【0001】
【発明の属する技術分野】
本願発明は、古紙パルプを混合したクラフトパルプの製造方法及び同製造方法によって得られる古紙パルプ混合クラフトパルプに関するものである。
【0002】
【従来の技術】
紙資源保護の観点から、色々な紙の原料として古紙の利用が提唱されてきている。長繊維と短繊維に分級されない段ボール古紙は、クラフト蒸解法にて脱リグニンされ、次いで塩素漂白を行い、漂白パルプとして使用する例がある(米国特許5147503)。さらに、長繊維と短繊維に分級されない段ボール古紙は、クラフト蒸解を行わずに硫酸前処理後、3段階の酸素脱リグニン工程を行って漂白有無にもかかわらず上質紙の原料とし使用される例もある(米国特許5486268)。
【0003】
【発明が解決しようとする課題】
一方、本願発明者の知る限りでは、古紙パルプをクラフトパルプの一部と置換して利用する、という発想は従来知られていない。したがって、これに関する従来の公知文献は発見できなかった。
【0004】
本願発明は、上記のように、古紙パルプをクラフトパルプの一部と置換して利用するという基本的な着想に立脚している。
【0005】
しかし、古紙パルプをクラフトパルプの一部と置換するといっても、そのためにクラフトパルプが本来的に備えている有用な諸物性(たとえば、強度、白色度等)を劣化させることになっては意味がない。
【0006】
本願発明は、クラフトパルプが本来的に備えている上記のような有用な諸物性を維持しつつ、その一部を古紙パルプで置換し得るようにするための諸条件を提案することを目的としてなされたものである。
【0007】
【課題を解決するための手段】
本願発明の古紙パルプ混合クラフトパルプの製造方法及び同製造方法によって得られる古紙パルプ混合クラフトパルプは、薬品及び機械的撹拌力により離解させて得た古紙パルプを、分級処理設備にて長繊維、短繊維に分級し、クラフトパルプと古紙パルプの長繊維分または短繊維分とを、90:10〜99:1の割合で混合し、さらに漂白設備にて漂白処理することを基本的特徴とするものである。古紙パルプとしては、段ボール古紙のほか、種々の古紙パルプが利用できる。古紙パルプは、薬品及び機械的撹拌力(たとえば、パルパー)により離解させた後、分級処理設備(たとえば、スクリーン)にて、長繊維及び短繊維に分級される。分級した長繊維分または短繊維分は、クラフトパルプ(広葉樹クラフトパルプまたは針葉樹クラフトパルプ)と混合されるが、その比率は、クラフトパルプ90〜99に対して、長繊維分または短繊維分10〜1(絶乾重量比)である。クラフトパルプと古紙パルプの長繊維分または短繊維分の比率が90:10をこえると夾雑物増加、白色度低下等の点で不都合が生じ、一方、99:1未満では、少なすぎて古紙パルプを混合する経済的メリットがない。
【0008】
古紙パルプは、分級処理される前に、離解叩解設備等(特に好ましくは、ニーダーやディスパーザーのような練る効果を持つ設備)にて予め所定のフリーネス(特に限定するものではないが、400〜600ml(JIS P8121)の範囲が好適である)に調整しておくことが推奨される。これとともに、あるいは、これにかえて、分級処理後に離解叩解設備にて所定のフリーネス(上記と同様の範囲)に調整することも推奨される。
【0009】
クラフトパルプ(広葉樹クラフトパルプまたは針葉樹クラフトパルプ)と古紙パルプの混合パルプは、そのあと、さらに漂白設備にて漂白処理される。
【0010】
漂白処理は、酸素脱リグニン工程と、白色度を上げる漂白工程の2工程である。
【0011】
酸素脱リグニン工程では、苛性ソーダ、酸素、熱の処理でパルプのカッパー価を下げる。漂白工程では、酸化剤(たとえば、塩素、二酸化塩素、次亜塩素酸、オゾン、過酸化水素等)を使用して漂白を行い、パルプの白色度を上げる。
【0012】
漂白処理方法としては、特に限定するものではないが、塩素漂白及び無塩素漂白の2方法がある。
【0013】
塩素漂白は、塩素単独または二酸化塩素を含む塩素段(C段またはC/D段)− 酸素を含むアルカリ抽出段(Eo段)− 次亜塩素酸段(ハイポH段)− 二酸化塩素段(D段)の4段塩素漂白シーケンス、またはC段(またはC/D)−過酸化水素またはハイポを含むEo段(Eop段またはEoH段)− D段の3段塩素漂白シーケンスである。
【0014】
無塩素漂白は、二酸化塩素段(D0段)またはオゾン段(Z段)− 酸素及び/または過酸化水素を含むアルカリ抽出段(E、Eo、EpまたはEop段)− 過酸化水素段(P段)− 二酸化塩素段(D1段)の3段(D0−Eop−D1またはZ/D−Eop−D1)または4段(D0−Eo−P−D1またはZ/D−Eo−P−D1)の無塩素漂白シーケンス)である。
【0015】
【実施例】
以下、本願発明のいくつかの実施例と、本願発明の技術的優位性を示すためのいくつかの比較例を表2〜5に示す。
【0016】
なお、各実施例及び比較例においては、クラフトパルプとして未晒広葉樹クラフトパルプ(LUKP)、未晒針葉樹クラフトパルプ(NUKP)を使用し、古紙パルプとしては段ボール古紙パルプ(OCC)を使用した。
【0017】
段ボール古紙パルプは、試験用6カット(0.15mm)スクリーン(熊谷理機工業製)にて長繊維分(リジェクト)と短繊維分(アクセプト)に分級して、必要に応じて長繊維分または短繊維分を使用し、さらに、一部の実施例においては、これらの長繊維分または短繊維分を離解叩解設備(山本百馬製作所製試験用ニーダー)でニーディングし、他の実施例においてはニーダーを使用しないでそのまま使用した。
【0018】
分級処理された古紙パルプの長繊維分または短繊維分は、所定の比率でクラフトパルプ(広葉樹クラフトパルプまたは針葉樹クラフトパルプ)と混合し、その後、同混合パルプを酸素脱リグニン及び漂白処理した。
【0019】
<酸素脱リグニン試験>
未晒パルプ(LUKP、NUKP)単独または未晒パルプと古紙パルプの混合パルプは、4.5L回転オートクレープ(熊谷理機工業製)にて酸素脱リグニンを行った。試験方法の詳細は、文献にて記載した。(Ai Van Tran, Appita Journal,71, No.4(4月号),300頁〜304頁(2000)。)なお、酸素脱リグニン率は、酸素脱リグニン前後のカッパー価の差異と酸素脱リグニン前のカッパー価の割合となる。
【0020】
<漂白試験>
塩素漂白と無塩素漂白を使用した。塩素漂白は、C−E−H−Dの4段漂白シーケンス、無塩素漂白は、D0−E−D1−D2の4段漂白シーケンスであった。パルプ(200g絶乾)をビニール製袋に詰め、所定の温度、滞留時間、薬品添加量、パルプ濃度で各漂白段を行った。漂白条件を下表1に示す。
【0021】
【表1】
【0022】
<パルプ品質の測定>
クラフトパルプ単独、段ボール古紙パルプ単独、古紙パルプ混合クラフトパルプは、カッパー価、比引裂強度、裂断長、比破裂強度、耐折度、白色度、夾雑物、繊維長の品質を測定した。測定方法を下記に示す。更に、漂白性を示すために全カッパーファクター(TKF)の指数を使用した。TKFとは、漂白で使用全塩素系漂白薬品(塩素、次亜塩素酸ソーダ、二酸化塩素等)のトータル有効塩素とカッパー価の割合である。
【0023】
各パルプは、「JIS P8221−2」記載のPFIミルにより、「JIS P8121」記載のカナダ標準濾水度(フリーネス)で、500mlに調製した後、「JIS P8222及びJIS P8223」記載の方法で、手抄シートを作成し、紙質試験に供した。
【0024】
<カッパー価の測定法>
各パルプは、「JIS P8211」記載の方法により、カッパー価を測定した。
【0025】
<裂断長の測定法>
各パルプの裂断長は、「JIS P8113」記載の方法で測定した。
【0026】
<比破裂強度の測定法>
各パルプは、「JIS P8112」記載の方法で比破裂強度を測定した。
【0027】
<比引裂強度の測定法>
各パルプは、「JIS P8116」記載の方法により、比引裂強度を測定した。
【0028】
<耐折強度の測定法>
各パルプは、「JIS P8115」記載の方法により、耐折強度を測定した。
【0029】
<白色度の測定法>
漂白パルプは、「JIS P8123」記載の方法により、ハンター白色度を測定した。
【0030】
<夾雑物の測定法>
未叩解パルプを用いて60g/m2の米坪のシートを10枚製造し、東英電子工業の紙ちり測定装置にて夾雑物を測定した。
【0031】
<パルプの繊維長の測定法>
未叩解パルプを用いてカヤニFS100装置にて繊維長を測定した。
【0032】
<第1実施例および第1〜4比較例>
表2と3は、クラフトパルプに対する古紙パルプの配合率とパルプの諸物性に与える影響とを検証するためのもので、実施例1は、広葉樹クラフトパルプ93.7に対して段ボール古紙パルプの長繊維分を6.3の比率で混合し、酸素脱リグニン後、漂白処理したものである。比較例1は、広葉樹クラフトパルプ100%を酸素脱リグニン後、漂白処理したものである。比較例2は、段ボール古紙パルプの長繊維分100%を酸素脱リグニン(合計3段)した後、漂白処理したものである。比較例3は、針葉樹クラフトパルプ85に対して段ボール古紙パルプの長繊維分を15の比率で混合し、酸素脱リグニン後、漂白処理したものである。比較例4は、針葉樹クラフトパルプ100%を酸素脱リグニン後、漂白処理したものである。
【0033】
第1実施例および第1〜4比較例の未晒パルプのカッパー価と漂白性を示す。
【0034】
【表2】
【0035】
第1実施例および第1〜4比較例の晒パルプの物理特性を示す。
【0036】
【表3】
【0037】
<実施例2〜6および比較例5>
表4は、段ボール古紙パルプの長繊維分または短繊維分に対する離解叩解処理(ニーダー処理)の影響を検証するためのもので、実施例2は、広葉樹クラフトパルプ93.7に対して、ニーダー処理前の古紙パルプ短繊維分を6.3の比率で混合したもの、実施例3は、広葉樹クラフトパルプ93.7に対して、ニーダー処理後の古紙パルプ短繊維分を6.3の比率で混合したもの、実施例4は、広葉樹クラフトパルプ93.7に対してニーダー処理前の古紙パルプ長繊維分を6.3の比率で混合したもの、実施例5は、広葉樹クラフトパルプ93.7に対してニーダー処理後の古紙パルプ長繊維分を6.3の比率で混合したもの、実施例6は、広葉樹クラフトパルプ90.1に対して、ニーダー処理後の古紙パルプ短繊維分を9.9の比率で混合したもの、比較例5は、広葉樹クラフトパルプ100%のものを示している。なお、上記実施例および比較例のパルプは、酸素脱リグニン後、漂白処理した。
【0038】
第2〜6実施例および第5比較例の未晒パルプのカッパー価と漂白性を示す。
【0039】
【表4】
【0040】
第2〜6実施例および第5比較例の晒パルプの物理特性を表5に示す。
【0041】
【表5】
【0042】
<古紙パルプへのニーダー処理の効果>
表6は、段ボール古紙パルプの長繊維分または短繊維分へのニーダー処理の影響を示す。短繊維分のフリーネスは低いため、このフリーネスが下がらないようニーダーの処理条件を調整した。長繊維分のフリーネスは高いため、フリーネスの100ml程度の低下幅を得る為には、ニーダーの処理条件を調整した。なお、これらの古紙パルプは酸素脱リグニンと漂白を行わなかった。
【0043】
【表6】
【0044】
<評 価>
(1) 実施例1は、古紙パルプの長繊維分を広葉樹クラフトパルプ93.7%に対して6.3%配合したものであるが、比較例1(広葉樹クラフトパルプ100%)に対して、同等の白色度(85.5→84.9)と、同等の強度(裂断長:6.17→6.19、比破裂度:4.27→4.82、比引裂度:80.7→90.3)が得られ、十分実用性のあるものであった。ただし、夾雑物が多かった(18.3mm2/m2→142.7mm2/m2)が、これは、ニーダー、ディスパーザー処理を適切に行うことによって改善し得るものである。
【0045】
なお、比較例3は、試験的に古紙パルプを多量に使用したもの(針葉樹クラフトパルプ85に対して段ボール古紙の長繊維分を15の比率で混合)であるが、やはり、針葉樹クラフトパルプ100%のもの(比較例4)に比して白色度が大きく劣り(82.0→76.5)、実用パルプとしては不適当であると結論した。
【0046】
(2) 実施例2〜6も、白色度および強度において、比較例5(広葉樹クラフトパルプ100%)と同等の範囲にあり、しかも段ボール古紙についてニーダー処理後のもの(実施例3,5,6)は、白色度が向上するとともに夾雑物が減少する傾向がみられた。
【0047】
【発明の効果】
以上のように、本願発明によれば、所定比率の古紙パルプをもってクラフトパルプの一部と置換しても、実用上品質面で何ら支障のないクラフトパルプを製造し得るものであり、安価な古紙パルプをクラフトパルプの原料として利用し得る経済的メリットの大きいものである。更に、古紙パルプを離解叩解設備であるニーダー、ディスパーザー等で処理することにより完成パルプの見栄え(夾雑物の減少)が極めて向上する。[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method for producing kraft pulp mixed with waste paper pulp, and a kraft pulp mixed with waste paper pulp obtained by the method.
[0002]
[Prior art]
From the viewpoint of protecting paper resources, utilization of waste paper as a raw material for various papers has been proposed. Cardboard waste paper that is not classified into long fibers and short fibers is delignified by the kraft digestion method, then subjected to chlorine bleaching, and used as bleached pulp (US Pat. No. 5,147,503). Furthermore, cardboard waste paper that is not classified into long fibers and short fibers is used as a raw material for high-quality paper regardless of bleaching by performing a three-stage oxygen delignification process after sulfuric acid pretreatment without kraft digestion. (US Pat. No. 5,486,268).
[0003]
[Problems to be solved by the invention]
On the other hand, as far as the inventor of the present application knows, the idea of replacing used paper pulp with a part of kraft pulp and using it has not been known. Therefore, no known publicly-known document relating to this could be found.
[0004]
As described above, the present invention is based on the basic idea of replacing waste paper pulp with a part of kraft pulp and using it.
[0005]
However, replacing waste paper pulp with a part of kraft pulp does not mean that it degrades useful physical properties (eg, strength, whiteness, etc.) inherent in kraft pulp. There is no.
[0006]
An object of the present invention is to propose various conditions for allowing a part of the kraft pulp to be replaced with wastepaper pulp while maintaining the above-mentioned useful physical properties inherently provided by kraft pulp. It was done.
[0007]
[Means for Solving the Problems]
The method for producing waste paper pulp mixed kraft pulp of the present invention and the waste paper pulp mixed kraft pulp obtained by the production method are as follows. Basically, fibers are classified, kraft pulp is mixed with long fibers or short fibers of waste paper pulp at a ratio of 90:10 to 99: 1, and further bleaching is performed in a bleaching facility. It is. As used paper pulp, various kinds of used paper pulp can be used other than corrugated cardboard used paper. Waste paper pulp is defibrated by chemicals and mechanical stirring power (for example, pulper), and then classified into long fibers and short fibers by a classification treatment facility (for example, screen). The classified long fiber fraction or short fiber fraction is mixed with kraft pulp (hardwood kraft pulp or softwood kraft pulp). The ratio is 90 to 99 for kraft pulp and 10 to 10 for long fiber or short fiber. 1 (absolute dry weight ratio). If the ratio of kraft pulp to recycled paper pulp has a ratio of long fibers or short fibers of more than 90:10, inconveniences such as an increase in impurities and a decrease in whiteness are caused. There is no economic merit to mix.
[0008]
Before the waste paper pulp is subjected to the classification treatment, it is preliminarily determined to have a predetermined freeness (not particularly limited, but preferably 400 to 400 kPa) in a disintegration / beating facility or the like (particularly preferably, a facility having a kneading effect such as a kneader or a disperser). It is recommended to adjust to 600 ml (the range of JIS P8121 is suitable). At the same time, or alternatively, it is also recommended to adjust to a predetermined freeness (the same range as described above) in the disintegration and beating equipment after the classification process.
[0009]
The mixed pulp of kraft pulp (hardwood kraft pulp or softwood kraft pulp) and waste paper pulp is then further bleached in a bleaching facility.
[0010]
The bleaching process is a two-stage process including an oxygen delignification process and a bleaching process for increasing whiteness.
[0011]
In the oxygen delignification step, the kappa number of the pulp is reduced by treating with caustic soda, oxygen and heat. In the bleaching step, bleaching is performed using an oxidizing agent (eg, chlorine, chlorine dioxide, hypochlorous acid, ozone, hydrogen peroxide, etc.) to increase the whiteness of the pulp.
[0012]
Although the bleaching method is not particularly limited, there are two methods, chlorine bleaching and chlorine-free bleaching.
[0013]
Chlorine bleaching includes chlorine alone or chlorine stage containing chlorine dioxide (stage C or C / D)-alkali extraction stage containing oxygen (Eo stage)-hypochlorous acid stage (hypo H stage)-chlorine dioxide stage (D Stage) or a stage C (or C / D) -Eo stage containing hydrogen peroxide or hypo (Eop stage or EoH stage) -a stage D three-stage chlorine bleaching sequence.
[0014]
Chlorine-free bleaching, chlorine dioxide stage (D 0 stage) or an ozone stage (Z stage) - oxygen and / or alkali extraction stage containing hydrogen peroxide (E, Eo, Ep or Eop stage) - hydrogen peroxide stage (P stage) - 3-stage (D0-Eop-D1 or Z / D-Eop-D 1 ) or four-stage (D0-Eo-P-D 1 or Z / D-Eo-P- chlorine dioxide stage (D1 stage) D1) chlorine-free bleaching sequence).
[0015]
【Example】
Hereinafter, some examples of the present invention and some comparative examples for showing the technical advantage of the present invention are shown in Tables 2 to 5.
[0016]
In each of Examples and Comparative Examples, unbleached hardwood kraft pulp (LUKP) and unbleached softwood kraft pulp (NUKP) were used as kraft pulp, and corrugated cardboard pulp (OCC) was used as used pulp.
[0017]
The corrugated paper pulp is classified into long fiber (reject) and short fiber (accept) by a 6-cut (0.15 mm) screen for testing (manufactured by Kumagai Riki Kogyo Co., Ltd.) The short fiber component is used, and in some embodiments, the long fiber component or the short fiber component is kneaded with a disintegration and beating equipment (a test kneader manufactured by Yamamoto Hyakuma Seisakusho), and in other examples, Was used without using a kneader.
[0018]
The classified long fiber or short fiber of waste paper pulp was mixed with kraft pulp (hardwood kraft pulp or softwood kraft pulp) at a predetermined ratio, and then the mixed pulp was subjected to oxygen delignification and bleaching.
[0019]
<Oxygen delignification test>
Unbleached pulp (LUKP, NUKP) alone or mixed pulp of unbleached pulp and waste paper pulp was subjected to oxygen delignification using a 4.5 L rotary autoclave (manufactured by Kumagaya Riki Kogyo). Details of the test method are described in the literature. (Ai Van Tran, Appita Journal, 71 , No. 4 (April), pp. 300-304 (2000).) The oxygen delignification rate is determined by the difference between the kappa number before and after oxygen delignification and the oxygen delignification. It is the ratio of the previous copper value.
[0020]
<Bleaching test>
Chlorine bleaching and chlorine-free bleaching were used. Chlorine bleaching is 4-stage bleaching sequence, chlorine-free bleaching of C-E-H-D was 4-stage bleaching sequence D 0 -E-D 1 -D 2 . Pulp (200 g, absolutely dried) was packed in a plastic bag, and each bleaching stage was performed at a predetermined temperature, residence time, amount of added chemical, and pulp concentration. The bleaching conditions are shown in Table 1 below.
[0021]
[Table 1]
[0022]
<Measurement of pulp quality>
Kraft pulp alone, cardboard waste paper pulp alone, and waste paper pulp mixed kraft pulp were measured for kappa number, specific tear strength, tear length, specific burst strength, folding resistance, whiteness, impurities, and fiber length quality. The measuring method is shown below. In addition, the Total Copper Factor (TKF) index was used to indicate bleachability. TKF is the ratio of the total available chlorine to the kappa number of all chlorine bleaching chemicals (chlorine, sodium hypochlorite, chlorine dioxide, etc.) used in bleaching.
[0023]
Each pulp was prepared to 500 ml with a Canadian standard freeness (freeness) described in "JIS P8121" by a PFI mill described in "JIS P8221-2", and then the method described in "JIS P8222 and JIS P8223" was used. A handsheet was prepared and subjected to a paper quality test.
[0024]
<Method of measuring copper value>
The kappa number of each pulp was measured by the method described in “JIS P8211”.
[0025]
<Measurement method of breaking length>
The breaking length of each pulp was measured by the method described in “JIS P8113”.
[0026]
<Method of measuring specific burst strength>
The specific rupture strength of each pulp was measured by the method described in “JIS P8112”.
[0027]
<Method of measuring specific tear strength>
The specific tear strength of each pulp was measured by the method described in “JIS P8116”.
[0028]
<Method of measuring bending strength>
Each pulp was measured for bending strength by the method described in “JIS P8115”.
[0029]
<Method of measuring whiteness>
Hunter whiteness of the bleached pulp was measured by the method described in “JIS P8123”.
[0030]
<Method of measuring impurities>
Using unbeaten pulp, 10 sheets of 60 g / m 2 of rice tsubo were manufactured, and impurities were measured by a paper dust measuring device of Toei Electronics Industry.
[0031]
<Measuring method of fiber length of pulp>
Using unbeaten pulp, the fiber length was measured with a Kayani FS100 apparatus.
[0032]
<First Example and First to Fourth Comparative Examples>
Tables 2 and 3 are for verifying the mixing ratio of the waste paper pulp to the kraft pulp and the effect on the physical properties of the pulp. In Example 1, the length of the hardwood kraft pulp 93.7 was compared with the length of the corrugated waste paper pulp. Fibers were mixed at a ratio of 6.3, subjected to oxygen delignification, and then bleached. In Comparative Example 1, 100% hardwood kraft pulp was bleached after oxygen delignification. Comparative Example 2 was obtained by subjecting 100% of the long fiber content of corrugated cardboard waste paper pulp to oxygen delignification (total three stages) and then bleaching. In Comparative Example 3, a long fiber content of corrugated cardboard waste paper pulp was mixed at a ratio of 15 with softwood kraft pulp 85, and after oxygen delignification, bleaching treatment was performed. In Comparative Example 4, 100% softwood kraft pulp was bleached after oxygen delignification.
[0033]
The Kappa number and bleachability of the unbleached pulp of the first example and the first to fourth comparative examples are shown.
[0034]
[Table 2]
[0035]
The physical properties of bleached pulp of the first example and the first to fourth comparative examples are shown.
[0036]
[Table 3]
[0037]
<Examples 2 to 6 and Comparative Example 5>
Table 4 is for verifying the effect of the disintegration and beating treatment (kneader treatment) on the long fiber component or the short fiber component of the corrugated cardboard waste paper pulp. Example 3 in which the used waste paper pulp short fiber content was mixed at a ratio of 6.3, and Example 3 was that in which the waste paper pulp short fiber content after kneading was mixed at a ratio of 6.3 with 93.7 hardwood kraft pulp. Example 4 was a mixture of 93.7 hardwood kraft pulp and a long paper fraction of waste paper pulp before kneading at a ratio of 6.3, and Example 5 was a mixture of 93.7 hardwood kraft pulp. In Example 6, the waste paper pulp long fiber component after kneading was mixed with the hardwood kraft pulp 90.1 by mixing the waste paper pulp short fiber component after kneading with 9.9. ratio Mixed ones, Comparative Example 5 shows that the 100% hardwood kraft pulp. The pulp of the above Examples and Comparative Examples was bleached after oxygen delignification.
[0038]
The Kappa number and the bleachability of the unbleached pulp of the second to sixth examples and the fifth comparative example are shown.
[0039]
[Table 4]
[0040]
Table 5 shows the physical properties of bleached pulp of the second to sixth examples and the fifth comparative example.
[0041]
[Table 5]
[0042]
<Effect of kneader treatment on waste paper pulp>
Table 6 shows the effect of the kneader treatment on the long fiber content or short fiber content of the corrugated waste paper pulp. Since the freeness of the short fibers is low, the processing conditions of the kneader were adjusted so that the freeness did not decrease. Since the freeness of the long fibers is high, the processing conditions of the kneader were adjusted in order to obtain a decrease in the freeness of about 100 ml. The waste paper pulp was not subjected to oxygen delignification and bleaching.
[0043]
[Table 6]
[0044]
<Evaluation>
(1) In Example 1, 6.3% of the long fiber content of waste paper pulp was blended with 93.7% of hardwood kraft pulp, and Comparative Example 1 (100% of hardwood kraft pulp) was used. Equivalent whiteness (85.5 → 84.9), equivalent strength (tear length: 6.17 → 6.19, specific burst: 4.27 → 4.82, specific tear: 80.7) → 90.3), which was sufficiently practical. However, although there were many impurities (18.3 mm 2 / m 2 → 142.7 mm 2 / m 2 ), this can be improved by appropriately performing a kneader and a disperser treatment.
[0045]
In Comparative Example 3, a large amount of waste paper pulp was experimentally used (a long fiber content of corrugated cardboard waste paper was mixed at a ratio of 15 with respect to 85 softwood kraft pulp). Compared with Comparative Example 4 (Comparative Example 4), the whiteness was significantly inferior (82.0 → 76.5), and it was concluded that this was unsuitable as a practical pulp.
[0046]
(2) The whiteness and strength of Examples 2 to 6 are also in the same range as Comparative Example 5 (hardwood kraft pulp 100%), and the corrugated waste paper after the kneader treatment (Examples 3, 5, and 6) For ()), there was a tendency that whiteness was improved and impurities were reduced.
[0047]
【The invention's effect】
As described above, according to the present invention, even if a predetermined ratio of waste paper pulp is replaced with a part of kraft pulp, it is possible to produce kraft pulp having practically no problem in quality, and inexpensive waste paper Pulp is a great economic advantage that can be used as a raw material for kraft pulp. Furthermore, the appearance (reduction of foreign substances) of the finished pulp is greatly improved by treating the used paper pulp with a kneader, a disperser or the like which is a disintegration and beating equipment.