JP2004167658A - Twist drill - Google Patents

Twist drill Download PDF

Info

Publication number
JP2004167658A
JP2004167658A JP2002339517A JP2002339517A JP2004167658A JP 2004167658 A JP2004167658 A JP 2004167658A JP 2002339517 A JP2002339517 A JP 2002339517A JP 2002339517 A JP2002339517 A JP 2002339517A JP 2004167658 A JP2004167658 A JP 2004167658A
Authority
JP
Japan
Prior art keywords
drill
groove width
width ratio
core thickness
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002339517A
Other languages
Japanese (ja)
Inventor
Masaaki Kamishiro
政章 神代
Yu Kagitani
夕 鍵谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2002339517A priority Critical patent/JP2004167658A/en
Publication of JP2004167658A publication Critical patent/JP2004167658A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a drill capable of suppressing the risk of drill chipping in its groove width changing part caused by chip stopping or stress concentration and performing stably a deep hole processing even after recovery of the cutter tip made through regrinding. <P>SOLUTION: The drill is structured so that the groove width ratio in the front region I located in a length range 1-7 times as large as the drill diameter D from the cutting edge at the tip is set between 0.5:1 and 1.2:1, the groove width ratio in the rear region III is made greater than the groove width ratio in the front region I, and that the length of the ratio changing part II provided between the front region I and the rear region III is made as large as 3 mm-5D. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、深穴加工に用いるソリッドタイプのドリルに関する。
【0002】
【従来の技術】
従来の深穴加工用ソリッドドリルは、ねじれ溝のリード角を刃部全体にわたって一定させているため、加工深さが増すにつれて切り屑がねじれ溝内を移動する距離が長くなり、切り屑排出に無理が生じる。特に、高靱性金属のように長く延び出し易い材質のワークに穴をあける場合には、折れずに延び出した切り屑がねじれ溝内に詰まり、加工が著しく困難になる。
【0003】
かかる問題に対応した技術としては、下記特許文献1がある。
【0004】
【特許文献1】
実開平5−60715号公報
【0005】
同文献のドリルは、先端側の溝幅比よりも後部側の溝幅比を大きくして後部側の溝幅を広げ、それによって切り屑排出性を向上させている。
【0006】
【発明が解決しようとする課題】
本出願人が提案している特許文献1のドリルは、先端側と後部側との間の溝幅変化を短い長さ範囲で行っているため、溝幅変化部において切り屑の流れが変化し、切り屑詰まりや応力集中による溝幅変化部でのドリル折損が起こることがあった。
【0007】
この発明は、この不具合を無くして深穴加工をより安定して行えるようにすることを課題としている。
【0008】
【課題を解決するための手段】
上記の課題を解決するため、この発明においては、先端の切れ刃からドリル径Dの1〜7倍の長さ範囲にある前部領域の溝幅比が0.5:1〜1.2:1の範囲で一定に設定され、後部領域の溝幅比は前部領域の溝幅比よりも大に設定され、前部領域と後部領域との間に設ける溝幅比変化部の長さが3mm〜5Dの範囲にあるドリルと、
先端の切れ刃からドリル径Dの5倍以下の領域における芯厚が0.2D〜0.4Dの範囲で一定し、後部側の芯厚は0.15D〜0.4Dの範囲にあって先端側の芯厚よりも薄く、先端側芯厚部の終端から後部側芯厚部の先端までの間で芯厚が後部側に向かって暫時小さくなっているドリルと、上記の2つの構成を併せ持つドリルを提供する。
【0009】
いずれのドリルも、ねじれ溝の数は1〜3に限定するのがよい。
【0010】
【作用】
後部領域の溝幅比を前部領域の溝幅比よりも大きくしたドリルは、先端の切れ刃部において溝幅いっぱいに切り出された切り屑と溝との干渉が途中から減少し、ねじれ溝による切り屑の流出規制が緩和されて溝幅一定のドリルに比べて切り屑排出性が良くなる。
【0011】
また、このドリルは、溝幅変化部の長さを3mm以上、5D以下と長くしているので、切り屑が溝内をスムーズに流れ、溝幅変化部での切り屑詰まりや溝幅変化部に対する応力集中が少ない。
【0012】
このほか、前部領域の長さを1D〜7Dと長くしているので、再研削による刃先再生後も切り屑形状を一定に保つことができ、切削性能が安定する。
【0013】
後部側の芯厚を前部側の芯厚よりも薄くしたドリルも、溝の断面積が後部側で大きくなって切り屑が流れ易くなり、切り屑排出性が向上する。また、先端から5D以下の領域の芯厚が一定しており、再研削による刃先再生後も先端形状を一定させて切り屑形状を一定に保つことができ、切削性能が安定する。
【0014】
上記2つの構成を併用したドリルは、相乗効果を期待でき、切り屑排出性がより良くなり、深穴加工をより安定して行える。
【0015】
【発明の実施の形態】
この発明の実施形態を図1乃至図6に基づいて説明する。図1〜図3は第1実施例である。このドリル1は、2枚刃ドリルであり、2中心対称の切れ刃2と2条のねじれ溝3を有する。図1のIは前部領域、IIは溝幅変化部、III は後部領域を表す。前部領域Iは、溝幅比を0.5:1〜1.2:1の範囲で一定に設定してある。また、後部領域III の溝幅比は前部領域Iの溝幅比よりも大に設定され、溝幅変化部IIにおいて溝幅比が後方に向かって大きくなって前部領域Iの溝幅比から後部領域III の溝幅比に変化している。
【0016】
図2に前部領域Iの断面を、図3に後部領域III の断面をそれぞれ示す。後部領域III は、図3のハッチングを入れた部分の肉が減少してねじれ溝3の断面積が前部領域Iのそれよりも大きくなっている。なお、溝幅変化部IIは、その長さを3mm〜ドリル径Dの5倍までとしてある。
【0017】
図4〜図6は第2実施例である。このドリル10も図1と同様の2枚刃ドリルである。図4のAは前部領域、Bは芯厚変化部、Cは後部領域を表す。前部領域Aの芯厚W(図5参照)をドリル径Dの20〜40%(0.2D〜0.4D)の範囲で一定に設定し、また、後部領域Cの芯厚W1(図6参照)をWよりも薄くして0.15D〜0.4Dに設定し、両者の間を芯厚が後方に向かってW〜W1に暫時変化する溝幅変化部Bでつないでいる。
【0018】
この発明のドリルは、第1実施例の構成と第2実施例の構成を併せ持つものにするとより好ましい。また、この発明のドリルは深穴加工に用いるので、シャンクの後部から先端の逃げ面に至るねじれたオイルホールを備えさせるのも好ましい。
【0019】
以下に、この発明のドリルの性能を確認するために行った実験結果を記す。
実験は表1に示すドリルを試作して行った。表1のNo.2とNo.6〜No.8がこの発明のドリル、その他は比較ドリルである。
【0020】
この試作ドリルは、いずれもφ5.0×130×180の超硬ドリルである。その他の仕様を表1に、切り屑排出性、切削抵抗、切り屑、および強度の評価結果を表2にそれぞれ示す。切削抵抗はスラスト力で評価した。各ドリルのスラスト力の状況を図7に示す。
【0021】
なお、テストは、非削材:S50C(HB230)を以下の条件で加工した。

Figure 2004167658
【0022】
【表1】
Figure 2004167658
【0023】
【表2】
Figure 2004167658
【0024】
【発明の効果】
以上述べたように、この発明のドリルは、後部領域の溝幅比を前部領域の溝幅比よりも大きくしているので、切り屑と溝との干渉が途中から減少し、ねじれ溝による切り屑の流出規制が緩和されて溝幅一定のドリルに比べて切り屑排出性が良くなる。
【0025】
また、このドリルは、溝幅変化部の長さを3mm以上、5D以下と長くしているので、切り屑が溝内をスムーズに流れ、溝幅変化部での切り屑詰まりや溝幅変化部に対する応力集中が少ない。
【0026】
さらに、前部領域の長さを1D〜7Dと長くしているので、再研削による刃先再生後も切り屑形状を一定に保つことができ、切削性能が安定する。
【0027】
後部側の芯厚を前部側の芯厚よりも薄くしたドリルも、溝の断面積が後部側で大きくなって切り屑が流れ易くなり、切り屑排出性が向上する。また、先端から5D以下の領域の芯厚が一定しており、再研削による刃先再生後も先端形状を一定させて切り屑形状を一定に保つことができ、切削性能が安定する。
【0028】
上記2つの構成を併用したドリルは、相乗効果を期待でき、切り屑排出性がより良くなり、深穴加工をより安定して行える。
【図面の簡単な説明】
【図1】(a) この発明のドリルの実施形態を示す側面図
(b) 同上のドリルの要部の拡大側面図
【図2】図1のドリルの前部領域Iの拡大断面図
【図3】図1のドリルの後部領域III の拡大断面図
【図4】他の実施形態の芯厚変化を示す断面図
【図5】図4のドリルの前部領域Aの拡大断面図
【図6】図4のドリルの後部領域Cの拡大断面図
【図7】テスト品の切削抵抗(スラスト力)の測定結果を示す図
【符号の説明】
1、10 ドリル
2 切れ刃
3 ねじれ溝
I 前部領域
II 溝幅変化部
III 後部領域
A 前部領域
B 芯厚変化部
C 後部領域
W、W1 芯厚
D ドリル径[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solid type drill used for deep hole drilling.
[0002]
[Prior art]
In conventional solid drills for deep hole drilling, the lead angle of the torsion groove is constant over the entire cutting edge, so as the processing depth increases, the distance that chips move in the torsion groove increases, and the chip discharge Overcoming. In particular, when a hole is made in a work made of a material that is easily extended and prolonged, such as a high-toughness metal, chips that have been extended without breaking are clogged in the torsion groove, and processing becomes extremely difficult.
[0003]
Patent Literature 1 below discloses a technique that addresses such a problem.
[0004]
[Patent Document 1]
Japanese Utility Model Laid-Open No. 5-60715 [0005]
In the drill of the document, the groove width ratio on the rear side is made larger than the groove width ratio on the front end side to widen the groove width on the rear side, thereby improving the chip dischargeability.
[0006]
[Problems to be solved by the invention]
In the drill of Patent Document 1 proposed by the present applicant, since the groove width change between the front end side and the rear side is performed in a short length range, the flow of the chip changes at the groove width change portion. In some cases, chip breakage or drill breakage at the groove width change portion due to stress concentration occurred.
[0007]
It is an object of the present invention to eliminate this drawback and to perform deep hole drilling more stably.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, in the present invention, the groove width ratio of the front region within a length range of 1 to 7 times the drill diameter D from the cutting edge at the tip is 0.5: 1 to 1.2: 1, the groove width ratio in the rear region is set to be larger than the groove width ratio in the front region, and the length of the groove width ratio changing portion provided between the front region and the rear region is reduced. A drill in the range of 3mm to 5D,
The core thickness in a region not more than 5 times the drill diameter D from the cutting edge at the tip is constant in the range of 0.2D to 0.4D, and the core thickness on the rear side is in the range of 0.15D to 0.4D. The drill has a thickness that is thinner than the core thickness on the side and the thickness of the core decreases from the end of the core thickness portion on the tip side to the tip of the core thickness on the rear side for a while toward the rear side. Provide a drill.
[0009]
In any drill, the number of twist grooves is preferably limited to one to three.
[0010]
[Action]
In the drill with the groove width ratio in the rear area larger than the groove width ratio in the front area, the interference between the chip and the groove cut out to the full groove width at the cutting edge at the tip decreases from the middle, and the twisted groove The chip discharge control is eased, and the chip discharge performance is improved as compared with a drill having a constant groove width.
[0011]
In addition, in this drill, since the length of the groove width changing portion is set to 3 mm or more and 5 D or less, chips flow smoothly in the groove, and chip clogging at the groove width changing portion or the groove width changing portion. Less stress concentration on
[0012]
In addition, since the length of the front region is increased to 1D to 7D, the shape of the chips can be kept constant even after the cutting edge is regenerated by re-grinding, and the cutting performance is stabilized.
[0013]
Even in a drill in which the core thickness on the rear side is smaller than the core thickness on the front side, the cross-sectional area of the groove is large on the rear side, so that chips flow easily, and the chip discharging property is improved. In addition, the core thickness in the region of 5D or less from the tip is constant, the tip shape can be kept constant after cutting edge regeneration by re-grinding, the chip shape can be kept constant, and cutting performance is stable.
[0014]
A drill that uses the above two configurations in combination can expect a synergistic effect, has better chip discharge properties, and can perform deep hole drilling more stably.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to FIGS. 1 to 3 show a first embodiment. The drill 1 is a two-flute drill, having a two-center symmetrical cutting edge 2 and two helical grooves 3. In FIG. 1, I indicates a front region, II indicates a groove width changing portion, and III indicates a rear region. In the front region I, the groove width ratio is set to be constant within a range of 0.5: 1 to 1.2: 1. Further, the groove width ratio of the rear region III is set to be larger than the groove width ratio of the front region I, and the groove width ratio in the groove width changing portion II increases rearward, so that the groove width ratio of the front region I increases. To the groove width ratio of the rear region III.
[0016]
FIG. 2 shows a cross section of the front region I, and FIG. 3 shows a cross section of the rear region III. In the rear region III, the cross-sectional area of the torsion groove 3 is larger than that of the front region I because the thickness of the hatched portion in FIG. The length of the groove width changing portion II is set to be from 3 mm to 5 times the drill diameter D.
[0017]
4 to 6 show a second embodiment. This drill 10 is also a two-flute drill similar to FIG. 4A shows a front region, B shows a core thickness change portion, and C shows a rear region. The core thickness W of the front region A (see FIG. 5) is set to be constant within the range of 20 to 40% (0.2D to 0.4D) of the drill diameter D, and the core thickness W1 of the rear region C (see FIG. 5). 6) is set to 0.15D to 0.4D, which is thinner than W, and the two are connected by a groove width changing portion B whose core thickness changes from W to W1 toward the rear for a while.
[0018]
More preferably, the drill of the present invention has both the configuration of the first embodiment and the configuration of the second embodiment. Further, since the drill of the present invention is used for deep hole drilling, it is preferable to provide a twisted oil hole extending from the rear part of the shank to the flank of the tip.
[0019]
The results of an experiment performed to confirm the performance of the drill of the present invention will be described below.
The experiment was conducted by making a drill shown in Table 1 as a trial. No. 1 in Table 1. 2 and No. 6-No. 8 is a drill of the present invention, and the other is a comparative drill.
[0020]
Each of the prototype drills is a carbide drill having a diameter of 5.0 × 130 × 180. Other specifications are shown in Table 1, and the evaluation results of chip dischargeability, cutting resistance, chip, and strength are shown in Table 2. The cutting force was evaluated by the thrust force. FIG. 7 shows the state of the thrust force of each drill.
[0021]
In the test, a non-cutting material: S50C (HB230) was processed under the following conditions.
Figure 2004167658
[0022]
[Table 1]
Figure 2004167658
[0023]
[Table 2]
Figure 2004167658
[0024]
【The invention's effect】
As described above, in the drill of the present invention, the groove width ratio in the rear region is larger than the groove width ratio in the front region. The chip discharge control is eased, and the chip discharge performance is improved as compared with a drill having a constant groove width.
[0025]
In addition, in this drill, since the length of the groove width changing portion is set to 3 mm or more and 5 D or less, the chips flow smoothly in the groove, and the chip is clogged at the groove width changing portion and the groove width changing portion. Less stress concentration on
[0026]
Further, since the length of the front region is increased to 1D to 7D, the shape of the chips can be kept constant even after the regeneration of the cutting edge by re-grinding, and the cutting performance is stabilized.
[0027]
Even in a drill in which the core thickness on the rear side is smaller than the core thickness on the front side, the cross-sectional area of the groove is large on the rear side, so that chips flow easily, and the chip discharging property is improved. In addition, the core thickness in the region of 5D or less from the tip is constant, the tip shape can be kept constant even after the cutting edge is regenerated by re-grinding, and the chip shape can be kept constant, and the cutting performance is stabilized.
[0028]
A drill that uses the above two configurations in combination can expect a synergistic effect, has better chip discharge properties, and can perform deep hole drilling more stably.
[Brief description of the drawings]
1A is a side view showing an embodiment of a drill according to the present invention; FIG. 2B is an enlarged side view of a main part of the same drill; FIG. 2 is an enlarged sectional view of a front region I of the drill in FIG. 3 is an enlarged cross-sectional view of a rear region III of the drill in FIG. 1; FIG. 4 is a cross-sectional diagram showing a change in core thickness in another embodiment; FIG. 5 is an enlarged cross-sectional view of a front region A of the drill in FIG. FIG. 7 is an enlarged cross-sectional view of the rear region C of the drill in FIG. 4; FIG. 7 is a diagram showing the measurement results of the cutting resistance (thrust force) of the test product.
1, 10 drill 2 cutting edge 3 twisted groove I front part II groove width change part III rear part A front part B core thickness change part C rear part W, W1 core thickness D Drill diameter

Claims (4)

先端の切れ刃からドリル径Dの1〜7倍の長さ範囲にある前部領域の溝幅比が0.5:1〜1.2:1の範囲で一定に設定され、後部領域の溝幅比は前部領域の溝幅比よりも大に設定され、前部領域と後部領域との間に設ける溝幅比変化部の長さが3mm〜5Dの範囲にあるドリル。The groove width ratio of the front region within a length range of 1 to 7 times the drill diameter D from the cutting edge at the tip is set to be constant within the range of 0.5: 1 to 1.2: 1, and the groove of the rear region is set. A drill wherein the width ratio is set to be larger than the groove width ratio of the front region, and the length of the groove width ratio changing portion provided between the front region and the rear region is in the range of 3 mm to 5D. 先端の切れ刃からドリル径Dの5倍以下の領域における芯厚が0.2D〜0.4Dの範囲で一定し、後部側の芯厚は0.15D〜0.4Dの範囲にあって先端側の芯厚よりも薄く、先端側芯厚部の終端から後部側芯厚部の先端までの間で芯厚が後部側に向かって暫時小さくなっているドリル。The core thickness in the region not more than 5 times the drill diameter D from the cutting edge at the tip is constant in the range of 0.2D to 0.4D, and the core thickness on the rear side is in the range of 0.15D to 0.4D. A drill whose core thickness is thinner than the core thickness on the side, and whose core thickness decreases from the end of the core thickness portion on the tip side to the tip end of the core thickness portion on the rear side for a while toward the rear side. 請求項1の構成と請求項2の構成を併せ持つドリル。A drill having both the structure of claim 1 and the structure of claim 2. ねじれ溝の数を1〜3とした請求項1乃至3のいずれかに記載のドリル。The drill according to claim 1, wherein the number of twist grooves is one to three.
JP2002339517A 2002-11-22 2002-11-22 Twist drill Pending JP2004167658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002339517A JP2004167658A (en) 2002-11-22 2002-11-22 Twist drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002339517A JP2004167658A (en) 2002-11-22 2002-11-22 Twist drill

Publications (1)

Publication Number Publication Date
JP2004167658A true JP2004167658A (en) 2004-06-17

Family

ID=32702453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002339517A Pending JP2004167658A (en) 2002-11-22 2002-11-22 Twist drill

Country Status (1)

Country Link
JP (1) JP2004167658A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009184044A (en) * 2008-02-05 2009-08-20 Tungaloy Corp Stepped twist drill and method of manufacturing the same
US20110170973A1 (en) * 2008-05-16 2011-07-14 Guehring Ohg Multi-blade solid carbide drill
US8052355B2 (en) 2006-10-03 2011-11-08 Denso Corporation Cutting tool and processing method by the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8052355B2 (en) 2006-10-03 2011-11-08 Denso Corporation Cutting tool and processing method by the same
JP2009184044A (en) * 2008-02-05 2009-08-20 Tungaloy Corp Stepped twist drill and method of manufacturing the same
US20110170973A1 (en) * 2008-05-16 2011-07-14 Guehring Ohg Multi-blade solid carbide drill
US9039336B2 (en) * 2008-05-16 2015-05-26 Guehring Ohg Multi-blade solid carbide drill

Similar Documents

Publication Publication Date Title
JP4802095B2 (en) Drill
JPH09277108A (en) Drill
WO2014175396A1 (en) Drill and method for manufacturing cut product using same
JP2008213124A (en) Throw-away tip and drill using the same
JPWO2009054400A1 (en) Twist drill
JP4699526B2 (en) Drill
JP2016078209A (en) drill
JP4088271B2 (en) Cutting tools
JP2007015073A (en) Two-blade twist drill with double margins
JP4714283B2 (en) Drilling tool
JP5103076B2 (en) drill
JP2004167658A (en) Twist drill
JP2775912B2 (en) Drilling tool
JP4135314B2 (en) Drill
JPH08229720A (en) Gun drill
JP2001121332A (en) Twist drill
JPH05261612A (en) Drill
JP5103077B2 (en) drill
JP4805978B2 (en) Cutting tool, machine tool and processing method
JP3263025B2 (en) Twist drill
JP6447566B2 (en) Drilling tool
CN213317900U (en) Twist drill easy to break chips
JP2003340623A (en) Drill
JPH0560715U (en) Carbide drill
JP5018135B2 (en) Throw-away cutting tool

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060530