JP2004168585A - Steel fiber for reinforcement - Google Patents

Steel fiber for reinforcement Download PDF

Info

Publication number
JP2004168585A
JP2004168585A JP2002335305A JP2002335305A JP2004168585A JP 2004168585 A JP2004168585 A JP 2004168585A JP 2002335305 A JP2002335305 A JP 2002335305A JP 2002335305 A JP2002335305 A JP 2002335305A JP 2004168585 A JP2004168585 A JP 2004168585A
Authority
JP
Japan
Prior art keywords
steel fiber
concrete
reinforcing steel
center
corrugated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002335305A
Other languages
Japanese (ja)
Inventor
Yoshitaka Nishida
義孝 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2002335305A priority Critical patent/JP2004168585A/en
Publication of JP2004168585A publication Critical patent/JP2004168585A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel fiber for reinforcement which has excellent bending toughness particularly and improved reinforcing effect to concrete by improving the shape and the material of the steel fiber. <P>SOLUTION: The steel fiber 1 for reinforcement is uniformly dispersed in concrete to enhance the strength of the concrete. Two or more wavy parts, particularly two wave parts A1 and A2 are provided in the vicinity of both end parts in the longitudinal direction. The height of at least one pair of A1 and A2 adjacent to each other in ≥2 wave parts is higher in the end part side than that in the center side. It is preferable to increase the height of ≥2 wave parts from the center side toward the end part side. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、コンクリートやモルタル等の中に混入して強度および靭性を向上させる補強用鋼繊維(以下、単に「鋼繊維」とも称する)に関し、詳しくは、その形状および材質を改良することにより補強効果を向上した補強用鋼繊維に関する。
【0002】
【従来の技術】
従来より、鋼繊維をコンクリート中に均一に分散させてコンクリート自体の引っ張り強度や曲げ強度、曲げタフネス、ひび割れ性等の機械的強度を改善することが行われている。かかる鋼繊維に要求される特性としては、引っ張り強度およびコンクリートとの密着性が特に重要な因子になっている。これらの特性のうち、引っ張り強度については、鋼繊維の材質や直径を適宜選択することにより目的とする値を確保することができるが、鋼繊維とコンクリートとの密着性に関しては、これまで十分なものが得られていないのが実情であった。
【0003】
鋼繊維のコンクリートに対する密着性の形態は、コンクリートに付加される応力に応じて種々変化し、コンクリートに応力が付加される初期段階では、鋼繊維とコンクリートとの界面における接着による形態であり、応力が付加される後期の段階、即ち、より高い歪みが加わる段階では、かかる接着による密着から、その相互間における摩擦抵抗による密着に移行するものと考えられ、この後期段階における摩擦抵抗を高めるための物理的、機械的な密着方法が従来より検討されてきた。
【0004】
この点に関する従来技術として、例えば、特許文献1には、鋼繊維の両端を折り曲げてフックを設けた形状となしてコンクリートの摩擦抵抗を高める技術が記載されており、特許文献2には、波形を付与した鋼繊維とすることによりコンクリートの摩擦抵抗を高める技術が記載されている。
【0005】
しかし、前者の鋼繊維の両端部にフックを設けたコンクリート補強鋼繊維では、要求されるに十分な摩擦抵抗が得られない場合があり、補強効果に劣るという欠点があった。また、後者の鋼繊維の長さ全域にわたって波形を付与した鋼繊維では、鋼線の強度が低い場合、鋼繊維の中央付近でコンクリートにひびが入ると、摩擦抵抗が大きいために鋼繊維が破断する場合があり、また補強方向の有効長さが短縮されるという問題があった。
【0006】
上述の問題を解決する鋼繊維として、本出願人は先に、繊維の側面から見た形状が、中央部付近はほぼ直線であり、両端部付近は波形状の湾曲部を1乃至5個夫々有している補強鋼繊維を提案した(特許文献3を参照)。また、より高い密着性の要求、特にコンクリートの圧縮強度が30N/mm以上の場合の最大曲げ応力および曲げタフネスの特性を更に向上させる要求に対して、中央部分が真直部であり、これに連続する波形状部、前記真直部と同方向に伸びる真直部、および、フック形状部または波形状部を順次備えたコンクリート補強用鋼繊維についても提案している(特許文献4を参照)。
【0007】
【特許文献1】
特公昭60−9976号公報(特許請求の範囲等)
【特許文献2】
特開平5−19400号公報(特許請求の範囲等)
【特許文献3】
特開平10−194802号公報(特許請求の範囲等)
【特許文献4】
特開2000−119052号公報(特許請求の範囲等)
【0008】
【発明が解決しようとする課題】
しかしながら、年々高まりつつあるコンクリート強度に関する要求水準の要請から、さらに強靭なコンクリート構造を得るために、より補強効果の高い補強用鋼繊維を実現することが求められていた。
【0009】
そこで本発明の目的は、鋼繊維の形状および材質を改良することにより、特に曲げ靭性性能に優れ、コンクリートに対する補強効果が向上された補強用鋼繊維を提供することにある。
【0010】
【課題を解決するための手段】
上記課題を解決するために、本発明の補強用鋼繊維は、コンクリート中に均一に分散されて該コンクリートの強度を高める補強用鋼繊維において、長手方向両端部近傍に夫々2個以上の波形部を有し、該2個以上の波形部のうち、少なくとも隣接する1組の波高が、中央寄りよりも端部側において高くなっていることを特徴とするものである。特には、前記2個以上の波形部の波高が、中央寄りから端部側に向かって順に高くなっていることが好ましく、また、前記波形部を、長手方向両端部近傍に夫々2個有するものとすることも好ましい。
【0011】
本発明の補強用鋼繊維においては、炭素含有量が0.12重量%以上であることが好ましい。また、好適には、長手方向最端部に位置する波形部の波高が、0.4mm以上の高さであり、長手方向端部の断面中心が、長手方向中央付近における直線状部の断面中心に対し、線径の2/3以内の偏差を有する。さらに、本発明の補強繊維は、好適には、長さ30〜60mmで、線径0.5〜1.0mmのものである。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
図1(イ)に、本発明の補強用鋼繊維の一例の長手方向断面図を示す。本発明の補強用鋼繊維1は、長手方向両端部近傍に夫々2個以上、図示する例では2個の波形部A,Aを有し、この2個以上の波形部A,Aの波高w,wが、中央寄りから端部側に向かって高くなっている。即ち、wおよびwがw<wを満たすような形状に形成されている点に特徴がある。これにより、鋼繊維とコンクリートとの間の摩擦抵抗を高めて、コンクリート破損時におけるコンクリートの脱落までの鋼繊維の変形量を大きく確保することができ、コンクリートの脱落を良好に防止することが可能となる。
【0013】
ここで、波形状の鋼繊維がコンクリートから引き抜かれるときの摩擦抵抗につき検討すると、この抵抗力は、鋼繊維の外形によって形成されるコンクリート内の波形状の空間を、鋼繊維が曲げ加工されながら引き抜かれるときの加工抵抗力であると考えられる。一方、鋼繊維が引き抜かれる際には、鋼繊維自体の曲げ加工以外に、鋼繊維の周囲のコンクリート壁の破壊現象が伴う。このコンクリート壁の破壊が起こった場合、鋼繊維が通過するための波形状の空間が大きくなるので、曲げ加工量は低下し、そのために摩擦抵抗が低減することになる。
【0014】
この場合、鋼繊維の端部近傍に形成された複数の波形部が全て同一の波高を有しているとすると(図2(イ)および(ロ)中の波形部A’,A’2の波高w’,w’を参照)、1本の鋼繊維が引き抜かれる際に、引き抜き方向前方に位置する、即ち、中央寄りの波形部の引き抜きに伴ってその周辺のコンクリート壁が破壊されることにより、隣接する引き抜き方向後方の波形部は、先行する波形部が引き抜かれた部分を容易に通過できることとなり、即ち、各波形部において、コンクリート壁に対する引抜抵抗力は各一回しか働かないことになる。
【0015】
一方、本発明におけるように、連続する波形部の波高を中央寄りから端部側に向かって増大させて形成した場合、先行する中央寄りの波形部が引き抜かれた部分でコンクリート壁が破壊されていたとしても、その波形部よりも波高の大きい端部側の波形部がその部分を通過するためにはより大きな空間が必要となるので、端部側の波計部が完全に引き抜かれるまでには複数回の曲げ加工ないしコンクリートの破壊を伴うことになり、従って、引抜抵抗力が増大するのである。
【0016】
波形部がn個の場合には(図示せず)、中央寄りから連続する波形部A,A・・・Aのうち、少なくとも隣接する1組AおよびAk+1の波高wおよびwk+1が、w<wk+1を満たし、即ち、中央寄りよりも端部側において高くなるようにすることで、本発明の効果を得ることができる。好適には、波形部A,A・・・Aの波高w,w・・・wが、中央寄りから端部側に向かって順に高くなるような形状、即ち、全ての波形部がw<wn+1を満たすような形状に形成されていることが好ましい。これにより、最も効果的に本発明の効果を得ることができる。
【0017】
本発明において鋼繊維の両端部近傍のみに波形部を設け、中央部C(図1(イ)参照)については直線状に形成するのは、鋼繊維の破断強さに見合う引抜力を持たせれば十分であるので、中央部分の波形部は不要だからである。なお、両端部近傍の波形部は、通常、図示するように同一方向に設けるが、特に制限されるものではなく、互いに逆方向に設けてもよい。
【0018】
鋼繊維の材質としては、炭素含有量が0.12重量%以上、好ましくは0.15〜0.20重量%程度のものを用いることが好適であり、これにより鋼繊維の変形を適切に抑制して、コンクリートの脱落をより効果的に防止することができる。鋼繊維の線径としては、0.5〜1.0mm程度とすることができるが、この場合、炭素含有量が0.17重量%の鋼繊維を用いることにより、1000〜1500MPa程度の抗張力を得ることができる。
【0019】
また、鋼繊維の長さは、特に制限はないが、好適には40〜50mm程度とする。あまり短過ぎると、本発明に係る引抜力が十分に働かず、一方長過ぎても、性能は向上するがコンクリート施工性の低下をまねく上、コスト高となる。さらに、波形部の波長Lは、3〜6mm程度とすることができる。波長Lが3mm未満であると波形付け加工が困難になるとともに、小さな屈曲形状になると鋼繊維本体の強度低下を起こし、鋼繊維が破断して、必要な引抜抵抗力が得られない。一方、6mmを超えると、中央の直線状部が短くなって鋼繊維の長さの効果が低下してしまう。
【0020】
波形部の波高は、好ましくは0.05〜0.8mmであり、特に、長手方向最端部に位置する波形部の波高については、0.4mm以上の高さであることが好ましい。波形部の波高が低過ぎると十分な屈曲効果が得られず、鋼繊維のコンクリートからの引抜抵抗力が低下してしまう。一方、波高が高過ぎると必要以上の引抜抵抗力となり、鋼繊維が破断して、必要な引抜抵抗力が得られないことのほか、鋼繊維の長さの効果が低下してしまう。また、最端部の波高を0.4mm以上と高くすることにより、コンクリートの脱落までの鋼繊維の変形を大きく取ることができるので、引抜抵抗力を十分高めて、コンクリートの脱落防止効果をより良好に得ることができる。
【0021】
同様の観点より、本発明の鋼繊維における長手方向端部の断面中心bは、長手方向中央付近における直線状部Cの断面中心cに対し、線径の2/3以内の偏差xを有することが好ましい(図1(ロ)参照)。例えば、線径を0.75mmとした場合には、長手方向端部の断面中心bの、長手方向中央付近における直線状部の断面中心cに対する偏差xは、好適には±0.5mm以内とする。即ち、図2(イ)および(ロ)に示すように、長手方向端部の断面中心b’が、長手方向中央付近における直線状部Cの断面中心c’に対して線径の2/3を超える偏差x’を持つような、いわば両端部が中心線から大きく外れた形状を有する従来の鋼繊維に比べると、本発明の鋼繊維は、両端部が中心線に近い位置にあり、鋼繊維全体として直線的な形状となっているといえる。
【0022】
【実施例】
以下、実施例により本発明を具体的に説明する。
実施例
炭素含有量0.17重量%、線径5.5mmの鋼線材を、通常のダイス伸線加工により線径0.75mm、強度1400MPaの鋼繊維とし、これを複数本一面上に平行に引き揃えて、水溶性接着剤を用いて固着し、帯状体とした。この帯状体に対し、形付け部材および切断用カッターを備えた回転式治具を用いて形付けおよび切断処理を行って、図1に示すような、長手方向両端部近傍に夫々2個の波形部A,Aを有する長さ43mmの補強用鋼繊維1を得た。この補強用鋼繊維1の各部の寸法は、下記の表1中に示したとおりである。
【0023】
従来例1
炭素含有量0.09重量%、線径5.5mmの鋼線材を、通常のダイス伸線加工により線径0.75mm、強度1300MPaの鋼繊維とし、実施例と同様の回転式治具を用いて、図2に示すような補強用鋼繊維11を得た。この補強用鋼繊維11の各部の寸法は、下記の表1中に示したとおりである。
【0024】
従来例2
炭素含有量0.17重量%の鋼線材を用いた以外は従来例1と同様にして、 補強用鋼繊維11を得た。
【0025】
【表1】

Figure 2004168585
【0026】
実施例および従来例で得られた各鋼繊維をコンクリート中に混入し、均一に分散させて、鋼繊維補強コンクリート試料を作製した。この各コンクリート試料につき、3等分点曲げ試験を行い、5mm曲げ荷重(kN)を測定して、補強強度を評価した。この結果を、各任意の回数での測定により得た曲げ荷重値の頻度の度数として、図3〜5に夫々示す。
【0027】
図3〜5の結果からわかるように、図1に示す形状の鋼繊維を用いて補強した実施例のコンクリート試料においては、図2に示す従来の鋼繊維を用いて補強した従来例1の試料において見られた曲げ荷重15.0kN未満の発生頻度がほとんどなくなり、良好に曲げ靭性が向上していることが確かめられた。従来例2の試料では、炭素含有率を高めたことにより、従来例1に比して、全体として曲げ荷重値は向上しているが、実施例では、この従来例2と比べても平均曲げ荷重値が高くなっており、より強靭な補強コンクリートが得られていることがわかる。
【0028】
【発明の効果】
以上説明してきたように、本発明によれば、鋼繊維の形状および材質を改良することにより、特に曲げ靭性性能に優れ、コンクリートに対する補強効果が向上された補強用鋼繊維を実現することができた。
【図面の簡単な説明】
【図1】本発明の補強用鋼繊維を示す、(イ)は断面図であり、(ロ)は、その長手方向の一端部の拡大図である。
【図2】従来の補強用鋼繊維を示す、(イ)は断面図であり、(ロ)は、その長手方向の一端部の拡大図である。
【図3】実施例の曲げ靭性性能を示すグラフである。
【図4】従来例1の曲げ靭性性能を示すグラフである。
【図5】従来例2の曲げ靭性性能を示すグラフである。
【符号の説明】
1,11 補強用鋼繊維[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a reinforcing steel fiber (hereinafter, also simply referred to as “steel fiber”) that is mixed in concrete, mortar, or the like to improve strength and toughness, and in particular, is reinforced by improving its shape and material. The present invention relates to a reinforcing steel fiber having improved effects.
[0002]
[Prior art]
BACKGROUND ART Conventionally, steel fibers have been uniformly dispersed in concrete to improve the mechanical strength of the concrete itself such as tensile strength, bending strength, bending toughness, and cracking property. As properties required for such steel fibers, tensile strength and adhesion to concrete are particularly important factors. Among these properties, the desired value can be secured for the tensile strength by appropriately selecting the material and diameter of the steel fiber, but the adhesion between the steel fiber and the concrete has not been sufficiently high. The fact was that nothing was available.
[0003]
The form of adhesion of steel fiber to concrete varies in accordance with the stress applied to concrete, and at the initial stage when stress is applied to concrete, it is a form due to adhesion at the interface between steel fiber and concrete. Is added at a later stage, that is, at a stage where a higher strain is applied, it is considered that the transition from the adhesion by the adhesion to the adhesion by the frictional resistance between them is considered. Physical and mechanical adhesion methods have been studied conventionally.
[0004]
As a prior art relating to this point, for example, Patent Literature 1 describes a technique in which both ends of a steel fiber are bent to form hooks to increase the frictional resistance of concrete, and Patent Literature 2 discloses a waveform. Patent Document 1 discloses a technique for increasing the frictional resistance of concrete by using a steel fiber provided with.
[0005]
However, in the case of the concrete reinforcing steel fiber in which hooks are provided at both ends of the former steel fiber, a sufficient frictional resistance may not be obtained in some cases, and the reinforcing effect is poor. Also, in the latter steel fiber with a corrugated shape over the entire length of the steel fiber, when the strength of the steel wire is low, if the concrete cracks near the center of the steel fiber, the steel fiber breaks due to high frictional resistance And the effective length in the reinforcing direction is reduced.
[0006]
As a steel fiber that solves the above-mentioned problem, the present applicant has previously found that the shape viewed from the side of the fiber is substantially straight near the center and 1 to 5 wavy curved portions near both ends. The proposed reinforcing steel fiber has been proposed (see Patent Document 3). In addition, in order to meet the demand for higher adhesion, particularly for further improving the properties of the maximum bending stress and bending toughness when the compressive strength of concrete is 30 N / mm 2 or more, the central part is a straight part, A concrete reinforcing steel fiber having a continuous wave-shaped portion, a straight portion extending in the same direction as the straight portion, and a hook-shaped portion or a wave-shaped portion is also proposed (see Patent Document 4).
[0007]
[Patent Document 1]
Japanese Patent Publication No. 60-9976 (Claims, etc.)
[Patent Document 2]
JP-A-5-19400 (claims, etc.)
[Patent Document 3]
JP-A-10-194802 (Claims, etc.)
[Patent Document 4]
JP 2000-119052 A (Claims, etc.)
[0008]
[Problems to be solved by the invention]
However, in view of the demand for concrete strength, which is increasing year by year, there has been a demand for realizing a reinforcing steel fiber having a higher reinforcing effect in order to obtain a tougher concrete structure.
[0009]
Accordingly, an object of the present invention is to provide a reinforcing steel fiber having improved bending toughness and improved reinforcing effect on concrete by improving the shape and material of the steel fiber.
[0010]
[Means for Solving the Problems]
In order to solve the above problem, the reinforcing steel fiber of the present invention is a reinforcing steel fiber that is uniformly dispersed in concrete to increase the strength of the concrete. And at least one set of adjacent wave heights of the two or more waveform portions is higher on the end side than on the center. In particular, it is preferable that the wave heights of the two or more waveform portions are sequentially increased from the center toward the end portion, and that the two or more waveform portions are provided near both ends in the longitudinal direction. Is also preferable.
[0011]
In the reinforcing steel fiber of the present invention, the carbon content is preferably 0.12% by weight or more. Further, preferably, the wave height of the waveform portion located at the end portion in the longitudinal direction is a height of 0.4 mm or more, and the cross-sectional center of the longitudinal end portion is the cross-sectional center of the linear portion near the longitudinal center. Has a deviation within 2/3 of the wire diameter. Further, the reinforcing fiber of the present invention preferably has a length of 30 to 60 mm and a wire diameter of 0.5 to 1.0 mm.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1A shows a longitudinal sectional view of an example of the reinforcing steel fiber of the present invention. The reinforcing steel fiber 1 of the present invention has two or more, in the example shown, two corrugated portions A 1 and A 2 in the vicinity of both ends in the longitudinal direction, respectively, and the two or more corrugated portions A 1 and A 2. 2 wave height w 1, w 2 is higher toward the inboard on the end side. That is, it is characterized in that w 1 and w 2 are formed in a shape that satisfies w 1 <w 2 . As a result, the frictional resistance between the steel fiber and the concrete is increased, and a large amount of deformation of the steel fiber until the concrete falls when the concrete breaks can be secured, and the concrete can be prevented from falling off satisfactorily. It becomes.
[0013]
Here, when examining the frictional resistance when the corrugated steel fiber is pulled out of the concrete, the resistance is calculated as the corrugated space in the concrete formed by the outer shape of the steel fiber, while the steel fiber is bent. It is considered to be the processing resistance at the time of being pulled out. On the other hand, when the steel fiber is pulled out, in addition to the bending of the steel fiber itself, a destruction phenomenon of the concrete wall around the steel fiber accompanies. When the concrete wall breaks down, the corrugated space for the steel fiber to pass through becomes large, so that the bending amount is reduced, and therefore the frictional resistance is reduced.
[0014]
In this case, if a plurality of corrugations formed in the vicinity of the end portion of the steel fibers are all have the same height (Fig. 2 (a) and (waveform section A in b) '1, A' 2 (See wave heights w ′ 1 , w ′ 2 ) when one steel fiber is pulled out, that is, the concrete wall located in front of the drawing direction, that is, the surrounding concrete wall is broken due to the drawing out of the corrugated portion near the center. By doing so, the adjacent corrugated portion in the drawing direction can easily pass through the portion where the preceding corrugated portion has been pulled out, that is, in each corrugated portion, the pullout resistance force against the concrete wall works only once each. Will not be.
[0015]
On the other hand, as in the present invention, when the wave height of the continuous corrugated portion is increased from the center toward the end, the concrete wall is broken at a portion where the preceding corrugated portion is pulled out. Even if the wave part at the end with a higher wave height than the wave part needs more space to pass through that part, the wave meter part at the end is completely pulled out. Can result in multiple bending or concrete breaks, thus increasing the pull-out resistance.
[0016]
If corrugations of n (not shown), corrugations A 1 continuing from the Middle, A 2 of the · · · A n, at least the crest w k adjacent pair A k and A k + 1 and w k + 1 may satisfy the w k <w k + 1, i.e., by to be higher at the end portion side than the inboard, it is possible to obtain the effect of the present invention. Preferably, the wave height w 1, w 2 ··· w n corrugations A 1, A 2 ··· A n , sequentially becomes higher such a shape toward the inboard on the end side, that is, all It is preferable that the waveform portion is formed in a shape that satisfies w n <w n + 1 . Thereby, the effect of the present invention can be obtained most effectively.
[0017]
In the present invention, the corrugated portion is provided only in the vicinity of both ends of the steel fiber, and the central portion C (see FIG. 1 (a)) is formed in a straight line because the steel fiber has a drawing force corresponding to the breaking strength of the steel fiber. This is because the waveform portion at the center is not required because it is sufficient. The corrugations near both ends are usually provided in the same direction as shown in the figure, but are not particularly limited and may be provided in opposite directions.
[0018]
As the material of the steel fiber, it is preferable to use a material having a carbon content of 0.12% by weight or more, preferably about 0.15 to 0.20% by weight, whereby the deformation of the steel fiber is appropriately suppressed. As a result, falling off of concrete can be prevented more effectively. The wire diameter of the steel fiber can be about 0.5 to 1.0 mm. In this case, by using the steel fiber having a carbon content of 0.17% by weight, the tensile strength of about 1000 to 1500 MPa can be obtained. Obtainable.
[0019]
The length of the steel fiber is not particularly limited, but is preferably about 40 to 50 mm. If it is too short, the pull-out force according to the present invention will not work sufficiently. On the other hand, if it is too long, the performance will be improved but the concrete workability will be reduced and the cost will be high. Further, the wavelength L of the corrugated portion can be about 3 to 6 mm. If the wavelength L is less than 3 mm, the corrugating process becomes difficult, and if it has a small bent shape, the strength of the steel fiber main body is reduced, and the steel fiber is broken, so that a necessary pull-out resistance cannot be obtained. On the other hand, if it exceeds 6 mm, the central linear portion is shortened, and the effect of the length of the steel fiber is reduced.
[0020]
The wave height of the corrugated portion is preferably 0.05 to 0.8 mm, and particularly, the wave height of the corrugated portion located at the end in the longitudinal direction is preferably 0.4 mm or more. If the wave height of the corrugated portion is too low, a sufficient bending effect cannot be obtained, and the pull-out resistance of the steel fiber from the concrete decreases. On the other hand, if the wave height is too high, the pull-out resistance becomes more than necessary, the steel fiber is broken, and the required pull-out resistance cannot be obtained, and the effect of the length of the steel fiber is reduced. In addition, by increasing the wave height at the outermost end to 0.4 mm or more, it is possible to take a large amount of deformation of the steel fiber until the concrete falls off, so the pull-out resistance is sufficiently increased and the effect of preventing concrete falling off is improved. Can be obtained well.
[0021]
From a similar viewpoint, the cross-sectional center b of the longitudinal end portion of the steel fiber of the present invention has a deviation x within 2/3 of the wire diameter with respect to the cross-sectional center c of the linear portion C near the longitudinal center. (See FIG. 1 (b)). For example, when the wire diameter is 0.75 mm, the deviation x of the cross-sectional center b of the longitudinal end from the cross-sectional center c of the linear portion near the center in the longitudinal direction is preferably within ± 0.5 mm. I do. That is, as shown in FIGS. 2A and 2B, the cross-sectional center b ′ of the end in the longitudinal direction is 線 of the cross-sectional center c ′ of the linear portion C near the center in the longitudinal direction. Compared with a conventional steel fiber having a shape in which both ends are largely deviated from the center line, the steel fibers of the present invention have both ends located near the center line, and It can be said that the whole fiber has a linear shape.
[0022]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples.
Example A steel wire rod having a carbon content of 0.17% by weight and a wire diameter of 5.5 mm was formed into a steel fiber having a wire diameter of 0.75 mm and a strength of 1400 MPa by a normal die drawing process, and a plurality of the steel fibers were used. The belt-shaped body was aligned parallel to the top and fixed using a water-soluble adhesive. This band is shaped and cut using a rotary jig equipped with a shaping member and a cutting cutter, and two waveforms are respectively formed near both ends in the longitudinal direction as shown in FIG. A 43 mm long reinforcing steel fiber 1 having portions A 1 and A 2 was obtained. The dimensions of each part of the reinforcing steel fiber 1 are as shown in Table 1 below.
[0023]
Conventional example 1
A steel wire having a carbon content of 0.09% by weight and a wire diameter of 5.5 mm was converted into a steel fiber having a wire diameter of 0.75 mm and a strength of 1300 MPa by a normal die drawing process, using the same rotary jig as in the example. Thus, a reinforcing steel fiber 11 as shown in FIG. 2 was obtained. The dimensions of each part of the reinforcing steel fiber 11 are as shown in Table 1 below.
[0024]
Conventional example 2
A reinforcing steel fiber 11 was obtained in the same manner as in Conventional Example 1 except that a steel wire having a carbon content of 0.17% by weight was used.
[0025]
[Table 1]
Figure 2004168585
[0026]
Each steel fiber obtained in the example and the conventional example was mixed into concrete and uniformly dispersed to prepare a steel fiber reinforced concrete sample. Each concrete sample was subjected to a three-point bending test, and a 5 mm bending load (kN) was measured to evaluate the reinforcing strength. This result is shown in FIGS. 3 to 5 as the frequency of the bending load value obtained by the arbitrary number of measurements.
[0027]
As can be seen from the results of FIGS. 3 to 5, in the concrete sample of the embodiment reinforced using the steel fiber having the shape shown in FIG. 1, the sample of the conventional example 1 reinforced using the conventional steel fiber shown in FIG. , The frequency of occurrence of a bending load of less than 15.0 kN almost disappeared, and it was confirmed that the bending toughness was satisfactorily improved. In the sample of the conventional example 2, the bending load value was improved as a whole as compared with the conventional example 1 by increasing the carbon content. It can be seen that the load value is high, and a tougher reinforced concrete is obtained.
[0028]
【The invention's effect】
As described above, according to the present invention, by improving the shape and material of the steel fiber, it is possible to realize a reinforcing steel fiber having particularly excellent bending toughness performance and an improved reinforcing effect on concrete. Was.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a reinforcing steel fiber of the present invention. FIG. 1 (b) is an enlarged view of one end in the longitudinal direction.
2A and 2B are cross-sectional views showing a conventional reinforcing steel fiber, and FIG. 2B is an enlarged view of one longitudinal end thereof.
FIG. 3 is a graph showing bending toughness performance of an example.
FIG. 4 is a graph showing bending toughness performance of Conventional Example 1.
FIG. 5 is a graph showing bending toughness performance of Conventional Example 2.
[Explanation of symbols]
1,11 Reinforcing steel fiber

Claims (7)

コンクリート中に均一に分散されて該コンクリートの強度を高める補強用鋼繊維において、長手方向両端部近傍に夫々2個以上の波形部を有し、該2個以上の波形部のうち、少なくとも隣接する1組の波高が、中央寄りよりも端部側において高くなっていることを特徴とする補強用鋼繊維。In a reinforcing steel fiber that is uniformly dispersed in concrete and increases the strength of the concrete, each of the reinforcing steel fibers has two or more corrugated portions near both ends in the longitudinal direction, and at least two corrugated portions of the two or more corrugated portions are adjacent to each other. A reinforcing steel fiber, wherein one set of wave heights is higher at an end side than at a center. 前記2個以上の波形部の波高が、中央寄りから端部側に向かって順に高くなっている請求項1記載の補強用鋼繊維。The reinforcing steel fiber according to claim 1, wherein the wave heights of the two or more corrugated portions increase in order from the center toward the end. 前記波形部を、長手方向両端部近傍に夫々2個有する請求項1記載の補強用鋼繊維。The reinforcing steel fiber according to claim 1, wherein the corrugated portion has two pieces in the vicinity of both ends in the longitudinal direction. 炭素含有量が0.12重量%以上である請求項1〜3のうちいずれか一項記載の補強用鋼繊維。The reinforcing steel fiber according to any one of claims 1 to 3, wherein the carbon content is 0.12% by weight or more. 長手方向最端部に位置する波形部の波高が、0.4mm以上の高さである請求項1〜4のうちいずれか一項記載の補強用鋼繊維。The reinforcing steel fiber according to any one of claims 1 to 4, wherein the wave height of the corrugated portion located at the end in the longitudinal direction is 0.4 mm or more. 長手方向端部の断面中心が、長手方向中央付近における直線状部の断面中心に対し、線径の2/3以内の偏差を有する請求項1〜5のうちいずれか一項記載の補強用鋼繊維。The reinforcing steel according to any one of claims 1 to 5, wherein a cross-sectional center of the longitudinal end has a deviation of not more than 2/3 of a wire diameter with respect to a cross-sectional center of the linear portion near the longitudinal center. fiber. 長さ30〜60mmで、線径0.5〜1.0mmである請求項1〜6のうちいずれか一項記載の補強用鋼繊維。The reinforcing steel fiber according to any one of claims 1 to 6, having a length of 30 to 60 mm and a wire diameter of 0.5 to 1.0 mm.
JP2002335305A 2002-11-19 2002-11-19 Steel fiber for reinforcement Pending JP2004168585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002335305A JP2004168585A (en) 2002-11-19 2002-11-19 Steel fiber for reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002335305A JP2004168585A (en) 2002-11-19 2002-11-19 Steel fiber for reinforcement

Publications (1)

Publication Number Publication Date
JP2004168585A true JP2004168585A (en) 2004-06-17

Family

ID=32699469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002335305A Pending JP2004168585A (en) 2002-11-19 2002-11-19 Steel fiber for reinforcement

Country Status (1)

Country Link
JP (1) JP2004168585A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014506223A (en) * 2010-12-15 2014-03-13 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム Steel fibers for reinforcing concrete or mortar with anchored ends with at least two bend areas
JP2014507362A (en) * 2010-12-15 2014-03-27 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム Steel fiber for reinforcing concrete or mortar with anchored ends with at least three straight sections
WO2021246789A1 (en) * 2020-06-03 2021-12-09 (주)코스틸 High performance steel fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014506223A (en) * 2010-12-15 2014-03-13 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム Steel fibers for reinforcing concrete or mortar with anchored ends with at least two bend areas
JP2014507362A (en) * 2010-12-15 2014-03-27 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム Steel fiber for reinforcing concrete or mortar with anchored ends with at least three straight sections
EP2652221B1 (en) * 2010-12-15 2017-08-16 NV Bekaert SA Steel fibre reinforced concrete
WO2021246789A1 (en) * 2020-06-03 2021-12-09 (주)코스틸 High performance steel fiber

Similar Documents

Publication Publication Date Title
EP2652221B1 (en) Steel fibre reinforced concrete
JP5809287B2 (en) Steel fiber for reinforcing concrete or mortar with anchored ends with at least three straight sections
KR20160061433A (en) High elongation fibre with good anchorage
MX2011012705A (en) High elongation fibres.
JP6853941B2 (en) Assembly parts of compression connection members, compression connection structure of transmission lines, and construction method of compression connection members
CN201520723U (en) Wave micro steel fiber
JP2004168585A (en) Steel fiber for reinforcement
AU727902B2 (en) Concrete reinforcing fiber
KR200406191Y1 (en) Steel fiber for Reinforcing concrete
US20190040977A1 (en) Concrete Reinforcement Elements and Structures
JP3798488B2 (en) Manufacturing method of steel fiber for concrete reinforcement
EP2652220B1 (en) Steel fibre for reinforcing concrete or mortar provided with flattened sections
JP2000119052A (en) Steel fiber for reinforcing concrete
JPH0753247A (en) Steel fiber
KR100196595B1 (en) Metallic short fiber for reinforcing
JP2010031431A (en) Steel cord for reinforcing rubber product
HU217903B (en) Cold-rolled reinforcing steel and process for its manufacture
JP2003301559A (en) Pc steel strand
JP2010216046A (en) Steel cord for reinforcing rubber product
EA014171B1 (en) High-modulus cuts of wire for reinforcing concrete building structures
MXPA00000766A (en) Concrete reinforcing fiber
JP2010159527A (en) Steel cord for reinforcing rubber product
JP2010216047A (en) Steel cord for reinforcing rubber product
JP2009127202A (en) Reinforced concrete body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051024

A977 Report on retrieval

Effective date: 20080710

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090714