JP2004168803A - One terminal functionalized polyolefin - Google Patents

One terminal functionalized polyolefin Download PDF

Info

Publication number
JP2004168803A
JP2004168803A JP2002332980A JP2002332980A JP2004168803A JP 2004168803 A JP2004168803 A JP 2004168803A JP 2002332980 A JP2002332980 A JP 2002332980A JP 2002332980 A JP2002332980 A JP 2002332980A JP 2004168803 A JP2004168803 A JP 2004168803A
Authority
JP
Japan
Prior art keywords
terminal
mapp
polyolefin
integer
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002332980A
Other languages
Japanese (ja)
Inventor
Takashi Sawaguchi
孝志 澤口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sawaguchi Takashi
Sanei Kogyo KK
Original Assignee
Sawaguchi Takashi
Sanei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sawaguchi Takashi, Sanei Kogyo KK filed Critical Sawaguchi Takashi
Priority to JP2002332980A priority Critical patent/JP2004168803A/en
Publication of JP2004168803A publication Critical patent/JP2004168803A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a one terminal functionalized polyolefin which is a polyolefin having the functional group with rich reactivity at one terminal. <P>SOLUTION: The one terminal functionalized polyolefin has a structure of formula (1) (wherein, m denotes an integer of 2-400,000), formula (2) (wherein, n denotes an integer of 2-400,000), formula (3) (wherein, k denotes an integer of 2-400,000) or formula (4) (wherein, l denotes an integer of 2-400,000). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、片末端に官能基を有する新規ポリオレフィンに関する。このポリオレフィンはその末端の官能基を利用することにより、種々のブロックコポリマーを製造するための原料として好適である。
【0002】
【従来の技術】
近年、新規機能性ポリオレフィン材料の開発が活発に行われている。最近、エチレンの重合反応において、片末端にビニル基(以下、「TV」とする)を有する高密度ポリエチレン(PE)が、また、メタロセン系触媒を用いたプロピレンの重合反応によって片末端にビニリデン基(以下、「TVD」とする)を有する立体規則性ポリプロピレン(PP)が合成されている。
しかしながら、かかるポリマーの末端二重結合を利用して、該末端二重結合を反応性に富む官能基への変換については、主に該ポリマーが高分子量体であるため極めて難しかった。
【0003】
【発明が解決しようとする課題】
片末端に、反応性に富む官能基を有する新規ポリオレフィンを提供する。
【0004】
【発明を解決するための手段】
本発明者らは、このような反応性に富む官能基を有する新規ポリオレフィンを得るべく鋭意研究した結果、片末端に二重結合を有するポリマーから、該片末端二重結合を水酸基、及び無水マレイン酸基に変換することができる方法を見出し、本発明を完成した。
詳しくは、本発明は、以下の一般式(1)、(2)、(3)又は(4)で表される片末端官能基化ポリオレフィンに関する。
【化5】

Figure 2004168803
(式中、mは2〜400000の整数を表す)
【化6】
Figure 2004168803
(式中、nは2〜400000の整数を表す)
【化7】
Figure 2004168803
(式中、kは2〜400000の整数を表す)
【化8】
Figure 2004168803
(式中、lは2〜400000の整数を表す)
以下、本発明を発明の実施の形態に即して説明する。
【0005】
【発明実施の形態】
(末端の官能基が水酸基のポリオレフィン)
一般式(1)、(2)で表されるように、PE又はPPの末端がヒドロキシル化された構造を有する。ここで、PE又はPPの繰り返し単位の数、m、nは特に制限はなく、例えば下で説明する原料である末端二重結合を有するPE又はPPの繰り返し数に依存する。好ましくはm、nは2〜400000である。
これらのヒドロキシル基への変換方法は特に制限はないが、以下式(5)に示す化学反応を好ましく使用できる。
【化9】
Figure 2004168803
【0006】
すなわち、原料である末端二重結合を有するPE又はPPの末端二重結合をハイドロボレーションし、さらに酸化的に分解することにより水酸基を導入できる。この際、原料が高分子量を有するポリマーであることから、反応溶媒の選択と、ホウ素化試薬の選択が重要である。特にPE又はPPの場合は溶媒としてはTHFが好ましく、またホウ素化試薬としてはボランTHF錯体(B.T.C)が好ましく使用できる。また、酸化的分解反応についても通常公知の方法が使用可能であるが、好ましくはアルカリ条件で過酸化水素を用いる。
【0007】
得られた末端の官能基が水酸基のポリオレフィンの分離、又は精製方法についても特に制限はなく通常公知の種々の手段を用いて可能である。また構造の確認方法についても高分子化合物に対する通常公知の種々の化学分析方法、物理化学的分析方法が使用可能である。具体的には、分子量についてはGPC測定方法が使用可能であり、ミクロな構造については、赤外線吸収スペクトルや、核磁気共鳴スペクトル等が使用できる。さらに、物性測定についても従来公知に種々の熱特性、機械特性についての測定方法が使用できる。
【0008】
(末端の官能基が無水マレイン酸基のポリオレフィン)
一般式(3)、(4)で表されるように、PP又はポリスチレン(PS)の末端が無水マレイン酸化された構造を有する。ここで、PP又はPSの繰り返し単位の数、l、kは特に制限はなく、例えば下で説明する原料である末端二重結合を有するPP又はPSの繰り返し数に依存する。好ましくはl、kは2〜400000である。
これらの無水マレイン酸基への変換方法は特に制限はないが、以下式(6)に示す化学反応を好ましく使用できる。
【化10】
Figure 2004168803
【0009】
すなわち、原料である末端二重結合に対して溶媒中で無水マレイン酸と加熱ことにより無水マレイン酸基を導入できる。この際、原料が高分子量を有するポリマーであることから、反応溶媒の選択が特に重要である。特にPP又はPSの場合は溶媒としてはデカリンが好ましく、加熱温度は溶媒の還流温度である。
得られた末端の官能基が無水マレイン酸基のポリオレフィンの分離、又は精製方法についても特に制限はなく通常公知の種々の手段を用いて可能である。また構造の確認方法についても高分子化合物に対する通常公知の種々の化学分析方法、物理化学的分析方法が使用可能である。具体的には、分子量についてはGPC測定方法が使用可能であり、ミクロな構造については、赤外線吸収スペクトルや、核磁気共鳴スペクトル等が使用できる。さらに、物性測定についても従来公知に種々の熱特性、機械特性についての測定方法が使用できる。
【0010】
【実施例】
本発明を実施例によりさらに詳細に説明する。また片末端TVDイソタクチックPP、片末端TVDアタクチックPPをそれぞれMiPP及びMaPPと略記する。
MiPP(Mn=1.05×10、Mw/Mn=1.54、粉末状)及びMaPP(Mn=9.48×10、Mw/Mn=1.97、ゴム状)はチッソ石油化学(株)製のものを、また片末端ビニルPE(Mn=1.20×10、Mw/Mn=16.4、ペレット状)は昭和油化(株)製のものをそのまま使用した。場合によりPEは再沈殿精製して粉末として使用した。
【0011】
(実施例1)
MiPP及びPEの末端ヒドロキシル化は、試料の微粉末を調製し、これを窒素雰囲気下でTHF溶媒中に分散させ、また、MaPPの場合はTHF溶媒中に溶解して、ボランTHF錯体(B.T.C)を加え、末端をヒドロホウ素化した後、5MNaOH及びHを加えて酸化反応を行い、得られた生成物をそれぞれMiPP−OH、MaPP−OH及びPE−OHとした。
図1(a)、(b)には、それぞれTHF溶液系におけるMaPPとMaPP−OHのIRスペクトルを示した。MaPP(図1(a))の末端ビニリデン基に由来する886cm−1付近の吸収がMaPP−OH(図1(b))では消失し、新たにヒドロキシル基に由来するブロードな吸収が3400cm−1付近に現れることが分かる。また図2にはそれぞれTHF溶液系におけるMaPPとMaPP−OHのH−NMRスペクトルを示した。MaPP−OHではMaPPの末端ビニリデン基に由来する4.6〜4.8ppm付近のシグナルがほぼ完全に消失し、新たにヒドロキシル基に隣接するメチレンプロトン由来のシグナルが3.4〜3.5ppm付近に出現した。以上の結果は、MaPPの末端ヒドロキシル化がぼほ定量的に進行したことを意味する。
【0012】
(実施例2)
MiPP及びMaPPの末端無水マレイン酸化は、試料/無水マレイン酸のモル比を1/50になるようにそれぞれ採取し、デカヒドロナフタレン溶媒中、窒素気流下、190℃で24時間加熱還流後、生成した沈殿物をそれぞれMiPP−MA及びMaPP−MAとした。
図1(c)、図3に、それぞれMiPP−MA及びMaPP−MAのIRスペクトルを示した。MiPP(図4)の末端ビニリデン基に由来する886cm−1付近の吸収は確認することが出来なかったが、MiPP−MA及びMaPP−MA(図1(c))どちらにおいても1870cm−1及び1780cm−1付近に無水コハク酸環由来の吸収が新たに出現することが分かる。これらの結果はMiPP及びMaPPの末端無水マレイン酸化が進行していることを意味する。
【0013】
【発明の効果】
本発明のポリオレフィンは、片末端に反応性に富む官能基(水酸基、無水マレイン酸基)を有するものであり、このポリオレフィンはその末端の官能基を利用することにより、種々のブロックコポリマーを製造するための原料として好適である。
【図面の簡単な説明】
【図1】MaPP、MaPP−OH、及びMaPP−MAのIRスペクトルを示した。
【図2】MaPP、MaPP−OHのNMRスペクトルを示した。実施例1で合成して使用したiPP−OHおよび合成されたiPP−DRF8のH−NMRスペクトルである。
【図3】MiPP、MiPP−MAのIRスペクトルを示した。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a novel polyolefin having a functional group at one end. This polyolefin is suitable as a raw material for producing various block copolymers by utilizing the terminal functional groups.
[0002]
[Prior art]
In recent years, new functional polyolefin materials have been actively developed. Recently, in the polymerization reaction of ethylene, high-density polyethylene (PE) having a vinyl group (hereinafter, referred to as “TV”) at one end, and a vinylidene group at one end by a polymerization reaction of propylene using a metallocene catalyst. (Hereinafter, referred to as “TVD”) stereoregular polypropylene (PP) has been synthesized.
However, it has been extremely difficult to convert the terminal double bond into a functional group having high reactivity by utilizing the terminal double bond of such a polymer, mainly because the polymer is a high molecular weight polymer.
[0003]
[Problems to be solved by the invention]
Provided is a novel polyolefin having a highly reactive functional group at one end.
[0004]
[Means for Solving the Invention]
The present inventors have conducted intensive studies to obtain a novel polyolefin having such a reactive functional group. As a result, a polymer having a double bond at one end was converted from a polymer having a double bond at one end to a hydroxyl group and maleic anhydride. The inventors have found a method capable of converting to an acid group, and have completed the present invention.
More specifically, the present invention relates to a polyolefin having a single-terminal functional group represented by the following general formula (1), (2), (3) or (4).
Embedded image
Figure 2004168803
(In the formula, m represents an integer of 2 to 400,000)
Embedded image
Figure 2004168803
(In the formula, n represents an integer of 2 to 400,000)
Embedded image
Figure 2004168803
(Where k represents an integer of 2 to 400,000)
Embedded image
Figure 2004168803
(In the formula, 1 represents an integer of 2 to 400,000)
Hereinafter, the present invention will be described based on embodiments of the present invention.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
(Terminal functional group is hydroxyl group polyolefin)
As represented by the general formulas (1) and (2), the terminal of PE or PP has a hydroxylated structure. Here, the number of repeating units of PE or PP, m and n, is not particularly limited, and depends on, for example, the number of repeating PE or PP having a terminal double bond which is a raw material described below. Preferably, m and n are 2 to 400,000.
The method for converting these hydroxyl groups is not particularly limited, but a chemical reaction represented by the following formula (5) can be preferably used.
Embedded image
Figure 2004168803
[0006]
That is, a hydroxyl group can be introduced by hydroborating a terminal double bond of PE or PP having a terminal double bond, which is a raw material, and further decomposing oxidatively. At this time, since the raw material is a polymer having a high molecular weight, it is important to select a reaction solvent and a boration reagent. Particularly in the case of PE or PP, THF is preferable as the solvent, and a borane THF complex (BTC) can be preferably used as the boration reagent. A known method can be used for the oxidative decomposition reaction, but hydrogen peroxide is preferably used under alkaline conditions.
[0007]
The method for separating or purifying the obtained polyolefin having a terminal functional group of a hydroxyl group is not particularly limited, and can be carried out using various known means. As for the method of confirming the structure, various commonly known chemical analysis methods and physicochemical analysis methods for polymer compounds can be used. Specifically, a GPC measurement method can be used for the molecular weight, and an infrared absorption spectrum, a nuclear magnetic resonance spectrum, or the like can be used for a microstructure. Further, for the measurement of physical properties, various methods for measuring heat and mechanical properties can be used.
[0008]
(Polyolefin whose terminal functional group is maleic anhydride group)
As represented by the general formulas (3) and (4), the terminal of PP or polystyrene (PS) has a structure in which maleic anhydride is oxidized. Here, the number of repeating units of PP or PS, l, k, is not particularly limited, and depends on, for example, the number of repeating PP or PS having a terminal double bond, which is a raw material described below. Preferably, l and k are 2 to 400,000.
There is no particular limitation on the method of converting these into maleic anhydride groups, but a chemical reaction represented by the following formula (6) can be preferably used.
Embedded image
Figure 2004168803
[0009]
That is, a maleic anhydride group can be introduced by heating with maleic anhydride in a solvent to a terminal double bond as a raw material. At this time, since the raw material is a polymer having a high molecular weight, selection of a reaction solvent is particularly important. Particularly in the case of PP or PS, the solvent is preferably decalin, and the heating temperature is the reflux temperature of the solvent.
The method for separating or purifying the resulting polyolefin having a maleic anhydride functional group at the terminal is not particularly limited, and can be carried out using various known means. As for the method of confirming the structure, various commonly known chemical analysis methods and physicochemical analysis methods for polymer compounds can be used. Specifically, a GPC measurement method can be used for the molecular weight, and an infrared absorption spectrum, a nuclear magnetic resonance spectrum, or the like can be used for a microstructure. Further, for the measurement of physical properties, various methods for measuring heat and mechanical properties can be used.
[0010]
【Example】
The present invention will be described in more detail by way of examples. One-terminal TVD isotactic PP and one-terminal TVD atactic PP are abbreviated as MiPP and MaPP, respectively.
MiPP (Mn = 1.05 × 10 4 , Mw / Mn = 1.54, powdery) and MaPP (Mn = 9.48 × 10 4 , Mw / Mn = 1.97, rubbery) are available from Chisso Petrochemical ( One end vinyl PE (Mn = 1.20 × 10 4 , Mw / Mn = 16.4, pellet form) manufactured by Showa Yuka Co., Ltd. was used as it was. In some cases, PE was purified by reprecipitation and used as a powder.
[0011]
(Example 1)
For the terminal hydroxylation of MiPP and PE, a fine powder of a sample was prepared and dispersed in a THF solvent under a nitrogen atmosphere, and in the case of MaPP, the borane THF complex (B. TC), the terminal was hydroborated, and 5 M NaOH and H 2 O 2 were added to perform an oxidation reaction, and the obtained products were MiPP-OH, MaPP-OH, and PE-OH, respectively.
1A and 1B show IR spectra of MaPP and MaPP-OH in a THF solution system, respectively. Absorption around 886 cm −1 derived from the terminal vinylidene group of MaPP (FIG. 1A) disappears in MaPP-OH (FIG. 1B), and broad absorption newly derived from the hydroxyl group is 3400 cm −1. It can be seen that it appears near. FIG. 2 shows 1 H-NMR spectra of MaPP and MaPP-OH in a THF solution system. In MaPP-OH, the signal around 4.6 to 4.8 ppm derived from the terminal vinylidene group of MaPP almost completely disappears, and the signal derived from the methylene proton adjacent to the hydroxyl group newly appears around 3.4 to 3.5 ppm. Appeared. The above results indicate that the terminal hydroxylation of MaPP proceeded almost quantitatively.
[0012]
(Example 2)
The maleic anhydride oxidation of MiPP and MaPP was carried out by taking a sample / maleic anhydride in a molar ratio of 1/50 and heating and refluxing at 190 ° C. for 24 hours in a decahydronaphthalene solvent under a nitrogen stream. The resulting precipitates were designated as MiPP-MA and MaPP-MA, respectively.
FIGS. 1C and 3 show IR spectra of MiPP-MA and MaPP-MA, respectively. Although absorption near 886 cm −1 derived from the terminal vinylidene group of MiPP (FIG. 4) could not be confirmed, both MiPP-MA and MaPP-MA (FIG. 1 (c)) were 1870 cm −1 and 1780 cm −1. It can be seen that an absorption derived from a succinic anhydride ring newly appears around -1 . These results indicate that the maleic anhydride oxidation of MiPP and MaPP is in progress.
[0013]
【The invention's effect】
The polyolefin of the present invention has a highly reactive functional group (hydroxyl group, maleic anhydride group) at one terminal, and this polyolefin produces various block copolymers by utilizing the terminal functional group. As a raw material for this.
[Brief description of the drawings]
FIG. 1 shows IR spectra of MaPP, MaPP-OH, and MaPP-MA.
FIG. 2 shows NMR spectra of MaPP and MaPP-OH. 1 is a 1 H-NMR spectrum of iPP-OH synthesized and used in Example 1 and synthesized iPP-DRF8.
FIG. 3 shows IR spectra of MiPP and MiPP-MA.

Claims (1)

一般式(1)、(2)、(3)又は(4)で表される片末端官能基化ポリオレフィン。
Figure 2004168803
(式中、mは2〜400000の整数を表す)
Figure 2004168803
(式中、nは2〜400000の整数を表す)
Figure 2004168803
(式中、kは2〜400000の整数を表す)
Figure 2004168803
(式中、lは2〜400000の整数を表す)
A polyolefin functionalized at one end represented by the general formula (1), (2), (3) or (4).
Figure 2004168803
(In the formula, m represents an integer of 2 to 400,000)
Figure 2004168803
(In the formula, n represents an integer of 2 to 400,000)
Figure 2004168803
(Where k represents an integer of 2 to 400,000)
Figure 2004168803
(In the formula, 1 represents an integer of 2 to 400,000)
JP2002332980A 2002-11-18 2002-11-18 One terminal functionalized polyolefin Pending JP2004168803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002332980A JP2004168803A (en) 2002-11-18 2002-11-18 One terminal functionalized polyolefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002332980A JP2004168803A (en) 2002-11-18 2002-11-18 One terminal functionalized polyolefin

Publications (1)

Publication Number Publication Date
JP2004168803A true JP2004168803A (en) 2004-06-17

Family

ID=32697815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002332980A Pending JP2004168803A (en) 2002-11-18 2002-11-18 One terminal functionalized polyolefin

Country Status (1)

Country Link
JP (1) JP2004168803A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011524461A (en) * 2008-06-20 2011-09-01 エクソンモービル・ケミカル・パテンツ・インク Functionalized, propylene-based oligomers with a high proportion of vinyl end groups

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011524461A (en) * 2008-06-20 2011-09-01 エクソンモービル・ケミカル・パテンツ・インク Functionalized, propylene-based oligomers with a high proportion of vinyl end groups

Similar Documents

Publication Publication Date Title
Fang et al. Synthesis, characterization, and pyrolytic conversion of a novel liquid polycarbosilane
JP5011350B2 (en) Polycarbosilane and method for producing the same
JP3719727B2 (en) Method for producing polyolefin having functional group at terminal
Chen et al. Synthesis of hydrophobic polymer brushes on silica nanoparticles via the combination of surface-initiated ATRP, ROP and click chemistry
Yang et al. Insights into poly (3‐hexylthiophene)‐b‐poly (ethylene oxide) block copolymer: synthesis and solvent‐induced structure formation in thin films
Itoh et al. Various silicon‐containing polymers with Si (H) C C units
Li et al. Block and star block copolymers by mechanism transformation 9: Preparation and characterization of poly (methyl methacrylate)/poly (1, 3‐dioxepane)/polystyrene ABC miktoarm star copolymers by combination of reversible addition–fragmentation chain‐transfer polymerization and cationic ring‐opening polymerization
Woo et al. Dehydrohomopolymerization and dehydrocopolymerization of new alkylsilanes: synthesis of poly (3-aryl-1-silabutanes)
Huang et al. Synthesis and properties of liquid polycarbosilanes with hyperbranched structures
Li et al. Synthesis of POSS‐terminated polycyclooctadiene telechelics via ring‐opening metathesis polymerization
CN108794744A (en) A kind of polyoxazoline Type of Collective object and preparation method thereof
JP2004168803A (en) One terminal functionalized polyolefin
You et al. Controlled alternating copolymerization of St with MAh in the presence of DBTTC
Shim et al. Novel thermoplastic elastomers. III. Synthesis, characterization, and properties of star‐block copolymers of poly (indene‐b‐isobutylene) arms emanating from cyclosiloxane cores
Riyajan et al. Cationic cyclization of purified natural rubber in latex form with a trimethylsilyl triflate as a novel catalyst
Schué et al. Molecular bottle brushes with positioned selenols: extending the toolbox of oxidative single polymer chain folding with conformation analysis by atomic force microscopy
Huang et al. Synthesis of azide end‐functionalized isotactic polypropylene building block and renewed modular synthesis of diblock copolymers of isotactic polypropylene and poly (ε‐caprolactone)
JP2004339445A (en) End-aminated polyolefin and its production process
JP4686022B2 (en) Terminally maleated oligoolefin / diaminopolydimethylsiloxane multiblock copolymer and process for producing the same
Narita et al. Anionic polymerization reactivity of 1, 2, 2-trifluorostyrene
Jia et al. Synthesis of poly (ethylene oxide) with pending 2, 2, 6, 6‐tetramethylpiperidine‐1‐oxyl groups and its further initiation of the grafting polymerization of styrene
Schroers et al. Grafting of Vinyl‐Type Polynorbornene on Polybutadiene and Polyisoprene
JP3816690B2 (en) Saturated hydrocarbon polymer having carboxylic acid group derivative at terminal and method for producing the same
JPH08120082A (en) Production of polysilane
JPH06306112A (en) Production of ethylene/polar monomer block copolymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060216

A131 Notification of reasons for refusal

Effective date: 20060224

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20060622

Free format text: JAPANESE INTERMEDIATE CODE: A02