JP2004169051A - Steel having excellent machinability, and production method therefor - Google Patents

Steel having excellent machinability, and production method therefor Download PDF

Info

Publication number
JP2004169051A
JP2004169051A JP2002332658A JP2002332658A JP2004169051A JP 2004169051 A JP2004169051 A JP 2004169051A JP 2002332658 A JP2002332658 A JP 2002332658A JP 2002332658 A JP2002332658 A JP 2002332658A JP 2004169051 A JP2004169051 A JP 2004169051A
Authority
JP
Japan
Prior art keywords
steel
cutting
pearlite
machinability
surface roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002332658A
Other languages
Japanese (ja)
Other versions
JP4323778B2 (en
Inventor
Masayuki Hashimura
雅之 橋村
Atsushi Mizuno
水野  淳
Kenichiro Naito
賢一郎 内藤
Hiroshi Hagiwara
博 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002332658A priority Critical patent/JP4323778B2/en
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to EP03772791A priority patent/EP1580287B1/en
Priority to PCT/JP2003/014547 priority patent/WO2004050932A1/en
Priority to DE60318745T priority patent/DE60318745T2/en
Priority to KR1020057008721A priority patent/KR100708430B1/en
Priority to TW092132048A priority patent/TWI249579B/en
Priority to CN2007101960130A priority patent/CN101215665B/en
Priority to US10/534,858 priority patent/US7488396B2/en
Publication of JP2004169051A publication Critical patent/JP2004169051A/en
Priority to US12/288,542 priority patent/US8137484B2/en
Application granted granted Critical
Publication of JP4323778B2 publication Critical patent/JP4323778B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel which has satisfactory machinability (a tool service life and machined surface roughness). <P>SOLUTION: The steel having excellent machinability comprises, by mass, 0.03 to 0.25% C and 0.05 to 1.0% S, and has a microstructure in which the area ratio occupied by pearlite particles with a particle diameter of >3 μm is ≤5%. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、自動車や一般機械などに用いられる鋼に関するものであり、切削時の工具寿命と切削表面粗さおよび切り屑処理性に優れた被削性に優れた鋼とその製造方法に関するものである。
【0002】
【従来の技術】
一般機械や自動車は多種の部品を組み合わせて製造されているが、その部品は要求精度と製造効率の観点から、多くの場合、切削工程を経て製造されている。その際、コスト低減と生産能率の向上が求められ、鋼にも被削性の向上が求められている。特に従来SUM23やSUM24Lは被削性を重要視して開発されてきた。これまで被削性を向上させるためにS,Pbなどの被削性向上元素を添加するのが有効であることが知られている。しかし、需要家によってはPbは環境負荷として使用を避ける場合も有り、その使用量を低減する方向にある。
【0003】
これまでもPbを添加しない場合にはSのようにMnSのような切削環境下で軟質となる介在物を形成して被削性、特に工具寿命を向上させる手法が使われている。しかし切削工具寿命については製造能率等に直接的に影響するため、注目されがちであるが、被削性の中でも技術的難易度の高いのは表面粗さであり、表面粗さについては、被削材の本質的な性質に影響されるため、表面粗さを従来鋼以上にすることは困難であった。この表面粗さは部品の性能に直結するため、表面粗さの劣化は部品性能の低下や製品製造時の不良率の増加の原因となり、工具寿命よりも重要視される場合が多い。この意味で従来の鉛快削鋼は優れており、単なる硫黄快削鋼に比べ、工具寿命のみならず、表面粗さが優れているために、部品性能の低下を防ぐために多用されてきた。
【0004】
表面粗さを向上させるための鋼に関する技術では、一般にはPb,Biのような快削元素を添加することが多いが、それ以外では、例えば、特許文献1にみられるようにMnS介在物の平均サイズが50μm 以下に微細化させることで表面粗さを確保するもの、フェライトマトリックス中に、平均断面積:5〜30μm の黒鉛を0.20〜1.0%有することを特徴とする工具寿命と仕上げ面粗さの優れた黒鉛快削鋼などが見られる。しかし、これらの手法でも従来の鉛快削鋼以上の表面粗さを得ることは困難であり、いわゆる低炭鉛快削鋼SUM24Lが従来から表面粗さに優れている。その理由はこれらの規定での介在物の微細分散レベルは平均径で3μm程度の粒子を取り扱っているにすぎず、その均一分散が不十分であるため、構成刃先が生じ易くなり、従来の鉛快削鋼ほどには表面粗さが改善できないものと推定される。
【0005】
【特許文献1】
特開平5−345951号公報
【0006】
【発明が解決しようとする課題】
本発明は、低炭快削鋼の範囲において、従来の知見とは全く異なる観点からの技術を導入することにより圧延や熱間鍛造における不具合を避けつつ工具寿命と表面粗さの両者を改善し、従来の低炭硫黄快削鋼SUM23と同等以上の被削性、特に表面粗さの良好な鋼とその製造方法を提供するものである。
【0007】
【課題を解決するための手段】
切削は切り屑を分離する破壊現象であり、それを促進させることが一つのポイントとなる。特に良好な表面粗さを得るためには、マトリックスを脆化させることで破壊を容易にして工具寿命を延長するとともに、鋼中の付均一を極力抑制することで、ミクロ的にも安定した破壊現象を生じさせ、切削表面の凹凸を抑制した。具体的には鋼中パーライトの分布に着目し、鋼中Cを微細なパーライト(厳密にはセメンタイト)として均一分散させることで安定した破壊を生じさせることで、凹凸の少ない切削表面を創成させ、またそれを可能とするための製造方法を提供する。
【0008】
本発明は上記知見に基づいてなされたものであって、その要旨は次のとおりである。
【0009】
(1)質量%で、C:0.03〜0.2%、S:0.03〜1.0%を含み、ミクロ組織において粒径1μmを超えるパーライト粒の占める面積率が5%以下であることを特徴とする被削性に優れる鋼。
【0010】
(2)質量%で、C:0.03〜0.2%、S:0.03〜1.0%を含む鋼の熱間圧延後の冷却過程において、鋼のA 点以上の温度から0.5℃/sec 以上の冷却速度にて550℃以下まで冷却することにより、鋼のミクロ組織において粒径1μmを超えるパーライト粒の占める面積率が5%以下にすることを特徴とする被削性に優れる鋼の製造方法。
【0011】
(3)前記冷却を施した後、次いで行われる硬度調整のための加熱温度を750℃以下に制限することを特徴とする(2)記載の被削性に優れる鋼の製造方法。
【0012】
【発明の実施の形態】
先ず、本発明で規定する鋼成分組成について説明する。なお、鋼成分組成は何れも質量%である。
【0013】
Cは、鋼材の基本強度と鋼中の酸素量に関係するので被削性に大きな影響を及ぼす。Cを多量に添加して強度を高めると被削性を低下させるのでその上限を0.2%とした。一方、被削性を低下させる硬質酸化物の生成を防止しつつ、凝固過程でのピンホール等の高温での固溶酸素の弊害を抑制するため、酸素量を適量に制御する必要がある。単純に吹錬によってC量を低減させすぎるとコストが嵩むだけでなく、鋼中酸素量が多量に残留してピンホール等の不具合の原因となる。従って、ピンホール等の不具合を容易に防止できるC量0.03%を下限とした。また、これ以上の低C化は延性が高くなりすぎドリル寿命を低下させることにもなる。
【0014】
Sは、Mnと結合してMnS介在物として存在する。MnSは被削性を向上させるが、伸延したMnSは鍛造時の異方性を生じる原因の一つである。粗大なMnSは避けるべきであるが、被削性向上の観点からは多量の添加が好ましく、しかもMnSを微細分散させることが好ましい。被削性向上には0.03%以上の添加が必要である。一方、1.0%を越えると粗大MnSの生成が避けられないだけでなく、FeS等による鋳造特性、熱間変形特性の劣化から製造中に割れを生じるので、1.0%を上限とした。
【0015】
なお、MnSとは、純粋なMnSのみならず、MnSを主体に含み、Fe,Ca,Ti,Zr,Mg,REM等の硫化物がMnSと固溶したり結合して共存している介在物や、MnTeのようにS以外の元素がMnと化合物を形成してMnSと固溶・結合して共存している介在物や、酸化物を核として析出した上記介在物が含まれるものであり、化学式では、(Mn,X)(S,Y)(ここで、X:Mn以外の硫化物形成元素、Y:S以外でMnと結合する元素)として表記できるMn硫化物系介在物を総称して言うものである。
【0016】
本鋼種は低Cであり、低合金鋼のレベルで合金元素を添加しても大きく硬度が上昇し、被削性を低下させることはない。むしろ、焼入れ性を向上させ粗大パーライトの生成を抑制できる合金元素として、例えば、Mn:0.05〜2%,Cr:0.01〜2%,V:0.01〜1.0%,Nb:0.005〜0.2%,Mo:0.01〜1.0%,W:0.05〜1.0%,Ni:0.05〜2.0%,Ti:0.005〜0.2%,B:0.0005〜0.02%の1種または2種以上を添加することができる。
【0017】
さらに、酸化物の軟質化技術や硫化物の形態制御技術とも組み合わせることができ、Ca:0.0002〜0.01%,Zr:0.0005〜0.1%,Mg:0.0003〜0.01%,Al:0.001〜0.1%,Si:0.01〜0.5%,Te:0.0003〜0.2%,total−N:0.001〜0.02%,total−O:0.0005〜0.035%などの1種または2種以上を添加しても良い。
【0018】
さらに被削性をより向上させるために、P:0.001〜0.2%,Zn:0.0005〜0.5%,Sn:0.005〜2.0%,Cu:0.01〜2.0%,Bi:0.005〜0.5%,Pb:0.01〜0.5%の1種または2種以上を添加することも可能である。
【0019】
次に、本発明において、パーライト面積率を5%以下とした理由について説明する。
【0020】
切削表面粗さに工具への構成刃先の生成挙動が大きく影響する。本来、力学的には切削工具直上が最も材料にとって過酷な環境であり、材料の破壊/分離が生じ易いと考えられるので、構成刃先の付着はないはずであるが、実際には工具/被削材間の強力な凝着と被削材の組織不均一のために構成刃先が生じる。そこで材料のミクロ組織の均質性を極力増すことが重要と考えた。その結果、本発明者はこれまで殆ど関係がないと考えられていたパーライト分布がミクロ組織の均質性に大きく関係することを見出した。
【0021】
ここで、パーライトとは鏡面研磨面にナイタールエッチングを施して黒く見える組織を指す。パーライトとは厳密にはフェライトと板状セメンタイトが交互に並んで構成された群を指すが、光学顕微鏡では恰かも一つの結晶粒のように見える。さらに、図1に示すように、通常の圧延・放冷による製造ではこのパーライト粒がバンド状に並んで析出する(以後これをパーライトバンドと記す)。このパーライトはマトリックスの単相フェライトとは機械的性質が異なるため、刃先近傍での変形破断を不均一化し、さらには構成刃先の成長を助長すると考えられる。
【0022】
そこで、鋼成分または熱履歴を調整することで、粒径1μm以上のパーライト粒に関して、測定視野4mm の観察視野におけるパーライト面積率を抑制して良好な表面粗さを得られる臨界領域を調査したところ、表面粗さの劣化を抑制するには粒径1μm以上のパーライト粒の占める面積率が5%以下であることが判明した。図2にパーライト面積率と表面粗さの関係を示した。
【0023】
図1に示すように、本発明による快削鋼はこの黒く見える組織が極端に少ないことが分かる。本発明においては厳密には焼戻しマルテンサイトまたは焼戻しベイナイト組織となり、炭化物はパーライト(換言すれば板状セメンタイトとフェライトによる縞状組織)ではなく、セメンタイト粒の形態をとっている可能性も否定できない。しかし、ここではそのような鉄系炭化物を総称してパーライトと記すことにする。
【0024】
次に本発明による快削鋼の製造方法について説明する。
[熱履歴焼入れ:A 点以上の温度から550℃以下まで0.5℃/s]
本発明においては、熱延後の熱履歴として、熱延後A 点以上の温度から550℃以下までを0.5℃/sec 以上の冷却速度で冷却することが重要である。
【0025】
従来、いわゆる低炭快削鋼に対して急冷することは行われていなかった。低炭快削鋼はC量が少ないため、焼入しても硬度変化が少ない。従って従来の「焼入れ焼戻し」による強度/靱性に影響も無く、快削鋼には必要ないと言う固定観念に囚われていたためと考えられる。しかし切削の本質に立ち返って考えて材質の均質性を追求した場合、A 点から急冷することで鋼中Cの移動を凍結し、空冷時の変態で生じる粗大なセメンタイトさらにはパーライトの生成を抑制できればよい。この場合、焼入れによる硬化が目的ではないため、たとえマルテンサイト構造を有する焼入れ組織にならなくとも、鋼中Cの移動を凍結し、粗大なセメンタイトまたはパーライトの生成を阻止できれば良い。そのためには図3に示すようにA 点から550℃以下まで0.5℃/sec 以上の速度で冷却する必要がある。焼入れ性向上元素の少ない場合などでは、1℃/s以上の冷却速度が好ましい。冷却後の温度が550℃を超えていたり、冷却速度が0.5℃/sec よりも遅い場合のは粗大なパーライトを生じる。一般にはバンド状に析出しパーライトバンドと呼ばれることも多い。当然、合金元素がステンレス鋼のように多量に添加されていると、冷却速度が0.5℃/sec より遅くともパーライトバンドは生じないが、ここでは一般の快削鋼を想定しているため、0.5℃/sec と規定した。
【0026】
次に、本発明においては、上述した急冷処理に引続き、750℃以下の温度で保定する熱処理を施すことにより、更に快削鋼の組織を均質化することができる。
【0027】
実製造工程ではさらに製品の安定性を増すためにはC量が少ないとはいえ、鋼中の硬度ばらつきを小さくする方が好ましい。そのため、再度高温で保持することで、材質ばらつきを減少させることができる。まず粗大パーライトを抑制するためにはA 点以上の温度から粗大パーライトを生じなくなる550℃以下まで急冷温することが重要である。その上で、さらに図4に示すように再度、所定の温度T ℃に保定することで、需要家要求を満たす硬度に調整し、硬度ばらつきも減少させることができる。750℃以下の温度まで加熱および補定することで、需要家の要求を満たす硬度になるよう調整する。
【0028】
保定温度T ℃に関して、この保定温度と保定時間は需要家の要求を満たす硬度になるよう決定すべきである。ただし、保定温度T ℃が750℃を超えるとオーステナイトへの変態が始まるので、再度の冷却時の冷却速度が遅いとパーライトバンドを生じてしまう。したがって保定温度T ℃は750℃以下とした。さらに後工程で伸線等の二次加工を加えられることも多いため、それら後工程の取り扱いに適する硬度になるよう温度T ℃を調整することが好ましい。その保定時間に関しては工業生産的には3分以下でほとんど保定なしの場合にくらべて、硬度等が変化しないので、これ以上とするのが好ましい。
【0029】
なお工業生産上は圧延や鍛造寸法などにより、鋼内部でも温度の不均一を生じるため、粗大パーライト防止のための急冷後の550℃以下の温度T ℃での保定時間も考慮すべきである。急冷後の550℃以下の温度T ℃では好ましくは5分以上保定することで、素材寸法や偏析帯に関係なく、均一なフェライト変態を促進できる。このようにすれば、その後、保定温度T ℃(≦750℃)まで温度を上げても粗大パーライトやパーライトバンドを生じることはない。逆に、圧延や鍛造後の寸法が大きな場合には550℃以下での保持時間が、1分より短いと内部の変態が終了していないため、その後550℃以上の温度で保持した場合には粗大パーライトやパーライトバンドが生成する。
【0030】
【実施例】
本発明の効果を実施例によって説明する。
【0031】
表1、表2に示す供試材は一部は270t転炉で溶製後、連続鋳造およびビレットに分塊圧延、さらにφ50mmに圧延した。他は2t真空溶解炉にて溶製、圧延した。表1に示す実施例材料の被削性を表面粗さとドリル穿孔特性で評価したドリル穿孔特性は工具寿命の指標である。実施例2,10,13,17は請求項1に相当し、φ20mmに圧延され、圧延直後の冷却前に圧延ラインの後端にある水槽に直接投入するいわゆるインライン熱処理を施した。その急冷後には特に熱処理を施さなかったため、保定温度T1、保定時間L1、保定温度T2、保定時間L2の表記はない。実施例5,20,24,27,29は、A 点以上の温度から500℃の鉛槽に投入した例である。また、保定時間L1が「600分以上」の実施例は現実的には保定温度T1で10hr以上放置された実施例であり、表2に示す実施例34以降の比較例では実質焼準処理を本定義によって表現したものであり、室温まで放冷された後、放置されていることを示す。
【0032】
保定温度T1、保定時間L1、保定温度L2、保定時間L2のすべてを表記してある実施例はφ20mmに圧延され、圧延直後の冷却前に圧延ラインの後端にある水槽に直接投入するいわゆるインライン熱処理を施した後、さらに所定の温度で焼戻しを施した実施例である。
【0033】
ここで保定時間L1を明記したのは図4に示すようにパーライトが生成しにくい温度(550℃以下)まで十分に鋼材が冷却されるように制御したことを示すためである。冷却後、さらに保定温度L2および保定時間L2を制御することにより鋼材の硬さを切削加工や伸線加工に好ましい硬さに調整できる。
【0034】
このように、手法は異なるものの本発明の請求項に示す熱処理をオンラインおよびオフラインのバッチ処理で実施した。
【0035】
表面粗さは突切工具によって工具形状を転写する、表3に示すいわゆるプランジ切削によって評価した。その実験方法の概要を図5に示す。実験では200溝加工した場合の表面粗さを測定した。
【0036】
プランジ切削とは図5のように突切り工具により繰り返し溝加工を行う切削方法のことで、本実施例ではその溝の底面について試験片長手方向に触針式粗さ計の触針を移動させることで、溝断面の粗さプロファイルを測定し、表面粗さを評価した。
【0037】
工具寿命評価として行ったドリル穿孔試験条件を表4に示す。累積穴深さ1000mmまで切削可能な最高の切削速度(いわゆるLV1000)で被削性を評価した。
【0038】
類似の化学成分で熱処理条件だけを変化させた場合、発明例はいずれも比較例に対してドリル工具寿命に優れるとともに、プランジ切削における表面粗さが良好であった。
【0039】
請求項1に相当する鋼では硬度を大きくなるため、若干工具寿命が低下する傾向にあるが、良好な表面粗さと従来と同等の工具寿命レベルとなった。
【0040】
発明例は、おおむね図6に示すように粗大なパーライト粒は認められず、パーライトバンドも見られない。これはC,S等の添加量が異なっても、その順位が変わることはなく、Zn,Sn,B等の元素が添加された場合、同一C,S量を有する比較鋼に比べ、工具寿命と表面粗さに優れていることが分かる。
【0041】
【表1】

Figure 2004169051
【0042】
【表2】
Figure 2004169051
【0043】
【表3】
Figure 2004169051
【0044】
【表4】
Figure 2004169051
【0045】
【表5】
Figure 2004169051
【0046】
【表6】
Figure 2004169051
【0047】
【発明の効果】
以上述べたように、本発明は鋼のミクロ組織を制御することにより切削時の工具寿命と切削表面粗さ、切り屑処理性に優れた快削鋼を提供することが可能となる。
【図面の簡単な説明】
【図1】従来鋼のパーライトの大きさを示す図。
【図2】パーライト面積率と表面粗さの関係を示す図。
【図3】本発明による熱処理条件を示す図。
【図4】本発明による熱処理条件を示す図。
【図5】プランジ切削による実験方法を示す図。
【図6】本発明により得られる快削鋼のパーライトの大きさを示す図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to steel used for automobiles and general machines, and more particularly to steel having excellent tool life, excellent cutting surface roughness and excellent machinability with excellent chip controllability at the time of cutting, and a method for producing the same. is there.
[0002]
[Prior art]
General machines and automobiles are manufactured by combining various types of parts, and the parts are often manufactured through a cutting process from the viewpoint of required accuracy and manufacturing efficiency. At that time, cost reduction and improvement in production efficiency are required, and steel is also required to have improved machinability. In particular, conventionally, SUM23 and SUM24L have been developed with emphasis on machinability. It has been known that it is effective to add a machinability improving element such as S or Pb in order to improve machinability. However, some customers avoid using Pb as an environmental load, and the amount of Pb used is being reduced.
[0003]
Until now, when Pb is not added, a method has been used in which a soft inclusion is formed in a cutting environment such as MnS, as in S, to improve machinability, especially tool life. However, the life of a cutting tool is directly attracting attention because it directly affects the production efficiency and the like. Among the machinability, the technical difficulty is high in surface roughness, and the surface roughness is not It is difficult to make the surface roughness higher than that of conventional steel because it is affected by the essential properties of the cutting material. Since the surface roughness is directly linked to the performance of the part, the deterioration of the surface roughness causes a decrease in the performance of the part and an increase in the defective rate at the time of manufacturing the product, and is often regarded as more important than the tool life. In this sense, the conventional lead free-cutting steel is excellent, and is not only used for tool life but also excellent in surface roughness as compared with mere sulfur free-cutting steel.
[0004]
In the technology related to steel for improving the surface roughness, a free-cutting element such as Pb or Bi is generally added in many cases, but otherwise, for example, as shown in Patent Document 1, MnS inclusions may be added. What secures surface roughness by reducing the average size to 50 μm 2 or less, characterized by having 0.20 to 1.0% of graphite having an average cross-sectional area of 5 to 30 μm 2 in a ferrite matrix. Graphite free-cutting steel with excellent tool life and finished surface roughness can be seen. However, even with these methods, it is difficult to obtain a surface roughness higher than that of the conventional lead free-cutting steel, and the so-called low-carbon lead free-cutting steel SUM24L has been conventionally excellent in surface roughness. The reason is that the fine dispersion level of the inclusions in these regulations is only handling particles having an average diameter of about 3 μm, and the uniform dispersion is insufficient, so that the constituent cutting edge is easily generated, and the conventional lead It is estimated that the surface roughness cannot be improved as much as free cutting steel.
[0005]
[Patent Document 1]
JP-A-5-345951
[Problems to be solved by the invention]
The present invention improves both tool life and surface roughness while avoiding defects in rolling and hot forging by introducing technology from a completely different viewpoint from conventional knowledge in the range of low-carbon free-cutting steel. Another object of the present invention is to provide a steel having good machinability equal to or higher than that of the conventional low-carbon sulfur free-cutting steel SUM23, particularly, having a good surface roughness, and a method for producing the same.
[0007]
[Means for Solving the Problems]
Cutting is a breaking phenomenon that separates chips, and promoting it is one point. To obtain particularly good surface roughness, the matrix is embrittled to facilitate fracture and prolong tool life, while minimizing uniformity in steel to ensure micro-stable fracture. This caused a phenomenon and suppressed irregularities on the cutting surface. Specifically, paying attention to the distribution of pearlite in steel, C is uniformly dispersed as fine pearlite (strictly, cementite) in steel to cause stable fracture, thereby creating a cutting surface with less unevenness, Further, a manufacturing method for making this possible is provided.
[0008]
The present invention has been made based on the above findings, and the gist is as follows.
[0009]
(1) In terms of mass%, C: 0.03 to 0.2%, S: 0.03 to 1.0%, and the area ratio of pearlite particles having a particle size exceeding 1 μm in the microstructure is 5% or less. A steel with excellent machinability, characterized in that:
[0010]
(2) in mass% C: 0.03 to 0.2% S: in the course of cooling after hot rolling of steel containing 0.03 to 1.0%, from A 3 point or more temperature of the steel Machining characterized in that by cooling to 550 ° C. or lower at a cooling rate of 0.5 ° C./sec or higher, the area ratio of pearlite grains having a grain size of more than 1 μm to 5% or less in the steel microstructure. Method for producing steel with excellent heat resistance.
[0011]
(3) The method for producing steel excellent in machinability according to (2), wherein after the cooling is performed, a heating temperature for adjusting the hardness to be performed subsequently is limited to 750 ° C. or less.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
First, the steel composition specified in the present invention will be described. In addition, all steel component compositions are mass%.
[0013]
C has a significant effect on machinability because it relates to the basic strength of the steel material and the amount of oxygen in the steel. If the strength is increased by adding a large amount of C, the machinability decreases, so the upper limit was made 0.2%. On the other hand, it is necessary to control the amount of oxygen to an appropriate amount in order to prevent the formation of hard oxides that reduce machinability and to suppress the adverse effects of dissolved oxygen at high temperatures such as pinholes during the solidification process. If the amount of C is simply reduced too much by blowing, not only the cost increases, but also a large amount of oxygen in the steel remains and causes problems such as pinholes. Therefore, the lower limit is set to 0.03% of C, which can easily prevent problems such as pinholes. Further, lowering the C further increases the ductility too much, and also shortens the drill life.
[0014]
S bonds with Mn and exists as MnS inclusions. MnS improves machinability, but elongated MnS is one of the causes of anisotropy during forging. Although coarse MnS should be avoided, it is preferable to add a large amount of MnS from the viewpoint of improving machinability, and it is preferable to finely disperse MnS. To improve machinability, 0.03% or more must be added. On the other hand, if it exceeds 1.0%, not only the generation of coarse MnS is inevitable, but also cracks occur during production due to deterioration of casting properties and hot deformation properties due to FeS or the like. .
[0015]
In addition, MnS means not only pure MnS but also an inclusion mainly containing MnS, and sulfides such as Fe, Ca, Ti, Zr, Mg and REM coexist with MnS by solid solution or bonding. And inclusions such as MnTe in which an element other than S forms a compound with Mn to form a compound with MnS to form a solid solution / bond and coexist with the MnS, or includes the above-mentioned inclusions precipitated with an oxide as a nucleus. In the chemical formula, Mn sulfide-based inclusions that can be expressed as (Mn, X) (S, Y) (here, X: an element other than Mn and a sulfide-forming element other than Y: S that binds to Mn) are collectively referred to. That's what they say.
[0016]
This steel type has a low C, and even if an alloy element is added at the level of a low alloy steel, the hardness is greatly increased and the machinability is not reduced. Rather, as alloying elements capable of improving hardenability and suppressing the generation of coarse pearlite, for example, Mn: 0.05 to 2%, Cr: 0.01 to 2%, V: 0.01 to 1.0%, Nb : 0.005 to 0.2%, Mo: 0.01 to 1.0%, W: 0.05 to 1.0%, Ni: 0.05 to 2.0%, Ti: 0.005 to 0% .2%, B: 0.0005 to 0.02%.
[0017]
Further, it can be combined with an oxide softening technology and a sulfide morphology control technology. Ca: 0.0002 to 0.01%, Zr: 0.0005 to 0.1%, Mg: 0.0003 to 0%. 0.01%, Al: 0.001 to 0.1%, Si: 0.01 to 0.5%, Te: 0.0003 to 0.2%, total-N: 0.001 to 0.02%, One or more of total-O: 0.0005 to 0.035% may be added.
[0018]
In order to further improve the machinability, P: 0.001 to 0.2%, Zn: 0.0005 to 0.5%, Sn: 0.005 to 2.0%, Cu: 0.01 to It is also possible to add one or more of 2.0%, Bi: 0.005 to 0.5%, and Pb: 0.01 to 0.5%.
[0019]
Next, the reason why the pearlite area ratio is set to 5% or less in the present invention will be described.
[0020]
The generation behavior of the constituent cutting edge on the tool greatly affects the cutting surface roughness. Originally, it is considered that mechanically above the cutting tool is the most severe environment for the material, and it is thought that the material is likely to be broken / separated. Constructed cutting edges result from strong adhesion between the materials and non-uniform texture of the work material. Therefore, it was considered important to increase the homogeneity of the microstructure of the material as much as possible. As a result, the present inventor has found that the pearlite distribution, which has been considered to have little relation to the above, is greatly related to the microstructure homogeneity.
[0021]
Here, the pearlite refers to a structure that is blackened by performing a nital etching on a mirror-polished surface. Strictly speaking, pearlite refers to a group composed of alternating ferrite and plate-like cementite, but looks like a single crystal grain with an optical microscope. Further, as shown in FIG. 1, in the production by ordinary rolling and cooling, the pearlite grains are deposited in a band shape (hereinafter referred to as a pearlite band). Since this pearlite has different mechanical properties from the single-phase ferrite of the matrix, it is considered that the deformation fracture near the cutting edge is made non-uniform, and further, the growth of the constituent cutting edge is promoted.
[0022]
Therefore, by adjusting the steel composition or the thermal history, a critical region in which pearlite particles having a particle size of 1 μm or more can be suppressed in the pearlite area ratio in the observation visual field of 4 mm 2 to obtain good surface roughness was investigated. However, in order to suppress the deterioration of the surface roughness, it was found that the area ratio of the pearlite particles having a particle size of 1 μm or more was 5% or less. FIG. 2 shows the relationship between the pearlite area ratio and the surface roughness.
[0023]
As shown in FIG. 1, it can be seen that the free-cutting steel according to the present invention has an extremely small amount of this black-looking structure. Strictly speaking, in the present invention, tempered martensite or tempered bainite structure is obtained, and the possibility that carbide is not pearlite (in other words, striped structure of plate-like cementite and ferrite) but in the form of cementite grains cannot be denied. However, here, such iron-based carbides are collectively referred to as pearlite.
[0024]
Next, a method for producing free-cutting steel according to the present invention will be described.
[Heat history quenching: A 0.5 ° C / s from a temperature of 3 points or more to 550 ° C or less]
In the present invention, as the heat history after hot rolling, it is important to from hot rolling after A 3 point or higher temperature to 550 ° C. or less for cooling in a cooling rate higher than 0.5 ° C. / sec.
[0025]
Conventionally, rapid cooling of so-called low-carbon free-cutting steel has not been performed. Low-carbon free-cutting steel has a small C content, so that it hardly changes in hardness even when it is quenched. Therefore, it is considered that there was no influence on the strength / toughness due to the conventional “quenching and tempering”, and that it was obsessed with the stereotype that free cutting steel was unnecessary. However, when in pursuit of homogeneity of the material thinking going back to the nature of the cutting, freezing the movement in the steel C by quenching from A 3 points, the formation of coarse cementite more pearlite occurring transformation during air cooling It suffices if it can be suppressed. In this case, since hardening by quenching is not the purpose, even if the quenched structure does not have a martensite structure, it is sufficient if the movement of C in the steel is frozen and formation of coarse cementite or pearlite can be prevented. To this end, it is necessary to cool at 0.5 ° C. / sec or faster from the A 3 point to 550 ° C. or less as shown in FIG. A cooling rate of 1 ° C./s or more is preferred, for example, when there are few hardenability improving elements. If the temperature after cooling exceeds 550 ° C. or the cooling rate is lower than 0.5 ° C./sec, coarse pearlite is generated. In general, it precipitates in a band shape and is often called a pearlite band. Naturally, if the alloying element is added in a large amount as in stainless steel, the pearlite band does not occur even if the cooling rate is lower than 0.5 ° C./sec. However, since general free-cutting steel is assumed here, It was defined as 0.5 ° C./sec.
[0026]
Next, in the present invention, the structure of the free-cutting steel can be further homogenized by performing a heat treatment that is maintained at a temperature of 750 ° C. or lower, following the above-described quenching treatment.
[0027]
In the actual manufacturing process, although the C content is small in order to further increase the stability of the product, it is preferable to reduce the hardness variation in steel. Therefore, by maintaining the material at a high temperature again, the variation in the material can be reduced. To initially suppress coarse pearlite is important to rapid cold to 550 ° C. or less no longer cause coarse pearlite from a temperature of more than three points A. Then, as shown in FIG. 4, by maintaining the temperature at the predetermined temperature T 2 ° C again, the hardness can be adjusted to satisfy the demand of the customer, and the hardness variation can be reduced. By heating and compensating to a temperature of 750 ° C. or less, the hardness is adjusted so as to satisfy the demands of customers.
[0028]
With respect to the holding temperature T 2 ° C, the holding temperature and the holding time should be determined so that the hardness meets the demands of the consumer. However, when the retention temperature T 2 ° C exceeds 750 ° C, transformation to austenite starts, and if the cooling rate at the time of re-cooling is low, a pearlite band is generated. Therefore, the retention temperature T 2 ° C was set to 750 ° C or less. Furthermore, since secondary processing such as drawing is often performed in the post-process, it is preferable to adjust the temperature T 2 ° C so that the hardness becomes suitable for handling in the post-process. The retention time is 3 minutes or less in terms of industrial production, and the hardness and the like are hardly changed as compared with the case where no retention is performed.
[0029]
Note industrial production due rolling or forging dimensions, to produce a nonuniform temperature within the steel, it should also be considered coercive constant time at a temperature T 1 ° C. of 550 ° C. or less after quenching for coarse pearlite prevention . Preferably the temperature T 1 ° C. below the 550 ° C. After quenching by retaining more than 5 minutes, regardless of the material size and segregation zone, can promote uniform ferrite transformation. By doing so, coarse pearlite or a pearlite band does not occur even if the temperature is subsequently raised to the retention temperature T 2 ° C (≦ 750 ° C). Conversely, when the size after rolling or forging is large, the internal transformation is not completed if the holding time at 550 ° C. or less is shorter than 1 minute. Coarse pearlite and pearlite bands are formed.
[0030]
【Example】
The effects of the present invention will be described with reference to examples.
[0031]
Some of the test materials shown in Tables 1 and 2 were smelted in a 270 t converter, then continuously cast, slab-rolled into billets, and further rolled to φ50 mm. The others were melted and rolled in a 2t vacuum melting furnace. The drilling characteristics obtained by evaluating the machinability of the example materials shown in Table 1 based on the surface roughness and the drilling characteristics are indicators of tool life. Examples 2, 10, 13, and 17 correspond to claim 1, in which a so-called in-line heat treatment was carried out in which the steel sheet was rolled to a diameter of 20 mm and immediately put into a water tank at the rear end of the rolling line immediately before rolling and before cooling. After the quenching, no heat treatment was performed, and thus the holding temperature T1, the holding time L1, the holding temperature T2, and the holding time L2 are not shown. Examples 5,20,24,27,29 is an example which supplied the lead bath at 500 ° C. from A 3 point or higher. Further, the embodiment in which the holding time L1 is "600 minutes or more" is actually an embodiment in which the holding time L1 is left at the holding temperature T1 for 10 hours or more. In Comparative Examples after Example 34 shown in Table 2, the substantial normalizing process is not performed. Expressed according to this definition, it indicates that it is left to stand after being cooled to room temperature.
[0032]
The embodiment in which all of the holding temperature T1, the holding time L1, the holding temperature L2, and the holding time L2 are indicated is rolled to φ20 mm, and is directly injected into a water tank at the rear end of the rolling line immediately after rolling and before cooling. This is an example in which tempering is performed at a predetermined temperature after heat treatment.
[0033]
Here, the reason for specifying the retention time L1 is to show that the steel material is controlled to be sufficiently cooled to a temperature (550 ° C. or less) where pearlite is hardly generated, as shown in FIG. After cooling, by further controlling the holding temperature L2 and the holding time L2, the hardness of the steel material can be adjusted to a hardness suitable for cutting and wire drawing.
[0034]
As described above, the heat treatment described in the claims of the present invention was carried out by online and offline batch processing, although the method was different.
[0035]
The surface roughness was evaluated by so-called plunge cutting shown in Table 3 in which the tool shape was transferred by a parting-off tool. The outline of the experimental method is shown in FIG. In the experiment, the surface roughness when 200 grooves were processed was measured.
[0036]
Plunge cutting is a cutting method in which a groove is repeatedly machined by a parting-off tool as shown in FIG. 5, and in this embodiment, a stylus of a stylus type roughness meter is moved in a longitudinal direction of a test piece with respect to a bottom surface of the groove. Thereby, the roughness profile of the groove cross section was measured, and the surface roughness was evaluated.
[0037]
Table 4 shows the drilling test conditions used for tool life evaluation. The machinability was evaluated at the highest cutting speed (so-called LV1000) capable of cutting to a cumulative hole depth of 1000 mm.
[0038]
When only the heat treatment conditions were changed with similar chemical components, all of the inventive examples were superior to the comparative example in terms of drill tool life and good in surface roughness in plunge cutting.
[0039]
In the steel corresponding to claim 1, the tool life tends to be slightly reduced because the hardness is increased, but the tool life level is excellent and the tool life level is equivalent to the conventional one.
[0040]
In the example of the invention, coarse pearlite grains are not generally observed as shown in FIG. 6, and no pearlite band is observed. This is because even if the addition amounts of C, S, etc. are different, the order does not change. When elements such as Zn, Sn, B, etc. are added, the tool life is longer than that of the comparative steel having the same C, S contents. It turns out that it is excellent in surface roughness.
[0041]
[Table 1]
Figure 2004169051
[0042]
[Table 2]
Figure 2004169051
[0043]
[Table 3]
Figure 2004169051
[0044]
[Table 4]
Figure 2004169051
[0045]
[Table 5]
Figure 2004169051
[0046]
[Table 6]
Figure 2004169051
[0047]
【The invention's effect】
As described above, the present invention can provide a free-cutting steel excellent in tool life, cutting surface roughness, and chip controllability at the time of cutting by controlling the microstructure of the steel.
[Brief description of the drawings]
FIG. 1 is a view showing the size of pearlite of conventional steel.
FIG. 2 is a diagram showing a relationship between a pearlite area ratio and surface roughness.
FIG. 3 is a view showing heat treatment conditions according to the present invention.
FIG. 4 is a view showing heat treatment conditions according to the present invention.
FIG. 5 is a view showing an experimental method by plunge cutting.
FIG. 6 is a view showing the size of pearlite of free-cutting steel obtained by the present invention.

Claims (3)

質量%で、C:0.03〜0.2%、S:0.03〜1.0%を含み、ミクロ組織において粒径1μmを超えるパーライト粒の占める面積率が5%以下であることを特徴とする被削性に優れる鋼。% By mass, C: 0.03 to 0.2%, S: 0.03 to 1.0%, and the area ratio of pearlite grains having a particle size exceeding 1 μm in the microstructure is 5% or less. Steel with excellent machinability. 質量%で、C:0.03〜0.2%、S:0.03〜1.0%を含む鋼の熱間圧延後の冷却過程において、鋼のA 点以上の温度から0.5℃/sec 以上の冷却速度にて550℃以下まで冷却することにより、鋼のミクロ組織において粒径1μmを超えるパーライト粒の占める面積率が5%以下にすることを特徴とする被削性に優れる鋼の製造方法。By mass% C: 0.03 to 0.2% S: in the course of cooling after hot rolling of steel containing 0.03 to 1.0%, from 0.5 A 3 point or more temperature of the steel By cooling to 550 ° C. or lower at a cooling rate of not lower than 550 ° C./sec, the area ratio of pearlite grains having a grain size of more than 1 μm in the steel microstructure is reduced to 5% or less, and the machinability is excellent. Steel production method. 前記冷却を施した後、次いで行われる硬度調整のための加熱温度を750℃以下に制限することを特徴とする請求項2記載の被削性に優れる鋼の製造方法。The method for producing steel with excellent machinability according to claim 2, wherein a heating temperature for adjusting hardness, which is performed after the cooling, is limited to 750 ° C or less.
JP2002332658A 2002-11-15 2002-11-15 Manufacturing method of steel with excellent machinability Expired - Fee Related JP4323778B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2002332658A JP4323778B2 (en) 2002-11-15 2002-11-15 Manufacturing method of steel with excellent machinability
PCT/JP2003/014547 WO2004050932A1 (en) 2002-11-15 2003-11-14 Steel excellent in machinability and method for production thereof
DE60318745T DE60318745T2 (en) 2002-11-15 2003-11-14 STEEL WITH EXCELLENT CUT-OUTPUT AND MANUFACTURING METHOD THEREFOR
KR1020057008721A KR100708430B1 (en) 2002-11-15 2003-11-14 Steel excellent in machinability and method for production thereof
EP03772791A EP1580287B1 (en) 2002-11-15 2003-11-14 Steel excellent in machinability and method for production thereof
TW092132048A TWI249579B (en) 2002-11-15 2003-11-14 A steel having an excellent cuttability and a method for producing the same
CN2007101960130A CN101215665B (en) 2002-11-15 2003-11-14 Steel having excellent machinability and production method therefor
US10/534,858 US7488396B2 (en) 2002-11-15 2003-11-14 Superior in machinability and method of production of same
US12/288,542 US8137484B2 (en) 2002-11-15 2008-10-20 Method of production of steel superior in machinability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002332658A JP4323778B2 (en) 2002-11-15 2002-11-15 Manufacturing method of steel with excellent machinability

Publications (2)

Publication Number Publication Date
JP2004169051A true JP2004169051A (en) 2004-06-17
JP4323778B2 JP4323778B2 (en) 2009-09-02

Family

ID=32697619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002332658A Expired - Fee Related JP4323778B2 (en) 2002-11-15 2002-11-15 Manufacturing method of steel with excellent machinability

Country Status (2)

Country Link
JP (1) JP4323778B2 (en)
CN (1) CN101215665B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5056876B2 (en) * 2010-03-19 2012-10-24 Jfeスチール株式会社 Hot-rolled steel sheet with excellent cold workability and hardenability and method for producing the same
JP5954483B2 (en) * 2013-02-18 2016-07-20 新日鐵住金株式会社 Lead free cutting steel
CN103498115A (en) * 2013-09-29 2014-01-08 苏州市凯业金属制品有限公司 High-ductility U-shaped metal tube
CN104313466A (en) * 2014-10-31 2015-01-28 武汉钢铁(集团)公司 Low-carbon microalloyed free-cutting steel
CN104388800A (en) * 2014-11-03 2015-03-04 无锡贺邦金属制品有限公司 Lead-tin alloy die casting
CN115349026B (en) * 2020-03-31 2024-03-12 杰富意钢铁株式会社 Free-cutting steel and method for producing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4741786A (en) * 1986-06-10 1988-05-03 Stanadyne, Inc. Cold drawn free-machining steel bar including bismuth

Also Published As

Publication number Publication date
CN101215665B (en) 2010-12-22
CN101215665A (en) 2008-07-09
JP4323778B2 (en) 2009-09-02

Similar Documents

Publication Publication Date Title
KR100708430B1 (en) Steel excellent in machinability and method for production thereof
TWI443201B (en) Hot rolled steel sheet for gas nitrocarburizing and manufacturing method thereof
JP5093422B2 (en) High strength steel plate and manufacturing method thereof
TWI601833B (en) Pickling property, the bolt wire excellent in delayed fracture resistance after quenching and tempering, and a bolt
JP5114689B2 (en) Case-hardened steel and method for producing the same
CN102165085B (en) Environmentally-friendly, Pb-free free-machining steel, and manufacturing method for same
JP2023544639A (en) Rough drawing wire for 5000MPa class diamond wire and its production method
JP7144719B2 (en) Pre-hardened steel materials, molds and mold parts
JP6881613B2 (en) Carburized bearing steel parts and steel bars for carburized bearing steel parts
JP4465057B2 (en) High carbon steel sheet for precision punching
WO2015146174A1 (en) High-carbon hot-rolled steel sheet and method for producing same
TW201538744A (en) High-carbon hot rolled steel sheet and manufacturing method thereof
CN112760561A (en) Wire rod for hand tool and preparation method thereof
JP6569845B1 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP2004176176A (en) Steel superior in machinability
CN113604745A (en) High-sulfur free-cutting tool steel bar and preparation method thereof
JP4323778B2 (en) Manufacturing method of steel with excellent machinability
JP4830239B2 (en) Manufacturing method of low carbon martensitic stainless hot rolled steel sheet with excellent punchability
JP5668942B2 (en) Die steel excellent in hole workability and suppression of machining strain and method for producing the same
JP2004176175A (en) Steel superior in machinability and manufacturing method therefor
TW201502285A (en) Isotropic electromagnetic steel sheet
JP2003034842A (en) Steel for cold forging superior in swarf treatment property
JP4243852B2 (en) Steel for carburized parts or carbonitrided parts, method for producing carburized parts or carbonitrided parts
JP4213948B2 (en) Steel with excellent machinability
KR20100018347A (en) Free-cutting steel with excellent machinability and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090402

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090605

R151 Written notification of patent or utility model registration

Ref document number: 4323778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees