTION: For realizing the radar apparatus, which generates a radio wave interference to decrease the target sensing performance of a radar apparatus of participant and, at the same time, enables target sensing, requires a suitable control of a radar parameter or the like in a radar installation of self air craft. Radio wave specification information of the threat radar wave is detected. From the radio wave specification information, a modulation signal based on radar parameter of a radar wave which generates an interference with the threat radar wave is controlled, thereby making the target sensing function compatible with the interference function. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、航空機等のプラットホームに搭載され、電波を用いて目標である脅威との相対距離及び相対速度などを検出するレーダ装置に関するものである。
【0002】
【従来の技術】
目標検出用のレーダ装置と脅威レーダ波を妨害する妨害装置は、例えば特許文献1記載のESMとECMのように、それぞれ別に装備され、また電波干渉を回避する以外は、使用する電波は独立に制御されていた。
【特許文献1】

Figure 2004170120
【0003】
【発明が解決しようとする課題】
航空機等にレーダ装置や妨害装置などの電子機器を搭載する場合は、機内の限られた搭載スペースや電力を有効利用する必要がある。しかし搭載する電子機器を削減するためにレーダ装置だけを搭載すると検出する目標である脅威のレーダ装置から送信されるレーダ波に対する妨害ができず自機の被探知性が低下するという課題があった。
【0004】
自機のレーダ装置と脅威が搭載するレーダ装置との運用周波数の帯域が重なっている場合、側波帯を含む自機レーダ波(送信)と自機に反射し脅威のレーダ装置に受信される電波との間に干渉が生じ脅威のレーダ装置に対する妨害効果を得ることができる。
【0005】
この発明は脅威のレーダ装置の目標検出性能を低下させるような電波干渉を発生させると同時に目標検出が可能なレーダ装置を実現するために自機のレーダ装置におけるレーダ・パラメータ等を適切に制御することを目的とする。
【0006】
【課題を解決するための手段】
請求項1の発明に係るレーダ装置は、空中線部で受信した到来電波を受信部で受信処理した後に、諸元検出部において電波諸元情報を検出し、その電波諸元情報から目標検出部において目標諸元情報を検出する一方で、効果判定部で脅威レーダ波と干渉を生じるようなレーダ波のレーダ・パラメータを判定し、レーダ波のレーダ・パラメータを効果判定部での判定結果に則した変調信号を制御部で制御することで目標検出機能と妨害機能を装備したものである。
【0007】
請求項2の発明に係るレーダ装置は、諸元検出部で検出された脅威レーダ波の電波諸元情報から脅威レーダ波のレーダ・パラメータから搬送波のスペクトルの諸元を検出し、効果判定部においてレーダ波が空間に放射する電波のスペクトルと脅威レーダ波の搬送波のスペクトルが重なり干渉するように、レーダ波のパルス繰り返し周波数とパルス幅を制御するレーダ・パラメータを判定し、制御部において変調信号を制御して干渉による妨害を実行して目標検出機能と妨害機能を装備した請求項1に記載のものである。
【0008】
請求項3の発明に係るレーダ装置は、諸元検出部で検出された脅威レーダ波の電波諸元情報から運用周波数範囲を検出し、効果判定部においてレーダ波の送信波形と脅威レーダ波の運用周波数範囲が重なり干渉するように、レーダ波に有効なランダム位相変調もしくは周波数変調を判定し、制御部において変調信号を制御して干渉による妨害を実行して目標検出機能と妨害機能を装備した請求項1に記載のものである。
【0009】
請求項4の発明に係るレーダ装置は、諸元検出部で検出された脅威レーダ波の電波諸元情報から運用周波数チャンネルを検出し、効果判定部においてレーダ波の運用周波数チャンネルと脅威レーダ波の運用周波数チャンネルが重なり干渉するように、制御部において周波数を制御する。また脅威レーダ波の運用周波数チャンネルと異なる周波数チャンネルを使用した別のレーダ波を送信して目標検出を行うことにより目標検出機能と妨害機能を装備した請求項1に記載のものである。
【0010】
請求項5の発明に係るレーダ装置は、目標検出部もしくは効果判定部の検出もしくは判定結果の情報を表示する表示部を備えた請求項1乃至4に記載のものである。
【0011】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施の形態1に係るレーダ装置について図1乃至4を用いて説明する。図1は実施の形態1によるレーダ装置の構成図である。図1において1はレーダ波の送信や到来電波の受信を行う空中線部、2はレーダ波を生成するために搬送波にパルス変調を行い生成したレーダ波を増幅する送信部、3は搬送波を励振する励振部、4は空中線部で受信した到来電波の受信処理を行う受信部、5は受信処理した到来電波の電波諸元情報を検出する諸元検出部、6は諸元検出部の検出結果を表示する表示部、7は諸元検出部5で検出された電波諸元情報から目標諸元情報を検出する目標検出部、8は諸元検出部5で検出された電波諸元情報から脅威レーダ波(受信)と干渉する自機レーダ波(送信)の諸元を判定する効果判定部、9はレーダ波(送信)の変調を効果判定部8において判定された自機レーダ波(送信)の諸元により前記送信部で変調を指示する変調信号を制御する制御部である。
【0012】
図2はレーダ装置の送受信タイミングを示した図である。図2において7はレーダ送信波の送信パルスの幅、11は送受信の繰り返しパターンを示すパルス繰り返し間隔である。目標検出を行うために時間的にレーダ波と到来電波の送受信を繰り返して行い目標諸元情報を検出するレーダ装置をパルスドップラ・レーダという。
【0013】
図3はレーダ送信波の周波数情報をスペクトルで示した図である。図3においてレーダ送信波を時間領域から周波数領域へ変換するためには、FFT変換を実行する。12はレーダ装置の送信周波数、13は繰り返し現れる電力の大きなスペクトル(輝線)、14はスペクトルの包絡線に沿って現れる電力低下点、15は電力低下点14の位置と送信周波数12との周波数差である1/パルス幅、16はパルス繰り返し周波数で、パルス繰り返し間隔11の逆数である。
【0014】
図4は自機と脅威のレーダ装置の運用例を示した図である。図4において17は自機、18は脅威、19は脅威18から送信される脅威レーダ波(送信)、20は脅威レーダ波(送信)19が自機17に反射して戻ってきて脅威が受信する脅威レーダ(受信)、21は自機17から送信される自機レーダ波(送信)、22は自機レーダ波(送信)21が脅威18に反射して戻ってきて自機が受信する自機レーダ(受信)である。
【0015】
まず目標検出におけるレーダ装置の動作を説明する。自機17のレーダ装置が励振部3において搬送波を励振し、送信部2で搬送波に対してパルス変調と増幅がなされて空中線部1から図2に示されるようなパルスが自機レーダ波(送信)19として送信される。送信された自機レーダ波(送信)19が検出する目標である脅威18で反射して還ってくる自機レーダ波(受信)20を自機17は受信する。自機レーダ波(受信)20を含む到来電波を受信し受信部4で受信処理を行い、諸元検出部5で電波諸元情報を検出する。検出された電波諸元情報から目標検出部7で自機レーダ波(受信)22由来の目標諸元情報を検出して目標検出結果を表示部6に表示する。また図3よりスペクトルからレーダ波が中心周波数以外にも電力を消費していることが分かる。
【0016】
次にレーダ装置による脅威レーダ波への妨害機能の動作を説明する。自機レーダ波(受信)22や脅威レーダ波(送信)19を含む到来電波は空中線部1で受信され、受信部4で受信処理を行い、諸元検出部5で到来電波から電波諸元情報の検出を行い、効果判定部8で電波諸元情報から脅威レーダ波(受信)20と干渉する自機レーダ波(送信)21の諸元を判定し、判定結果を表示部6に表示する。送信部2で変調をかける変調信号を判定結果から制御部9で制御する。脅威レーダ波の電波諸元情報から変更した変調信号で送信部2で搬送波を変調し、空中線部1から自機レーダ波(送信)21を送信する。自機レーダ波(送信)21が脅威レーダ波(受信)20と干渉して、脅威のレーダ装置の目標検出機能を妨害する。
【0017】
実施の形態2.
この発明の実施の形態2に係るレーダ装置について図5乃至図7を用いて説明する。図5は本発明の実施の形態2によるレーダ装置の構成図である。図5において9aは実施の形態2に係るレーダ装置の変調信号を制御する制御部である。図6は実施の形態2に係るレーダ送信波の周波数情報をスペクトルと脅威レーダ波の搬送波のスペクトルを示したスペクトル図である。また図7は実施の形態2に係るレーダ装置が空間に放射する電波の周波数スペクトルを示したスペクトル図である。
【0018】
図6において23はレーダ装置が空間に放射するレーダ波のスペクトルと重なっている脅威レーダ波の搬送波(1)、24は脅威レーダ波の搬送波(1)23と異なる周波数でレーダ装置が空間に放射するレーダ波のスペクトルと重なっていない脅威レーダ波の搬送波(2)である。図7において25はレーダ装置が空間に放射するレーダ波のスペクトルの頂点を繋いだ包絡線(1)、26は包絡線(1)25と同じパルス来る返し周波数だが異なるパルス幅を持つ包絡線(2)なお、図中、同一符号は同一又は相当部分を示しそれらについての詳細な説明は省略する。
【0019】
目標検出におけるレーダ装置の動作は実施の形態1と同じ動作をする。次に脅威レーダ波への妨害機能の動作を説明する。自機レーダ波(受信)22や脅威レーダ波(送信)19を含む到来電波は空中線部1で受信され、受信部4で受信処理を行い、諸元検出部5で到来電波の電波諸元情報から脅威レーダ波の搬送波とレーダ装置が空間に放射するレーダ波のスペクトルと重なっているか検出を行い、効果判定部8で電波諸元情報から脅威レーダ波(受信)20と干渉する自機レーダ波(送信)21のレーダ・パラメータを判定し制御部9aがパルス変調の変調信号を制御する。
【0020】
図6に示す脅威レーダ波の搬送波(2)24では、レーダ装置が空間に放射するレーダ波のスペクトルと重なっていないために妨害効果が得られないが、制御部9aが変調信号を制御してパルス変調のレーダ・パラメータを変更する。この場合は自機レーダ波(送信)21のパルス繰り返し周波数を変更すればよい。その結果、脅威レーダ波の搬送波(1)のようにレーダ装置が空間に放射するレーダ波のスペクトルと重なり電波的な干渉が生じて脅威レーダ波の目標検出機能に悪影響を与える。
【0021】
次に図7のに示す脅威レーダ波の搬送波(1)23とレーダ装置が空間に放射するレーダ波のスペクトルは重なっているが、スペクトルの頂点を繋いだ包絡線が包絡線(2)26である場合は、脅威レーダ波に対して送信される電力が小さくなるため、脅威レーダ波への妨害効果が小さくなってしまうが、制御部9aが変調信号を制御してパルス変調のレーダ・パラメータを変更する。この場合は自機レーダ波(送信)21のパルス幅を変更すればよい。その結果、包絡線(1)25においては、脅威レーダ波の搬送波(1)23に対して重なっているスペクトルの電力が大きいため、電波的な干渉が生じて脅威レーダ波の目標検出機能に悪影響を与える。
【0022】
実施の形態3.
この発明の実施の形態3に係るレーダ装置について図8乃至図10を用いて説明する。図8は本発明の実施の形態3によるレーダ装置の構成図である。図8において9bは実施の形態2に係るレーダ装置の変調信号を制御する制御部である。図9と図10はレーダ装置の送信波形図である。27は脅威レーダ波の運用周波数範囲、図9において28はレーダ装置の送信波形(1)、29はレーダ装置の送信波形(2)、図10において30はレーダ装置の送信波形(1)、31はレーダ装置の送信波形(2)である。なお、図中、同一符号は同一又は相当部分を示しそれらについての詳細な説明は省略する。
【0023】
目標検出におけるレーダ装置の動作は実施の形態1と同じ動作をする。次に脅威レーダ波への妨害機能の動作を説明する。レーダ波の位相がずれている場合は、スペクトル(輝線)13が立たないので脅威レーダ波の搬送波とスペクトル(輝線)13を重ねて妨害効果を得ることはできない。自機レーダ波(受信)22や脅威レーダ波(送信)19を含む到来電波は空中線部1で受信され、受信部4で受信処理を行い、諸元検出部5で到来電波の電波諸元情報から脅威レーダ波の運用周波数範囲を検出し、効果判定部8で電波諸元情報から脅威レーダ波(受信)20と干渉するために必要なレーダ装置の送信波形を判定し制御部9bがランダム位相変調(図9)若しくは周波数変調(図10)の変調信号を制御する。
【0024】
図9と図10に示すレーダ装置の送信波形(1)28,30が脅威レーダ波の運用周波数範囲27に重なっている部分が限られているため充分な妨害効果が得られないが、制御部9bが変調信号を制御してレーダ装置の送信波形をレーダ装置の送信波形(2)29,31のように脅威レーダ波の運用周波数範囲27に重なるようにすればよい。その結果、電波的な干渉が生じて脅威レーダ波の目標検出機能に悪影響を与える。
【0025】
実施の形態4.
この発明の実施の形態4に係るレーダ装置について図11乃至図14を用いて説明する。図11は本発明の実施の形態4によるレーダ装置の構成図である。図11において9cは実施の形態4に係るレーダ装置の変調信号を制御する制御部である。図12乃至図14は自機17と目標である脅威18のレーダ装置が運用するレーダ波の周波数チャンネル図である。32乃至37は脅威レーダ波(1)〜(6)である。図12において38はレーダ送信波(1)、39はレーダ送信波である。図13において40乃至45はレーダ送信波(1)〜(6)である。図14において46はレーダ送信波(妨害)、47はレーダ送信波(レーダ)である。なお、図中、同一符号は同一又は相当部分を示しそれらについての詳細な説明は省略する。
【0026】
目標検出におけるレーダ装置の動作は実施の形態4と同じ動作をする。次に脅威レーダ波への妨害機能の動作を説明する。図12乃至図14に示すように脅威レーダ波の運用周波数チャンネルが6つある場合において自機レーダ波(受信)22や脅威レーダ波(送信)19を含む到来電波は空中線部1で受信され、受信部4で受信処理を行い、諸元検出部5で到来電波の電波諸元情報から脅威レーダ波の運用周波数チャンネルを検出し、効果判定部8で電波諸元情報から脅威レーダ波(受信)20と干渉するために必要な運用周波数チャンネルを判定し制御部9cがレーダ送信波の周波数を任意に制御する。
【0027】
図12に示すレーダ装置が運用するレーダ波の周波数チャンネルにおいて、脅威レーダ波(3)(運用中)34に対して自機のレーダ送信波39が運用中であれば、それぞれの周波数チャンネルが異なっているため妨害効果が得られないが、制御部9cが自機のレーダ送信波39が脅威レーダ波(3)(運用中)34と運用周波数チャンネルが重なるようにレーダ送信波(1)38に周波数を制御する。
【0028】
また脅威レーダ波が運用周波数チャンネルを変更した場合は、先ほど同じように諸元検出部5から検出した脅威レーダ波の搬送波の諸元に対して効果判定部8において脅威レーダ波の運用周波数チャンネルを検出してレーダ波の運用周波数チャンネルを制御部9cで任意に制御するか、図13に示すように、予め40乃至45の運用周波数チャンネルのレーダ送信波を同時に送信することにより、脅威レーダ波が6つの運用周波数チャンネルのうち何れを選択しても、電波的な干渉により妨害効果を得られる。
【0029】
図12及び図13の場合、電波的な干渉は生じて、レーダ装置の目標検出機能が低下してしまうので、自機レーダ波(受信)22や脅威レーダ波(送信)19を含む到来電波は空中線部1で受信され、受信部4で受信処理を行い、諸元検出部5で到来電波の電波諸元情報から脅威レーダ波の運用周波数チャンネルを検出し、効果判定部8で電波諸元情報から脅威レーダ波(受信)20と干渉するために必要な運用周波数チャンネルを判定し制御部9cがレーダ送信波の周波数を任意に制御する。また脅威のレーダ装置が運用するレーダ波の周波数チャンネルと異なる周波数チャンネルのレーダ送信波(レーダ)48を制御部9cで制御してレーダ送信波(妨害)46と同時に送信することにより脅威レーダ波へ妨害をかけながら目標検出を同時に行うことができるレーダ装置を実現できる。
【0030】
実施の形態5.
この発明の実施の形態5に係るレーダ装置について図1を用いて説明する。レーダ装置の目標諸元情報もしくは効果判定情報を表示部6に表示し、航空機等の乗務員に現在の目標である脅威18の情報や妨害状況を伝える。
【0031】
【発明の効果】
以上のように、この発明によれば、自機に対して目標検出を行うレーダ装置(脅威)にたして目標検出を行いながら妨害を行えるので、妨害装置を別に設ける必要が軽減され航空機等の限られた電子機器搭載スペースや電力を有効利用することができるという効果を奏する。
【0032】
また、他の発明によれば、レーダ波のパルス変調に関するレーダ・パラメータを変更することによりレーダ波の中心周波数近傍で目標検出を行い、中心周波数から離れた部分で脅威レーダ波の妨害を行い、目標検出を行いながら妨害ができるという効果を奏する。
【0033】
また、他の発明によれば、レーダ波の位相がずれている場合、レーダ波をFFT変換により時間領域から周波数領域に変換を行っても、スペクトル(輝線)が立たないが、脅威レーダ波の運用周波数範囲27にわたりレーダ波の送信波形を広く取るように変調することにより、脅威レーダ波を妨害することができるという効果を奏する。
【0034】
また、他の発明によれば、脅威レーダ波は運用する周波数チャンネルを変える場合、つまり周波数ホッピングを行い目標検出をしてくる場合でも、予めに脅威レーダ波の電波諸元情報から周波数ホッピングに合わせてレーダ波の周波数チャンネルを変更するか、脅威レーダ波の運用周波数チャンネル全てに同時にレーダ波を送信することにより妨害をかけつつ、脅威レーダ波の運用周波数チャンネルと異なる周波数チャンネルでレーダ波を送信し目標検出を行うことができるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の実施の形態1によるレーダ装置の構成図である。
【図2】レーダ装置の送受信タイミングを示した図である。
【図3】レーダ送信波の周波数情報をスペクトルで示した図である。
【図4】自機と脅威のレーダ装置の運用例を示した図である。
【図5】本発明の実施の形態2によるレーダ装置の構成図である。
【図6】レーダ送信波の周波数情報をスペクトルと脅威レーダ波の搬送波のスペクトルを示したスペクトル図である。
【図7】レーダ装置が空間に放射する電波の周波数スペクトルを示したスペクトル図である。
【図8】本発明の実施の形態3によるレーダ装置の構成図である。
【図9】レーダ装置の送信波形図である。
【図10】レーダ装置の送信波形図である。
【図11】本発明の実施の形態4によるレーダ装置の構成図である。
【図12】自機と目標である脅威のレーダ装置が運用するレーダ波の周波数チャンネル図である。
【図13】自機と目標である脅威のレーダ装置が運用するレーダ波の周波数チャンネル図である。
【図14】自機と目標である脅威のレーダ装置が運用するレーダ波の周波数チャンネル図である。
【符号の説明】
1…空中線部、 2…送信部、 3励振部、 4…受信部、
5…諸元検出部、 6…表示部、 7…目標検出部、 8…効果判定部、
9…制御部、 9a…制御部、 9b…制御部、 9b…制御部、
10…パルス幅、 11…パルス繰り返し間隔、 12…送信周波数、
13…スペクトル(輝線)、 14…電力低下点、 15…1/パルス幅、
16…パルス繰り返し周波数、 17…自機、 18…脅威、
19…脅威レーダ波(送信)、 20…脅威レーダ波(受信)、
21…自機レーダ波(送信)、 22…自機レーダ波(受信)、
23…脅威レーダ波の搬送波(1)、 24…脅威レーダ波の搬送波(2)、
25…包絡線(1)、 26…包絡線(2)、
27…脅威レーダ波の運用周波数範囲、
28…レーダ装置の送信波形(1)、 29…レーダ装置の送信波形(2)、
30…レーダ装置の送信波形(2)、 31…レーダ装置の送信波形(2)、
32…脅威レーダ波(1)、 33…脅威レーダ波(2)、
34…脅威レーダ波(3)(運用中)、 35…脅威レーダ波(4)、
36…脅威レーダ波(5)、 37…脅威レーダ波(6)、
38…レーダ送信波(1)、 39…レーダ送信波(2)、
40……レーダ送信波(2)、 41…レーダ送信波(2)、
42…レーダ送信波(3)、 43…レーダ送信波(4)、
44…レーダ送信波(5)、 45…レーダ送信波(6)、
46…レーダ送信波(妨害)、 47…レーダ送信波(レーダ)。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a radar device mounted on a platform such as an aircraft and detecting a relative distance and a relative speed to a target threat using radio waves.
[0002]
[Prior art]
The radar device for detecting the target and the jamming device for jamming the threat radar wave are separately provided, for example, ESM and ECM described in Patent Document 1, and the radio waves to be used are independent except for avoiding radio wave interference. Was controlled.
[Patent Document 1]
Figure 2004170120
[0003]
[Problems to be solved by the invention]
When an electronic device such as a radar device or a jamming device is mounted on an aircraft or the like, it is necessary to effectively use a limited mounting space and power in the aircraft. However, there is a problem that a radar wave transmitted from a threat radar device, which is a target to be detected when only a radar device is mounted in order to reduce the number of mounted electronic devices, cannot be interfered with, and the detectability of the own device is reduced. .
[0004]
When the operating frequency bands of the own radar device and the radar device on which the threat is mounted overlap, the own radar wave (transmission) including the sideband is reflected by the own device and received by the threat radar device. Interference with the radio wave is generated, and the interference effect on the radar device of the threat can be obtained.
[0005]
The present invention appropriately controls radar parameters and the like in its own radar apparatus in order to realize a radar apparatus capable of detecting a target while at the same time generating radio interference that degrades the target detection performance of the threat radar apparatus. The purpose is to:
[0006]
[Means for Solving the Problems]
In the radar device according to the first aspect of the present invention, after the incoming radio wave received by the antenna unit is received and processed by the receiving unit, the radio wave specification information is detected by the specification detection unit, and the target detection unit detects the radio wave specification information from the radio wave specification information. While detecting target specification information, the effect determination unit determines radar parameters of the radar wave that cause interference with the threat radar wave, and determines the radar parameters of the radar wave according to the determination result of the effect determination unit. A target detection function and an interference function are provided by controlling the modulation signal by the control unit.
[0007]
The radar device according to the second aspect of the present invention is a radar device, wherein the specifications of the carrier wave are detected from the radar parameters of the threat radar wave from the radio wave specification information of the threat radar wave detected by the specification detection unit, and the effect determination unit The radar parameters for controlling the pulse repetition frequency and pulse width of the radar wave are determined so that the spectrum of the radio wave emitted by the radar wave and the spectrum of the carrier wave of the threat radar wave overlap and interfere with each other. The apparatus according to claim 1, further comprising a target detection function and a disturbance function by controlling and performing disturbance by interference.
[0008]
The radar device according to the third aspect of the present invention detects the operation frequency range from the radio wave specification information of the threat radar wave detected by the specification detection unit, and the effect determination unit operates the transmission waveform of the radar wave and the operation of the threat radar wave. Equipped with a target detection function and interference function by determining the effective random phase modulation or frequency modulation for the radar wave so that the frequency ranges overlap and interfere with each other. Item 1 is described.
[0009]
In the radar device according to the fourth aspect of the invention, the operation frequency channel is detected from the radio wave specification information of the threat radar wave detected by the specification detection unit, and the operation frequency channel of the radar wave and the threat radar wave are detected by the effect determination unit. The control unit controls the frequency so that the operating frequency channels overlap and interfere. The radar according to claim 1, further comprising a target detection function and a jamming function by transmitting another radar wave using a frequency channel different from the operation frequency channel of the threat radar wave to perform target detection.
[0010]
A radar apparatus according to a fifth aspect of the present invention is the radar apparatus according to any one of the first to fourth aspects, further comprising a display unit that displays information of a detection or determination result of the target detection unit or the effect determination unit.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
Hereinafter, a radar apparatus according to Embodiment 1 of the present invention will be described with reference to FIGS. FIG. 1 is a configuration diagram of the radar device according to the first embodiment. In FIG. 1, reference numeral 1 denotes an antenna unit for transmitting radar waves and receiving arriving radio waves; 2, a transmitting unit for pulse-modulating a carrier to generate a radar wave and amplifying the generated radar wave; and 3, a carrier for exciting the carrier wave Excitation unit, 4 is a receiving unit that performs reception processing of incoming radio waves received by the antenna unit, 5 is a specification detection unit that detects radio specification information of the received radio waves that have been received, and 6 is the detection result of the specification detection unit. A display unit for displaying 7 is a target detection unit for detecting target specification information from the radio wave specification information detected by the specification detection unit 5, and 8 is a threat radar based on the radio wave specification information detected by the specification detection unit 5. An effect determination unit that determines the specifications of the own radar wave (transmission) that interferes with the wave (reception); and an effect determination unit that modulates the radar wave (transmission) with the own radar wave (transmission) determined by the effect determination unit A modulation signal for instructing modulation in the transmission unit is controlled according to specifications. A control unit.
[0012]
FIG. 2 is a diagram showing transmission / reception timings of the radar device. In FIG. 2, 7 is the width of the transmission pulse of the radar transmission wave, and 11 is the pulse repetition interval indicating the repetition pattern of transmission and reception. A radar device that repeats transmission and reception of radar waves and incoming radio waves in time to detect targets and detects target specification information is called a pulse Doppler radar.
[0013]
FIG. 3 is a diagram showing frequency information of a radar transmission wave as a spectrum. In FIG. 3, in order to convert the radar transmission wave from the time domain to the frequency domain, an FFT transform is performed. 12 is the transmission frequency of the radar device, 13 is a large spectrum (bright line) of power that repeatedly appears, 14 is a power drop point that appears along the envelope of the spectrum, and 15 is the frequency difference between the position of the power drop point 14 and the transmission frequency 12. 1 / pulse width, and 16 is a pulse repetition frequency, which is the reciprocal of the pulse repetition interval 11.
[0014]
FIG. 4 is a diagram showing an operation example of the radar device of the own device and the threat. In FIG. 4, reference numeral 17 denotes the own device, reference numeral 18 denotes a threat, reference numeral 19 denotes a threat radar wave (transmission) transmitted from the threat 18, and reference numeral 20 denotes a threat radar wave (transmission) 19 which is reflected back to the own device 17 and receives a threat. A radar radar (reception) 21, an own radar wave (transmission) 21 transmitted from the own device 17, and an own radar wave (transmission) 21 reflected from the threat 18 and returned to the own device 17. Machine radar (reception).
[0015]
First, the operation of the radar device in target detection will be described. The radar device of the own device 17 excites the carrier in the excitation unit 3, the carrier is pulse-modulated and amplified in the transmission unit 2, and the pulse as shown in FIG. ) 19 transmitted. The own device 17 receives the own radar wave (reception) 20 reflected and returned by the threat 18 which is the target detected by the transmitted own device radar wave (transmission) 19. An incoming radio wave including the own radar wave (reception) 20 is received, a receiving unit 4 performs a receiving process, and a specification detecting unit 5 detects radio wave specification information. The target detection unit 7 detects target specification information derived from the own radar wave (reception) 22 from the detected radio wave specification information, and displays the target detection result on the display unit 6. In addition, it can be seen from FIG. 3 that the radar wave consumes power in addition to the center frequency.
[0016]
Next, the operation of the function of interfering with the threat radar wave by the radar device will be described. An incoming radio wave including the own radar wave (reception) 22 and the threat radar wave (transmission) 19 is received by the antenna unit 1, subjected to reception processing by the reception unit 4, and received by the specification detection unit 5 from the radio wave specification information based on the arrival radio wave. The effect determination unit 8 determines the specifications of the own radar wave (transmission) 21 that interferes with the threat radar wave (reception) 20 from the radio wave specification information, and displays the determination result on the display unit 6. The control unit 9 controls the modulation signal to be modulated by the transmission unit 2 based on the determination result. The transmitting unit 2 modulates the carrier with the modulation signal changed from the radio wave specification information of the threat radar wave, and transmits the own radar wave (transmission) 21 from the antenna unit 1. The own radar wave (transmission) 21 interferes with the threat radar wave (reception) 20 and interferes with the target detection function of the threat radar apparatus.
[0017]
Embodiment 2 FIG.
Second Embodiment A radar device according to a second embodiment of the present invention will be described with reference to FIGS. FIG. 5 is a configuration diagram of a radar device according to Embodiment 2 of the present invention. In FIG. 5, reference numeral 9a denotes a control unit for controlling the modulation signal of the radar device according to the second embodiment. FIG. 6 is a spectrum diagram showing the spectrum of the frequency information of the radar transmission wave and the spectrum of the carrier wave of the threat radar wave according to the second embodiment. FIG. 7 is a spectrum diagram showing a frequency spectrum of a radio wave radiated into the space by the radar apparatus according to the second embodiment.
[0018]
In FIG. 6, reference numeral 23 denotes a carrier (1) of the threat radar wave overlapping the spectrum of the radar wave radiated to the space by the radar device, and reference numeral 24 denotes a carrier radiated to the space at a frequency different from that of the carrier (1) 23 of the threat radar wave. The carrier wave (2) of the threat radar wave does not overlap with the spectrum of the radar wave. In FIG. 7, reference numeral 25 denotes an envelope (1) connecting the vertexes of the spectrum of the radar wave radiated to the space by the radar device, and 26 denotes an envelope (1) having the same return frequency as the pulse 25 but having a different pulse width. 2) In the drawings, the same reference numerals denote the same or corresponding parts, and a detailed description thereof will be omitted.
[0019]
The operation of the radar device in target detection is the same as that in the first embodiment. Next, the operation of the function of interfering with a threat radar wave will be described. Incoming radio waves including the own radar wave (reception) 22 and the threat radar wave (transmission) 19 are received by the antenna unit 1, subjected to reception processing by the reception unit 4, and received by the specification detection unit 5. Detects whether the carrier wave of the threat radar wave overlaps with the spectrum of the radar wave radiated by the radar device into the space, and the effect determination unit 8 determines from the radio wave specification information the own radar wave that interferes with the threat radar wave (reception) 20 (Transmission) The radar parameter of 21 is determined, and the control unit 9a controls the modulation signal of pulse modulation.
[0020]
With the carrier wave (2) 24 of the threat radar wave shown in FIG. 6, no interference effect can be obtained because the radar device does not overlap with the spectrum of the radar wave radiated into space, but the control unit 9a controls the modulated signal. Change the pulse modulation radar parameters. In this case, the pulse repetition frequency of the own radar wave (transmission) 21 may be changed. As a result, as in the case of the carrier wave (1) of the threat radar wave, the radar device overlaps with the spectrum of the radar wave radiated into the space, and radio interference occurs, which adversely affects the target detection function of the threat radar wave.
[0021]
Next, the carrier wave (1) 23 of the threat radar wave shown in FIG. 7 and the spectrum of the radar wave radiated to the space by the radar device overlap, but the envelope connecting the peaks of the spectrum is the envelope (2) 26. In some cases, the power transmitted to the threat radar wave is reduced, and the interference effect on the threat radar wave is reduced. However, the control unit 9a controls the modulation signal to change the radar parameter of the pulse modulation. change. In this case, the pulse width of the own radar wave (transmission) 21 may be changed. As a result, in the envelope (1) 25, since the power of the spectrum overlapping the carrier (1) 23 of the threat radar wave is large, radio wave interference occurs and adversely affects the target detection function of the threat radar wave. give.
[0022]
Embodiment 3 FIG.
Third Embodiment A radar device according to a third embodiment of the present invention will be described with reference to FIGS. FIG. 8 is a configuration diagram of a radar device according to Embodiment 3 of the present invention. In FIG. 8, reference numeral 9b denotes a control unit for controlling the modulation signal of the radar device according to the second embodiment. 9 and 10 are transmission waveform diagrams of the radar device. Reference numeral 27 denotes the operating frequency range of the threat radar wave, in FIG. 9, 28 is the transmission waveform (1) of the radar device, 29 is the transmission waveform (2) of the radar device, and in FIG. 10, 30 is the transmission waveform (1) of the radar device, 31 Is a transmission waveform (2) of the radar device. In the drawings, the same reference numerals denote the same or corresponding parts, and a detailed description thereof will be omitted.
[0023]
The operation of the radar device in target detection is the same as that in the first embodiment. Next, the operation of the function of interfering with a threat radar wave will be described. If the phase of the radar wave is shifted, the spectrum (bright line) 13 does not stand, so that it is not possible to obtain the interference effect by superimposing the spectrum (bright line) 13 on the carrier of the threat radar wave. Incoming radio waves including the own radar wave (reception) 22 and the threat radar wave (transmission) 19 are received by the antenna unit 1, subjected to reception processing by the reception unit 4, and received by the specification detection unit 5. The operation frequency range of the threat radar wave is detected from the data, the effect determination unit 8 determines the transmission waveform of the radar device necessary to interfere with the threat radar wave (reception) 20 from the radio wave specification information, and the control unit 9b determines the random phase. The modulation signal of the modulation (FIG. 9) or the frequency modulation (FIG. 10) is controlled.
[0024]
Although the transmission waveforms (1) 28 and 30 of the radar apparatus shown in FIGS. 9 and 10 overlap with the operation frequency range 27 of the threat radar wave, a sufficient interference effect cannot be obtained. 9b may control the modulation signal so that the transmission waveform of the radar device overlaps the operating frequency range 27 of the threat radar wave as the transmission waveforms (2) 29 and 31 of the radar device. As a result, radio interference occurs and adversely affects the target detection function of the threat radar wave.
[0025]
Embodiment 4 FIG.
Fourth Embodiment A radar device according to a fourth embodiment of the present invention will be described with reference to FIGS. FIG. 11 is a configuration diagram of a radar apparatus according to Embodiment 4 of the present invention. In FIG. 11, reference numeral 9c denotes a control unit for controlling the modulation signal of the radar device according to the fourth embodiment. FIGS. 12 to 14 are frequency channel diagrams of radar waves operated by the radar device of the own device 17 and the target threat 18. 32 to 37 are threat radar waves (1) to (6). In FIG. 12, 38 is a radar transmission wave (1), and 39 is a radar transmission wave. In FIG. 13, reference numerals 40 to 45 denote radar transmission waves (1) to (6). In FIG. 14, reference numeral 46 denotes a radar transmission wave (interference), and 47 denotes a radar transmission wave (radar). In the drawings, the same reference numerals denote the same or corresponding parts, and a detailed description thereof will be omitted.
[0026]
The operation of the radar device in target detection is the same as that in the fourth embodiment. Next, the operation of the function of interfering with a threat radar wave will be described. As shown in FIGS. 12 to 14, when there are six operating frequency channels for the threat radar wave, incoming radio waves including the own radar wave (reception) 22 and the threat radar wave (transmission) 19 are received by the antenna unit 1, The receiving unit 4 performs reception processing, the specification detecting unit 5 detects the operating frequency channel of the threat radar wave from the radio wave specification information of the arriving radio wave, and the effect determination unit 8 detects the threat radar wave (reception) from the radio wave specification information. The control unit 9c determines the operating frequency channel necessary to interfere with the control signal 20 and arbitrarily controls the frequency of the radar transmission wave.
[0027]
In the frequency channel of the radar wave operated by the radar apparatus shown in FIG. 12, if the own radar transmission wave 39 is in operation with respect to the threat radar wave (3) (in operation) 34, the respective frequency channels are different. Therefore, the control unit 9c transmits the radar transmission wave 39 of its own device to the radar transmission wave (1) 38 so that the operation frequency channel overlaps with the threat radar wave (3) (operating) 34. Control the frequency.
[0028]
Also, when the threat radar wave changes the operating frequency channel, the effect determining unit 8 changes the operating frequency channel of the threat radar wave to the specifications of the carrier of the threat radar wave detected from the specification detecting unit 5 in the same manner as described above. The control unit 9c arbitrarily controls the detected radar wave operation frequency channel or, as shown in FIG. 13, transmits the radar transmission waves of the 40 to 45 operation frequency channels simultaneously in advance, thereby reducing the threat radar wave. Regardless of which of the six operating frequency channels is selected, the interference effect can be obtained by radio wave interference.
[0029]
In the case of FIGS. 12 and 13, radio wave interference occurs and the target detection function of the radar device is deteriorated. Therefore, the incoming radio waves including the own radar wave (reception) 22 and the threat radar wave (transmission) 19 The signal is received by the antenna unit 1, the receiving unit 4 performs reception processing, the specification detecting unit 5 detects the operating frequency channel of the threat radar wave from the radio wave specification information of the arriving radio wave, and the effect determination unit 8 specifies the radio wave specification information. , An operating frequency channel necessary to interfere with the threat radar wave (reception) 20 is determined, and the control unit 9c arbitrarily controls the frequency of the radar transmission wave. In addition, the radar transmission wave (radar) 48 of a frequency channel different from the frequency channel of the radar wave operated by the threat radar device is controlled by the control unit 9c and transmitted simultaneously with the radar transmission wave (jam) 46, thereby forming a threat radar wave. It is possible to realize a radar device that can simultaneously perform target detection while interfering.
[0030]
Embodiment 5 FIG.
A radar apparatus according to Embodiment 5 of the present invention will be described with reference to FIG. The target specification information or the effect determination information of the radar device is displayed on the display unit 6, and the crew such as an aircraft is informed of the information of the threat 18 as the current target and the obstruction situation.
[0031]
【The invention's effect】
As described above, according to the present invention, a radar device (threat) that performs target detection on its own device can perform disturbance while performing target detection, so that the need to separately provide a disturbance device is reduced, and an aircraft or the like is reduced. In this case, there is an effect that the limited space for mounting electronic devices and the limited power can be effectively used.
[0032]
According to another aspect of the present invention, a target is detected near the center frequency of the radar wave by changing radar parameters related to pulse modulation of the radar wave, and a threat radar wave is disturbed at a portion away from the center frequency, There is an effect that disturbance can be performed while performing target detection.
[0033]
Further, according to another invention, when the phase of the radar wave is shifted, the spectrum (bright line) does not stand even if the radar wave is converted from the time domain to the frequency domain by the FFT transform, but the threat radar wave has By modulating the transmission waveform of the radar wave so as to be wide over the operation frequency range 27, an effect is obtained that the threat radar wave can be obstructed.
[0034]
According to another invention, even when the operating frequency channel of the threat radar wave is changed, that is, when the target detection is performed by performing the frequency hopping, the threat radar wave is previously adjusted to the frequency hopping based on the radio wave characteristic information of the threat radar wave. The radar wave is transmitted on a frequency channel different from the threat radar wave operation frequency channel while interfering by changing the radar wave frequency channel or simultaneously transmitting the radar wave to all threat radar wave operation frequency channels. There is an effect that target detection can be performed.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a radar device according to a first embodiment of the present invention.
FIG. 2 is a diagram showing transmission / reception timings of a radar device.
FIG. 3 is a diagram showing frequency information of a radar transmission wave in a spectrum.
FIG. 4 is a diagram showing an operation example of the radar device of the own device and the threat device;
FIG. 5 is a configuration diagram of a radar device according to a second embodiment of the present invention.
FIG. 6 is a spectrum diagram showing a spectrum of frequency information of a radar transmission wave and a spectrum of a carrier of a threat radar wave.
FIG. 7 is a spectrum diagram showing a frequency spectrum of a radio wave radiated into a space by the radar device.
FIG. 8 is a configuration diagram of a radar device according to a third embodiment of the present invention.
FIG. 9 is a transmission waveform diagram of the radar device.
FIG. 10 is a transmission waveform diagram of the radar device.
FIG. 11 is a configuration diagram of a radar device according to a fourth embodiment of the present invention.
FIG. 12 is a frequency channel diagram of a radar wave operated by the own device and a target radar device of a threat;
FIG. 13 is a frequency channel diagram of radar waves operated by the own device and the target radar device of the threat.
FIG. 14 is a frequency channel diagram of radar waves operated by the own device and the target threat radar device.
[Explanation of symbols]
1 ... antenna section, 2 ... transmitting section, 3excitation section, 4 ... receiving section,
5: specification detection unit, 6: display unit, 7: target detection unit, 8: effect determination unit,
9: control unit, 9a: control unit, 9b: control unit, 9b: control unit,
10: pulse width, 11: pulse repetition interval, 12: transmission frequency,
13: spectrum (bright line), 14: power drop point, 15: 1 / pulse width,
16: pulse repetition frequency, 17: own machine, 18: threat,
19: threat radar wave (transmission), 20: threat radar wave (reception),
21: own radar wave (transmission), 22: own radar wave (reception),
23: carrier of threat radar wave (1), 24: carrier of threat radar wave (2),
25: Envelope (1), 26: Envelope (2),
27: Operation frequency range of threat radar wave,
28: transmission waveform of the radar device (1) 29: transmission waveform of the radar device (2)
30: transmission waveform (2) of the radar device 31: transmission waveform (2) of the radar device
32: threat radar wave (1), 33: threat radar wave (2),
34: Threat radar wave (3) (in operation) 35: Threat radar wave (4)
36: Threat radar wave (5) 37: Threat radar wave (6)
38: radar transmission wave (1), 39: radar transmission wave (2),
40: radar transmission wave (2) 41: radar transmission wave (2)
42: radar transmission wave (3) 43: radar transmission wave (4)
44: radar transmission wave (5), 45: radar transmission wave (6),
46: radar transmission wave (interference), 47: radar transmission wave (radar).

Claims (5)

搬送波を励振する励振部と、この励振部から励振された前記搬送波を変調信号によりパルス変調しレーダ波を生成する送信部と、到来電波の受信を行う空中線部と、この空中線部により受信された前記到来電波を受信処理する受信部と、この受信部で受信処理された前記到来電波の電波諸元を検出する諸元検出部と、この諸元検出部により検出された前記電波諸元から目標諸元情報を検出する目標検出部と、前記諸元検出部により検出された前記電波諸元から脅威諸元情報を検出し脅威レーダ波と干渉する前記レーダ波の諸元を判定する効果判定部と、この効果判定部により判定された前記脅威レーダ波と干渉する前記レーダ波の諸元となるように前記励振部で励振された前記搬送波を変調する前記送信部の前記変調信号を制御する制御部とを備えたことを特徴とするレーダ装置。An excitation unit that excites a carrier, a transmission unit that generates a radar wave by pulse-modulating the carrier excited from the excitation unit with a modulation signal, an antenna unit that receives an incoming radio wave, and a signal that is received by the antenna unit A receiving section for receiving and processing the incoming radio wave, a specification detecting section for detecting the radio wave specification of the incoming radio wave received and processed by the receiving section, and a target from the radio wave specification detected by the specification detecting section. A target detection unit that detects specification information, and an effect determination unit that detects threat specification information from the radio wave specifications detected by the specification detection unit and determines specifications of the radar wave that interferes with a threat radar wave. And control for controlling the modulation signal of the transmission unit that modulates the carrier wave excited by the excitation unit so as to become data of the radar wave that interferes with the threat radar wave determined by the effect determination unit. Department and Radar apparatus characterized by comprising. 前記制御手段は、前記変調信号のパルス繰り返し周波数とパルス幅を制御することを特徴とする請求項1に記載のレーダ装置。The radar device according to claim 1, wherein the control unit controls a pulse repetition frequency and a pulse width of the modulation signal. 前記制御手段は、前記変調信号の運用周波数範囲を制御することを特徴とする請求項1に記載のレーダ装置。The radar device according to claim 1, wherein the control unit controls an operating frequency range of the modulated signal. 前記制御手段は、前記レーダ波の運用周波数チャンネルの選択を前記制御部において制御することを特徴とする請求項1に記載のレーダ装置。The radar device according to claim 1, wherein the control unit controls selection of an operation frequency channel of the radar wave in the control unit. 前記目標検出部もしくは前記効果判定部により検出された前記電波諸元を表示する表示部を備えた請求項1に記載のレーダ装置。The radar device according to claim 1, further comprising a display unit that displays the radio wave data detected by the target detection unit or the effect determination unit.
JP2002333545A 2002-11-18 2002-11-18 Radar equipment Expired - Fee Related JP3767542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002333545A JP3767542B2 (en) 2002-11-18 2002-11-18 Radar equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002333545A JP3767542B2 (en) 2002-11-18 2002-11-18 Radar equipment

Publications (2)

Publication Number Publication Date
JP2004170120A true JP2004170120A (en) 2004-06-17
JP3767542B2 JP3767542B2 (en) 2006-04-19

Family

ID=32698229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002333545A Expired - Fee Related JP3767542B2 (en) 2002-11-18 2002-11-18 Radar equipment

Country Status (1)

Country Link
JP (1) JP3767542B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322847A (en) * 2005-05-19 2006-11-30 Mitsubishi Electric Corp Transmitter/receiver and transmitting/receiving method
JP2013195156A (en) * 2012-03-16 2013-09-30 Nec Corp Rader system and radar detection method
JP2016136116A (en) * 2015-01-23 2016-07-28 株式会社東芝 Radar device and radar signal processing method therefor
KR20170045310A (en) * 2014-08-28 2017-04-26 구글 인코포레이티드 Methods and systems for vehicle radar coordinaton and interference reduction

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322847A (en) * 2005-05-19 2006-11-30 Mitsubishi Electric Corp Transmitter/receiver and transmitting/receiving method
JP4687239B2 (en) * 2005-05-19 2011-05-25 三菱電機株式会社 Transmission / reception apparatus and transmission / reception method
JP2013195156A (en) * 2012-03-16 2013-09-30 Nec Corp Rader system and radar detection method
KR20170045310A (en) * 2014-08-28 2017-04-26 구글 인코포레이티드 Methods and systems for vehicle radar coordinaton and interference reduction
KR101888664B1 (en) 2014-08-28 2018-08-16 웨이모 엘엘씨 Methods and systems for vehicle radar coordinaton and interference reduction
US10698082B2 (en) 2014-08-28 2020-06-30 Waymo Llc Methods and systems for vehicle radar coordination and interference reduction
US11237245B2 (en) 2014-08-28 2022-02-01 Waymo Llc Methods and systems for vehicle radar coordination and interference reduction
JP2016136116A (en) * 2015-01-23 2016-07-28 株式会社東芝 Radar device and radar signal processing method therefor

Also Published As

Publication number Publication date
JP3767542B2 (en) 2006-04-19

Similar Documents

Publication Publication Date Title
JP5226185B2 (en) Detecting and ranging device
US20150378005A1 (en) Radar apparatus and method of reducing interference
JPWO2007043475A1 (en) Adjustment method between radar device and radar site
US10754019B2 (en) Pulse radar device
KR101533066B1 (en) Radar apparatus and power control method thereof
JP2004170120A (en) Radar installation
JP4762739B2 (en) Transceiver
JP3565812B2 (en) Automotive radar equipment
JP6385278B2 (en) Radar apparatus and radar image display method
JPWO2011142211A1 (en) Communication sensor device
JP4899352B2 (en) In-vehicle radar system
JP4378265B2 (en) FM-CW radar equipment
JP4916678B2 (en) Radar equipment
JP3303862B2 (en) Pulse compression radar device
US20020163462A1 (en) Radar device for detecting response signal
JPH0968571A (en) Search radar
JP5483836B2 (en) Radar information transmission system and radar apparatus therefor
JP2001264420A (en) Electronic support measures receiving system
JP2703790B2 (en) Distance measuring device
KR102499402B1 (en) Chirp noise generation device and method for compression pulse signal
JP2002174677A (en) Radar apparatus
JP2011027587A (en) Radar device
JP2009198272A (en) Radar system
JP2001159675A (en) Radar device
JP6703798B2 (en) Radar device and radar image generation method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Effective date: 20040712

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A977 Report on retrieval

Effective date: 20050706

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050913

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Effective date: 20060123

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees