JP2004169619A - Ignition coil for internal combustion engine - Google Patents

Ignition coil for internal combustion engine Download PDF

Info

Publication number
JP2004169619A
JP2004169619A JP2002336249A JP2002336249A JP2004169619A JP 2004169619 A JP2004169619 A JP 2004169619A JP 2002336249 A JP2002336249 A JP 2002336249A JP 2002336249 A JP2002336249 A JP 2002336249A JP 2004169619 A JP2004169619 A JP 2004169619A
Authority
JP
Japan
Prior art keywords
iron core
insulating resin
combustion engine
internal combustion
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002336249A
Other languages
Japanese (ja)
Inventor
Mitsuru Tokioka
充 時岡
Masaru Ujigawa
勝 宇治川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hanshin Electric Co Ltd
Original Assignee
Hanshin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hanshin Electric Co Ltd filed Critical Hanshin Electric Co Ltd
Priority to JP2002336249A priority Critical patent/JP2004169619A/en
Publication of JP2004169619A publication Critical patent/JP2004169619A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ignition coil for an internal combustion engine capable of preventing a crack due to thermal stress by flaking a boundary between an iron core with a small coefficient of thermal expansion and insulating resin filled thereat. <P>SOLUTION: The ignition coil for an internal combustion engine is equipped with a cylindrical primary coil bobbin and secondary coil bobbin around which a primary coil and a secondary coil are respectively wound and which are concentrically arranged, an iron core constituting a magnetic circuit by passing through a cylindrical inner periphery of the primary coil bobbin and an outer periphery of the secondary coil bobbin, and an insulation case for accommodating the bobbins and the iron core. The iron core, coil and the like are fixed by the insulating resin filled in the insulation case. An exfoliating material is applied between the insulating resin and the iron core to flake the insulating resin and the iron core. By so doing, the ignition coil can prevent the occurrence of the inside stress generated between the iron core with a small coefficient of thermal expansion and the filled insulating resin with a large coefficient of thermal expansion. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、自動車等の内燃機関の点火プラグに高電圧を供給し、火花放電を行うための内燃機関用点火コイルに関するものである。
【0002】
【従来の技術】
一般に、内燃機関用点火コイルは、珪素鋼板を所定の形状に打ち抜き、積層して鉄心を閉磁路を形成するべく配設し、一次コイルに流した電流によって鉄心に発生する磁束変化により、二次コイルに高圧電流を発生するものである。図6は、従来の内燃機関用点火コイルの一例を示す縦断面図である。絶縁ケース1の内部に収納されたE型鉄心2と、このE型鉄心2と接続されて閉磁路を形成するI型鉄心3を有している。E型鉄心2及びI型鉄心3は、珪素鋼板を複数積層して構成されており、全体で閉磁路を成す磁気回路を構成する。また、高圧電流を発生させるための一次コイル6と二次コイル7の巻き線比は、例えば、1:80〜120程度に設定されている。
【0003】
また、磁束の変化を大きくするために、閉磁路型を形成する磁気回路では、鉄心の磁束飽和をなくすべく、エアギャップ4(通常約0.5〜1.5mm程度)を設けたり、或いは永久磁石5を使用状態と反対方向に磁束が流れるように装着して、磁束変化を大きくする等し二次コイルに高圧電流を発生させている。
【0004】
エアギャップ4の磁気抵抗は、ギャップ長さ/断面積に比例し、同じエアギャップ部分の抵抗値であれば断面積が大きい方がギャップ長さを大きくすることができ、ギャップ長さの製造バラツキ等に対して許容範囲が大きくなる。また、永久磁石5を装着する場合、使用する鉄心の磁気飽和点まで逆方向に磁束を流した方が、磁束変化を大きくすることができる。
また、絶縁ケース1内に収納されたE型鉄心2、I型鉄心3及び一次、二次コイル6、7は、絶縁樹脂8を充填することによって固定される。
【0005】
【発明が解決しようとする課題】
しかし、以上のように構成された従来の内燃機関用点火コイルにおいては、熱膨張係数の大きい絶縁樹脂部と熱膨張係数の小さい鉄心部が密着状態で絶縁ケース内に封入されていたために、コイルの内部温度が上昇した場合に絶縁樹脂部と鉄心部との間に内部応力が発生し、絶縁樹脂部にクラックが生じる原因ともなっていた。
【0006】
本発明は、上記実情に鑑み提案されたもので、絶縁樹脂部と鉄心部との間を剥離させ、絶縁樹脂部にクラックが発生するのを防止することのできる内燃機関用点火コイルを提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載の発明は、一次コイル及び二次コイルをそれぞれ巻回し、同心状に配設した筒状の一次コイルボビン及び二次コイルボビンと、その一次コイルボビンの筒内周及び二次コイルボビンの外周を通って磁路を成す鉄心部と、これらを収納する絶縁ケースとを備え、前記絶縁ケースの内部に充填した絶縁樹脂によって鉄心部とコイル等を固定する内燃機関用点火コイルであって、前記絶縁樹脂と前記鉄心部との間に剥離材を塗布し、絶縁樹脂と鉄心部を剥離させたことを特徴とする。
【0008】
また、請求項2に記載の発明は、請求項1の発明に更に限定を加えて、前記剥離材は、前記鉄心部の全外周に塗布されることを特徴とする。
【0009】
また、請求項3に記載の発明は、請求項1の発明に更に限定を加えて、前記剥離材は、シリコン系樹脂であることを特徴とする。
【0010】
【発明の実施の形態】
以下、一実施の形態を示す図面に基づいて本発明を詳細に説明する。図1は、本発明に係る内燃機関用点火コイルの一例を示す縦断面図、図2は本発明の内燃機関用点火コイルの平面図である。ここで、内燃機関用点火コイル10は、一次コイル11及び二次コイル12をそれぞれ巻回し、同心状に配設した筒状の一次コイルボビン11a及び二次コイルボビン12aと、その一次コイルボビンの筒内周及び二次コイルボビンの外周を通って磁路を成す鉄心部13と、これらを収納する絶縁ケース14とを備えており、絶縁ケース14の内部に充填した絶縁樹脂15によって鉄心部13とコイル等を固定すると共に、前記絶縁樹脂15と前記鉄心部13との間に剥離材16を介在させている。
【0011】
本実施の形態において、図2,3に示すように鉄心部13はE型鉄心13aとI型鉄心13bを組み合わせることにより構成されている。
【0012】
剥離材16は、適度な弾性及び絶縁性を有する合成樹脂を使用することができる。例えば、シリコン系樹脂を使用することができる。図3〜図5に示すように鉄心部13の外周に所定の厚さに剥離材16を塗布する。その後、一次コイル11、二次コイル12と共に絶縁ケース14内に収納し、絶縁樹脂15を充填する。この際、絶縁樹脂15と剥離材16とが密着しない樹脂、例えばシリコン系樹脂であるので、鉄心部13と絶縁樹脂15とが剥離し、密着することがない。
【0013】
以上のように構成した内燃機関用点火コイルにおいて、内部温度が上昇した場合、鉄心部13及び絶縁樹脂15が共に膨張する。しかし、鉄心部13と絶縁樹脂15は、剥離材16を介して配設されており、直接密着していない。このため、熱膨張係数の大きい絶縁樹脂15が自由に膨張することができる。鉄心部13と絶縁樹脂15の熱膨張係数が異なっていても、両者が密着していないので、熱応力が生じることがない。なお、絶縁樹脂15の硬化時の最高温度が、140℃であり、この時に応力フリー状態になるためこの最高温度を超えない限り、熱膨張による鉄心部13と絶縁樹脂15との間に応力の発生がない。
【0014】
また、内部温度が下降した場合、鉄心部13及び絶縁樹脂15が共に収縮する。この時、鉄心部13と絶縁樹脂15とは密着していないので、両者は単独で収縮することができ、境界面で引張り応力が生じることがない。したがって、膨張収縮が繰り返されても、鉄心部13と絶縁樹脂15との間に熱応力が生じることがなく、絶縁樹脂15にクラックが発生する虞もない。
【0015】
なお、以上の実施の形態では、剥離材16としてシリコン系樹脂を使用する例について説明したが、他の合成樹脂であっても同様の効果を得ることができる。
【0016】
【発明の効果】
この発明は上記した構成からなるので、以下に説明するような効果を奏することができる。
【0017】
請求項1に記載の発明では、一次コイル及び二次コイルをそれぞれ巻回し、同心状に配設した筒状の一次コイルボビン及び二次コイルボビンと、その一次コイルボビンの筒内周及び二次コイルボビンの外周を通って磁路を成す鉄心部と、これらを収納する絶縁ケースとを備え、前記絶縁ケースの内部に充填した絶縁樹脂によって鉄心部とコイル等を固定する内燃機関用点火コイルであって、前記絶縁樹脂と前記鉄心部との間に剥離材を塗布し、絶縁樹脂と鉄心部を剥離させたので、熱膨張係数の小さい鉄心と周囲に充填された熱膨張係数の大きい絶縁樹脂との間に生じる内部応力の発生を未然に防止することができる。
【0018】
また、請求項2に記載の発明では、上記した請求項1に記載の発明の構成に加えて、前記剥離材は、前記鉄心部の全外周に塗布されるので、あらゆる方向に於ける鉄心部13と絶縁樹脂15との間の熱膨張係数の差による伸びを吸収して、内部応力によるクラックの発生を防止することができる。
【0019】
また、請求項3に記載の発明では、上記した請求項1に記載の発明の構成に加えて、前記剥離材は、シリコン系樹脂であるので、鉄心部と絶縁樹脂を確実に剥離させ、内部応力を開放することができる。したがって、内部応力によるクラックの発生を防止することができる。
【図面の簡単な説明】
【図1】図1は、本発明に係る内燃機関用点火コイルの一例を示す縦断面図である。
【図2】図2は、同内燃機関用点火コイルの平面図である。
【図3】図3は、同内燃機関用点火コイルに使用される鉄心の組立状態を示す平面図である。
【図4】図4は、同鉄心の側面図である。
【図5】図5は、同鉄心の正面図である。
【図6】図6は、従来の内燃機関用点火コイルの一例を示す縦断面図である。
【符号の説明】
10 内燃機関用点火コイル
11 一次コイル
11a 一次コイルボビン
12 二次コイル
12a 二次コイルボビン
13 鉄心部
14 絶縁ケース
15 絶縁樹脂
16 剥離材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ignition coil for an internal combustion engine for supplying a high voltage to an ignition plug of an internal combustion engine such as an automobile and performing spark discharge.
[0002]
[Prior art]
In general, an ignition coil for an internal combustion engine is formed by punching a silicon steel sheet into a predetermined shape, laminating and forming an iron core to form a closed magnetic circuit, and secondary current is generated by a change in magnetic flux generated in the iron core by a current flowing through the primary coil. A high-voltage current is generated in the coil. FIG. 6 is a longitudinal sectional view showing an example of a conventional ignition coil for an internal combustion engine. It has an E-shaped iron core 2 housed inside an insulating case 1 and an I-shaped iron core 3 connected to the E-shaped iron core 2 to form a closed magnetic circuit. The E-shaped iron core 2 and the I-shaped iron core 3 are formed by laminating a plurality of silicon steel plates, and constitute a magnetic circuit forming a closed magnetic circuit as a whole. The winding ratio between the primary coil 6 and the secondary coil 7 for generating a high-voltage current is set to, for example, about 1:80 to 120.
[0003]
Also, in order to increase the change in magnetic flux, in a magnetic circuit forming a closed magnetic circuit type, an air gap 4 (generally about 0.5 to 1.5 mm) is provided or permanent in order to eliminate magnetic flux saturation of the iron core. A high voltage current is generated in the secondary coil by mounting the magnet 5 so that a magnetic flux flows in a direction opposite to the use state and increasing a change in the magnetic flux.
[0004]
The magnetic resistance of the air gap 4 is proportional to the gap length / cross-sectional area. If the resistance value of the air gap portion is the same, the larger the cross-sectional area, the larger the gap length, and the manufacturing variation of the gap length. And the like, the allowable range becomes larger. In addition, when the permanent magnet 5 is mounted, it is possible to increase the change in the magnetic flux by flowing the magnetic flux in the opposite direction to the magnetic saturation point of the iron core used.
Further, the E-shaped iron core 2, the I-shaped iron core 3, and the primary and secondary coils 6 and 7 housed in the insulating case 1 are fixed by filling the insulating resin 8.
[0005]
[Problems to be solved by the invention]
However, in the conventional ignition coil for an internal combustion engine configured as described above, the insulating resin part having a large thermal expansion coefficient and the iron core part having a small thermal expansion coefficient are sealed in an insulating case in a tight contact state. When the internal temperature rises, internal stress is generated between the insulating resin portion and the iron core portion, which also causes cracks in the insulating resin portion.
[0006]
The present invention has been proposed in view of the above-mentioned circumstances, and provides an ignition coil for an internal combustion engine that can separate an insulating resin portion and an iron core portion and prevent a crack from being generated in the insulating resin portion. The purpose is to:
[0007]
[Means for Solving the Problems]
In order to achieve the above object, an invention according to claim 1 includes a cylindrical primary coil bobbin and a secondary coil bobbin wound around a primary coil and a secondary coil, and disposed concentrically, and a cylinder of the primary coil bobbin. An internal combustion engine including an iron core part forming a magnetic path passing through the inner circumference and the outer circumference of the secondary coil bobbin, and an insulating case for housing the core part, and fixing the iron core part, the coil, and the like with an insulating resin filled in the insulating case. An ignition coil for a vehicle, wherein a separating material is applied between the insulating resin and the iron core to separate the insulating resin and the iron core.
[0008]
According to a second aspect of the present invention, in addition to the first aspect, the release material is applied to the entire outer periphery of the iron core.
[0009]
According to a third aspect of the present invention, in addition to the first aspect, the release material is a silicon-based resin.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings showing one embodiment. FIG. 1 is a longitudinal sectional view showing an example of an ignition coil for an internal combustion engine according to the present invention, and FIG. 2 is a plan view of the ignition coil for an internal combustion engine of the present invention. Here, the ignition coil 10 for an internal combustion engine winds a primary coil 11 and a secondary coil 12, respectively, and concentrically arranges a cylindrical primary coil bobbin 11a and a secondary coil bobbin 12a, and a cylindrical inner periphery of the primary coil bobbin. An iron core 13 forming a magnetic path through the outer periphery of the secondary coil bobbin, and an insulating case 14 for accommodating them. At the same time, a release material 16 is interposed between the insulating resin 15 and the iron core 13.
[0011]
In the present embodiment, as shown in FIGS. 2 and 3, the iron core portion 13 is configured by combining an E-type iron core 13a and an I-type iron core 13b.
[0012]
As the release material 16, a synthetic resin having appropriate elasticity and insulating properties can be used. For example, a silicon-based resin can be used. As shown in FIGS. 3 to 5, a release material 16 is applied to the outer periphery of the iron core 13 to a predetermined thickness. Then, it is housed in the insulating case 14 together with the primary coil 11 and the secondary coil 12, and is filled with the insulating resin 15. At this time, since the insulating resin 15 and the release material 16 do not adhere to each other, for example, a silicon-based resin, the core 13 and the insulating resin 15 do not separate and adhere to each other.
[0013]
In the internal combustion engine ignition coil configured as described above, when the internal temperature increases, both the iron core 13 and the insulating resin 15 expand. However, the iron core 13 and the insulating resin 15 are disposed via the release material 16 and do not directly adhere to each other. Therefore, the insulating resin 15 having a large thermal expansion coefficient can freely expand. Even if the thermal expansion coefficients of the core 13 and the insulating resin 15 are different, no thermal stress is generated because they are not in close contact. The maximum temperature of the insulating resin 15 at the time of curing is 140 ° C., and at this time, the state becomes a stress-free state. Unless this maximum temperature is exceeded, the stress between the iron core 13 and the insulating resin 15 due to thermal expansion is reduced. There is no occurrence.
[0014]
When the internal temperature decreases, both the iron core 13 and the insulating resin 15 shrink. At this time, since the core portion 13 and the insulating resin 15 are not in close contact with each other, they can contract independently, and no tensile stress is generated at the boundary surface. Therefore, even if the expansion and contraction are repeated, no thermal stress is generated between the iron core 13 and the insulating resin 15, and there is no possibility that the insulating resin 15 is cracked.
[0015]
In the above embodiment, an example in which a silicon-based resin is used as the release material 16 has been described. However, similar effects can be obtained with another synthetic resin.
[0016]
【The invention's effect】
Since the present invention has the above-described configuration, the following effects can be obtained.
[0017]
According to the first aspect of the present invention, the primary coil and the secondary coil are respectively wound, and the cylindrical primary coil bobbin and the secondary coil bobbin arranged concentrically, and the inner circumference of the primary coil bobbin and the outer circumference of the secondary coil bobbin An ignition core for an internal combustion engine, comprising: Since a release material was applied between the insulating resin and the iron core portion, and the insulating resin and the iron core portion were peeled off, between the iron core having a small coefficient of thermal expansion and the insulating resin having a large coefficient of thermal expansion filled around. The generation of the generated internal stress can be prevented beforehand.
[0018]
According to the second aspect of the present invention, in addition to the configuration of the first aspect of the present invention, since the release material is applied to the entire outer periphery of the iron core, the iron core in all directions is provided. It is possible to absorb the elongation due to the difference in the thermal expansion coefficient between the insulating resin 13 and the insulating resin 15 and prevent the occurrence of cracks due to internal stress.
[0019]
Further, in the invention according to claim 3, in addition to the configuration of the invention described in claim 1, since the release material is a silicon-based resin, the core portion and the insulating resin are reliably separated from each other, and The stress can be released. Therefore, generation of cracks due to internal stress can be prevented.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an example of an ignition coil for an internal combustion engine according to the present invention.
FIG. 2 is a plan view of the ignition coil for the internal combustion engine.
FIG. 3 is a plan view showing an assembled state of an iron core used for the ignition coil for the internal combustion engine.
FIG. 4 is a side view of the iron core.
FIG. 5 is a front view of the iron core.
FIG. 6 is a longitudinal sectional view showing an example of a conventional ignition coil for an internal combustion engine.
[Explanation of symbols]
Reference Signs List 10 ignition coil for internal combustion engine 11 primary coil 11a primary coil bobbin 12 secondary coil 12a secondary coil bobbin 13 iron core part 14 insulating case 15 insulating resin 16 release material

Claims (3)

一次コイル及び二次コイルをそれぞれ巻回し、同心状に配設した筒状の一次コイルボビン及び二次コイルボビンと、その一次コイルボビンの筒内周及び二次コイルボビンの外周を通って磁路を成す鉄心部と、これらを収納する絶縁ケースとを備え、前記絶縁ケースの内部に充填した絶縁樹脂によって鉄心部とコイル等を固定する内燃機関用点火コイルであって、
前記絶縁樹脂と前記鉄心部との間に剥離材を塗布し、絶縁樹脂と鉄心部を剥離させたことを特徴とする内燃機関用点火コイル。
A cylindrical primary coil bobbin and a secondary coil bobbin wound around a primary coil and a secondary coil, respectively, and arranged concentrically, and an iron core portion forming a magnetic path through the inner circumference of the cylinder of the primary coil bobbin and the outer circumference of the secondary coil bobbin. An ignition coil for an internal combustion engine, comprising: an insulating case for accommodating these, and fixing an iron core portion and a coil by an insulating resin filled in the insulating case,
An ignition coil for an internal combustion engine, wherein a release material is applied between the insulating resin and the iron core to separate the insulating resin and the iron core.
前記剥離材は、前記鉄心部の全外周に塗布されることを特徴とする請求項1に記載の内燃機関用点火コイル。The ignition coil for an internal combustion engine according to claim 1, wherein the release material is applied to the entire outer periphery of the iron core portion. 前記剥離材は、シリコン系樹脂であることを特徴とする請求項1または2に記載の内燃機関用点火コイル。The ignition coil according to claim 1, wherein the release material is a silicon-based resin.
JP2002336249A 2002-11-20 2002-11-20 Ignition coil for internal combustion engine Pending JP2004169619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002336249A JP2004169619A (en) 2002-11-20 2002-11-20 Ignition coil for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002336249A JP2004169619A (en) 2002-11-20 2002-11-20 Ignition coil for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2004169619A true JP2004169619A (en) 2004-06-17

Family

ID=32700139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002336249A Pending JP2004169619A (en) 2002-11-20 2002-11-20 Ignition coil for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2004169619A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007053188A (en) * 2005-08-17 2007-03-01 Hanshin Electric Co Ltd Ignition coil for internal combustion engine
JP2007234699A (en) * 2006-02-28 2007-09-13 Hanshin Electric Co Ltd Ignition coil for internal combustion engine
JP2007278140A (en) * 2006-04-05 2007-10-25 Hanshin Electric Co Ltd Plug socket for internal combustion engine
JP2008277535A (en) * 2007-04-27 2008-11-13 Toyo Denso Co Ltd Ignition coil
US7849843B2 (en) 2007-04-27 2010-12-14 Denso Corporation Ignition coil
JP2013065743A (en) * 2011-09-20 2013-04-11 Hitachi Automotive Systems Ltd Ignition coil for internal combustion engine
JP2013175554A (en) * 2012-02-24 2013-09-05 Denso Corp Ignition coil manufacturing method and ignition coil manufactured with the same
JP2016033947A (en) * 2014-07-31 2016-03-10 株式会社デンソー Ignition coil for internal combustion engine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007053188A (en) * 2005-08-17 2007-03-01 Hanshin Electric Co Ltd Ignition coil for internal combustion engine
JP2007234699A (en) * 2006-02-28 2007-09-13 Hanshin Electric Co Ltd Ignition coil for internal combustion engine
JP2007278140A (en) * 2006-04-05 2007-10-25 Hanshin Electric Co Ltd Plug socket for internal combustion engine
JP2008277535A (en) * 2007-04-27 2008-11-13 Toyo Denso Co Ltd Ignition coil
US7849843B2 (en) 2007-04-27 2010-12-14 Denso Corporation Ignition coil
JP2013065743A (en) * 2011-09-20 2013-04-11 Hitachi Automotive Systems Ltd Ignition coil for internal combustion engine
JP2013175554A (en) * 2012-02-24 2013-09-05 Denso Corp Ignition coil manufacturing method and ignition coil manufactured with the same
JP2016033947A (en) * 2014-07-31 2016-03-10 株式会社デンソー Ignition coil for internal combustion engine

Similar Documents

Publication Publication Date Title
US9117585B2 (en) Ignition coil
JP4794999B2 (en) Lightning proof type low voltage insulation transformer
US8991371B2 (en) Ignition coil
JP2004169619A (en) Ignition coil for internal combustion engine
US11482367B2 (en) Ignition coil
US8360039B2 (en) Ignition coil
JP2004014548A (en) Ignition coil
JPH09275026A (en) Ignition coil in internal combustion engine
JPH02228011A (en) Transformer
JP2008277459A (en) Ignition coil
JP2004071917A (en) Ignition coil for internal combustion engine
KR200486562Y1 (en) Oil immersed transformer having magnetic shield
JP2005032829A (en) High breakdown voltage transformer, and electric conduction coating single molded coil therefor
JP4452435B2 (en) Ignition coil for internal combustion engine
JP2005183995A (en) Ignition coil used for otto engine and method of manufacturing ignition coil
JP2003077735A (en) Amorphous core transformer
JP2003178925A (en) Ignition coil for internal combustion engine
JP3752744B2 (en) Engine ignition coil device
JP2011066098A (en) Transformer
JP3031158U (en) Ignition coil for internal combustion engine
KR100466111B1 (en) core for ignition coil
JP2008153581A (en) Ignition coil for internal combustion engine
JP2008277461A (en) Ignition coil
JP2003229319A (en) Ignition coil for internal combustion engine
JP2007053188A (en) Ignition coil for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051206