JP2004165904A - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
JP2004165904A
JP2004165904A JP2002328325A JP2002328325A JP2004165904A JP 2004165904 A JP2004165904 A JP 2004165904A JP 2002328325 A JP2002328325 A JP 2002328325A JP 2002328325 A JP2002328325 A JP 2002328325A JP 2004165904 A JP2004165904 A JP 2004165904A
Authority
JP
Japan
Prior art keywords
antenna
polarization
power
antennas
radio waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002328325A
Other languages
Japanese (ja)
Inventor
Katsuo Saito
勝雄 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002328325A priority Critical patent/JP2004165904A/en
Publication of JP2004165904A publication Critical patent/JP2004165904A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Radio Transmission System (AREA)
  • Studio Devices (AREA)
  • Details Of Aerials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an imaging device with built-in antenna for effectively irradiating and entering radio waves therein even though the device is in a conductive housing, and can effectively irradiate and enter the radio waves from any direction independent upon ways of placing and holding of the device. <P>SOLUTION: The device is equipped with a plurality of openings with a fixed length and a slit-shape at a part of the conductive housing, and disposes the openings with a slit structure longitudinally and sidlingly in response to main polarized waves of antennas disposed at the openings. Each of the disposed antennas is configured in a manner that transmitting power for supplying to each of the antennas of which respective main polarized wave surfaces are different to evenly supply the antennas having different main polarized waves, respectively. Receiving power received from the antennas is received from the antennas having the different polarized waves, respectively, and received by combining the power, respectively. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は例えば各種データ通信、移動体通信等の携帯無線端末装置に関する。
【0002】
詳しくは無線にて画像等のデジタルデータの送受信を行なう撮像装置に関する。
【0003】
【従来の技術】
近年、各種の移動体通信端末の小型軽量、データ速度の高速化が進んできており、それに伴って使用周波数もデータ速度の高速化による広帯域の必要性から更に高い周波数へシフトしてきている。
【0004】
使用周波数が高くなるにつれて、無線機を構成する高周波部品の小型化もやりやすくなり、それに伴って携帯端末もさらに小型化されるようになってきた。
【0005】
使用する空中線もホイップアンテナの様に無線端末の外に飛び出さず、機器の内部に組み込む様なチップアンテナ等も利用されてきている。
【0006】
今後、更に小型化が進み手のひらサイズの携帯無線端末も出現するであろう。
【0007】
このように携帯性に優れた無線端末は、当然の事ながら屋内、屋外でのデータ通信を行なう際に、建築物等の遮蔽物、反射物により反射、回折しながら多重波として伝搬する為、受信点での受信電界強度はフェージングを伴って変動する。
【0008】
このマルチパスによって、受信点の位置によっては、その受信電界強度が自然界ノイズのレベルまで落ち込み高品質のデータ伝送に障害をきたす。
【0009】
この様なマルチパスによる伝送品質の劣化を防止する方法として、受信パスを複数有するダイバーシティ受信がある。
【0010】
ダイバーシティ受信を行なうには当然複数個の受信アンテナが必要となる。
【0011】
それぞれのアンテナの位置をある程度の距離を持たせて配置させた空間ダイバーイティ、またアンテナの指向性が異なる複数個のアンテナを配置した、偏波ダイバーシティ等があり、それぞれフェージングの状態によって各々効果を発揮する。
【0012】
【発明が解決しようとする課題】
しかしながら無線端末の小型化が進むに連れて機器の外に飛び出さず、機器の内部に組み込む様なチップアンテナ等も利用されてきているが、機器の筐体が例えば携帯電話等の場合樹脂の筐体によって構成されており、機器内部に空中線を実装しても、機器外部に空中線から外部に電波は放射されるが、機器本体が金属筐体の場合等当然の事ながらアンテナを内蔵する事によって電波を遮ってしまう。
【0013】
この様な場合、金属筐体のアンテナの実装部に開口面を設け其の部分のみ。樹脂筐体とする事も可能であるが、一体加工が出来ない事、また其の部分だけ材質が異なる事による違和感が感じられる等、美観を損ねデザイン上問題が発生する。
【0014】
また従来のアンテナダイバーシティはアンテナの数が多ければ多いほどマルチパスには強くなるが、上記従来のダイバーシティ方法では、例えば空間ダイバーシティでは、複数個の受信アンテナの配置間隔は各々のアンテナが無相関となる様に十分な距離を持たなければならない。
【0015】
例えば受信信号の波長のλ/2以上、受信アンテナの間隔を離す事により、各々のアンテナ相関は低くなる。
【0016】
またこの事は指向性ダイバーシティにおいても同様な事が言える。
【0017】
従って、今後携帯端末装置が更に小型化されて行く事を鑑みれば、この様なダイバーシティ方法には機器の小型化という観点からすれば限界が生じてくる。
【0018】
特に無線端末機器が手の平サイズの様に、手の中に収まる程小型化された場合には、2本のアンテナすら相関の少ない配置をする事が不可能となる。
【0019】
近年は端末機器の小型化に伴い、端末機器内に内蔵されたアンテナ等により部品の占有率を少なくしている。
【0020】
また複数のアンテナを用いてダイバーシティ効果を得る為には、そのアンテナの設置間隔を使用電波の波長の半分以上の間隔を設けアンテナ間の相関を極力少なくしなければならない。
【0021】
よって携帯端末の小型化が進む事によってアンテナの配置には限界が生じてくると共に、複数のアンテナ間に相関が生じ従来方式のアンテナ切り替えを行ない、その切り替え動作を行なう為に複雑な構成が必要である割には効果が期待できないという状態が生じてくる。
【0022】
以上従来技術の問題を鑑み、本発明の目的は金属筐体を有する無線端末に於いても機器のデザイン的な美観を損ねる事無く、また製造過程においても製造工程を増やす事のない、撮像装置を提供し、また撮像装置が更に小型化し、特に手の中に入る程になった時にも、特に複雑なアンテナダイバーシティを行なわず、回路規模も少なく、低コストで良好な受信が可能となるような撮像装置を提供する事にある。
【0023】
【課題を解決する為の手段】
撮像装置本体の金属筐体内部に電波を放射、入射する複数の電波放射、入射手段と、電波放射、入射手段から放射、入射する電波を金属筐体外部に放射させると共に外からの電波を金属筐体内部に入射させる複数の開口手段を有する事を特徴とする。
【0024】
送信時には送信電力を複数の空中線手段に均等に電力分配する電力分配手段を有し、かつ受信時には複数の空中線手段からの受信電力を合成して出力する電力合成手段を有する事を特徴とする。
【0025】
すなわち、本発明の技術内容は以下の構成を備えることにより前記課題を解決できた。
【0026】
(1)電波を送受信してデジタルデータの送受信を行なう撮像装置に於いて当該撮像装置本体の金属筐体内部に配置され電波を放射、入射する複数の空中線手段と、当該空中線手段から放射する電波を金属筐体外部に放射させると共に金属筐体外部からの到来電波を金属筐体内部に入射させる開口手段を有する事を特徴とする撮像装置。
【0027】
(2)当該複数の空中線手段は各々異なる主偏波を放射、入射する偏波面を互いに有する事を特徴とする前記(1)記載の撮像装置。
【0028】
(3)当該複数の空中線手段は各々90°の異なる主偏波を放射、入射する偏波を有する事を特徴とする前記(1)記載の撮像装置。
【0029】
(4)当該開口手段は各々の空中線手段の前面に近接して配置され空中線手段からの電波を金属筐体外部に放射、もしくは金属筐体外部からの到来電波を金属筐体内部に入射させる様一定幅、一定長のスリット状の複数の開口部から成る事を特徴とする前記(1)記載の撮像装置。
【0030】
(5)当該開口手段の複数の開口部のスリット長は使用する電波の周波数の波長の1/4以上である事を特徴とする前記(1)記載の撮像装置。
【0031】
(6)当該開口手段の開口部のスリット形状は空中線手段の主偏波が垂直偏波の場合は縦方向のスリット形状を有し、空中線手段の主偏波が水平偏波の場合は横方向のスリット形状を有する事を特徴とする前記(1)記載の撮像装置。
【0032】
(7)電波を送受信してデジタルデータの送受信を行なう撮像装置において、送信時には送信電力を複数の空中線手段に均等に電力分配する電力分配手段を有し、かつ受信時には複数の空中線手段からの受信電力を合成して出力する電力合成手段を有する事を特徴とする撮像装置。
【0033】
(8)当該電力分配手段は送信電力を、主偏波が水平偏波の空中線手段と、主偏波が垂直偏波の空中線手段に均等に分配する構成を有する事を特徴とする前記(7)記載の撮像装置。
【0034】
(9)当該電力合成手段は主偏波が水平偏波である空中線手段からの受信電力と、主偏波が垂直偏波の空中線手段からの受信電力を同一の位相で合成する構成を有する事を特徴とする前記(7)項記載の撮像装置。
【0035】
(10)当該電力分配手段と電力合成手段は送信時には電力分配手段として、受信時には電力合成手段として動作する双方向動作をする構成である事を特徴とする前記(7)項記載の撮像装置。
【0036】
【作用】
本発明の構成によれば、撮像装置本体の金属筐体内部に電波を放射、入射する複数の電波放射、入射手段と、電波放射、入射手段から放射、入射する電波を金属筐体外部に放射させると共に外からの電波を金属筐体内部に入射させる複数の開口手段を設ける事により、撮像装置本体が金属筐体であって、筐体内部に空中線を実装しても、開口手段によって金属筐体外部に電波を放射する事ができ、また外部からの受信電波も筐体本体に設けた開口部から電波を入射し、筐体内部に実装された空中線に電波を入射する事が可能になる。
【0037】
また送信時には送信電力を複数の空中線手段に均等に電力分配する電力分配手段を有し、かつ受信時には複数の空中線手段からの受信電力を合成して出力する電力合成手段を有し、電力分配手段は送信電力を、主偏波が水平偏波の空中線手段と、主偏波が垂直偏波の空中線手段に均等に分配し、電力合成手段は主偏波が水平偏波である空中線手段からの受信電力と、主偏波が垂直偏波の空中線手段からの受信電力を同一の位相で合成する構成を有する事によって、撮像装置がいかなる方向を向いていても、送信時には異なる主偏波を同じ送信電力で効率良く放射できると共に、受信時には到来電波のどちらかの主偏波を効率良く受信する事が可能となる。
【0038】
【発明の実施の形態】
図1は本発明の実施例を説明するための無線機能を有する撮像端末の外観図である。
【0039】
図中101は金属筐体を有する撮像装置本体、102はモードダイヤル、103は表示パネル、104はレリースボタン、105は撮像レンズを示す。
【0040】
106、107は撮像装置本体101に内蔵された空中線をしめす。
【0041】
108は撮像レンズ105を介して撮影され、撮像信号として記録された画像信号をRF部(後述)によりRF信号に変換し、画像信号を106、107の空中線を介して放射開始を行なう為の送信開始スイッチである。
【0042】
図2は本発明の実施例を説明する為の無線機能を有する撮像端末の概略ブロック図である。
【0043】
図に於いて202はレンズ制御手段で撮像機器本体と撮影レンズ間の通信時のレンズ駆動の制御を行なう。
【0044】
203は外部表示の制御手段で液晶表示手段204の制御を行ない、205はスイッチセンス手段で撮像機器内に設けられた電子ダイヤル206を含む多数のスイッチ類の信号を制御手段201の制御手段に伝える働きをしている。
【0045】
211はシャッタ制御手段で固体撮像素子209(CCD)に対して適正な露光を行なう。
【0046】
207はLCDモニタ手段で、209が前述した撮像手段であるCCD、210が記録手段である。
【0047】
208は撮影した画像を一時記録したり、必要な処理をして記録手段210に記録したり、またLCDモニタ手段207に画像を表示したりする為の画像処理手段である。
【0048】
212は前述の撮影した画像を記録している、記録手段の画像信号に対して適正な変調処理を行ない高周波信号として空中に放射させる、もしくは空中線213にて受信した電波を高周波信号に変換し適正な復調処理を行なって、デジタルデータに変換する為の無線部である。
【0049】
図1に従って本発明の撮像装置の動作を説明する。
【0050】
図1に於いて105の撮像レンズを介し、104のレリースボタンを押す事により撮影した画像を記録手段210に一時記録する。
【0051】
一時記録しておいた画像データを無線を介して送信をしたい場合、108の送信開始スイッチを操作する事により、記録手段210に記録されていた画像データは212の無線部に送出され高周波信号に変換され213の空中線を介して放射される。
【0052】
図3は本発明の実施例の無線部のブロック図を示す。
【0053】
301はベースバンド処理部(図示せず)から供給されるデジタルデータ、例えば撮影された画像等のデジタルの送信信号の高調波成分除去用の低域フィルタ、302は高周波信号発生用の発振器で303のPLL部からのフィードバックを受けて安定した高周波発振を行なうと共に301の出力を受けて送信信号により直接変調動作を行なうものである。
【0054】
尚図示していないが303のPLL部にはベースバンド処理部から制御信号が供給されその制御信号により一定周期で周波数がシフトする周波数ホッピングの動作を行なうものである。
【0055】
304は周波数を逓倍する逓倍器、305は発信器の出力を逓倍した出力信号を所望の信号レベルまで増幅する電力増幅器である。
【0056】
306は送受切り替えスイッチで制御信号(図示せず)により送信パスと受信パスの切り替え動作を行なう。
【0057】
307は方向性結合器で例えば3dB方向性結合器を示し、送信時にはRFスイッチ306を介して入力された電力増幅器305の送信出力を均等に分配しアンテナ308、309に電力を供給する。
【0058】
アンテナ308、309は2分割された送信電力をそれぞれ空中に放射する。
【0059】
受信時にはアンテナ308、309にて受信された受信電力はそれぞれ307の方向性結合器に入力され電力が合成されてRFスイッチ306に供給される。
【0060】
RFスイッチに入力された受信電力は受信時には310の低雑音増幅器に入力され所望のレベルに増幅されて周波数変換器311に供給される。
【0061】
周波数変換器311に供給された受信信号は所望のIF周波数に変換されて後段の帯域フィルタ312に供給されて、所望の帯域制限を受ける事によって不要な周波数成分が除去されて313の復調器に供給され適正な復調処理をされて受信信号が出力される。
【0062】
図4に方向性結合器の動作を説明する図を示す。
【0063】
図中401は前述のRFスイッチで送受の切り替え動作を行なう。
【0064】
例えば送信時には401のRFスイッチを介して送信信号が出力される。
【0065】
送信信号は402の伝送線路1に伝送されると共に404の終端器で片側が終端された伝送線路2にも一部の電力が結合されて伝送される。
【0066】
ここで402の伝送線路1と403の伝送線路2との距離を所望の値にする事により、例えば3dB方向性結合器として動作する事が知られており其の場合送信信号は均等に406のアンテナ1と407のアンテナ2に分配されて供給される。
【0067】
ここで405は移相器で送信時の主線路となる伝送線路1から副線路となる伝送線路2に結合された送信信号の位相のシフト分を補正する移相器であり、例えば90°移相器を示す。
【0068】
次に受信時には406のアンテナ1と407のアンテナ2でそれぞれ受信された受信信号は、一方は402の伝送線路1に、他方は405の移相器を介して403の伝送線路2に供給されそれぞれ均等に分配されてRFスイッチに供給される。
【0069】
この際406と407のアンテナ1、2で受信した電力はそれぞれ合成されてRFスイッチに入力される。
【0070】
図5は本発明の内蔵アンテナの実装状態を説明する図である。
【0071】
図中(a)の501は金属筐体を有する撮像装置本体、502は金属筐体を有する撮像装置本体501に設けられた複数のスリット構造を有する開口部を示す。
503は撮像装置本体501の内部に実装されたアンテナを示す。
【0072】
同様に図中(b)の504、505、506も同様撮像装置本体、開口部、アンテナを示す。
【0073】
(a)図に於いて503のアンテナはアンテナ503の垂直方向に対して縦方向の主偏波を有するアンテナであり、502のスリット構造の開口部は主偏波と平行に配置される。
【0074】
(b)図に於いて506のアンテナはアンテナ506の垂直方向に対して横方向の主偏波を有するアンテナであり、505のスリット構造の開口部は主偏波と平行に配置される。
【0075】
図6は図5に示す(a),(b)図をそれぞれ矢印の方向から見た断面図である。
【0076】
601はアンテナ、602はアンテナを実装する誘電体基板、603は撮像装置本体の金属筐体、604は撮像装置本体に設けた複数のスリット構造を有する開口部である。
【0077】
図7は本発明の実施例に示すアンテナの放射パターンの概略パターンを示し例えば701は垂直偏波の放射パターンを示し、一方702は水平偏波の放射パターンを示す。
【0078】
【他の実施例】
なお、本発明は上記実施例のみに限定されるものではない。
【0079】
例えば本発明に於いては撮像装置の筐体に内蔵される空中線を異なる主偏波を有する2つ空中線を用いて撮像装置の前面に配置しているが、同一の主偏波を有する2つの空中線を90°異なる撮像装置の面に配置する事によっても到来する異なる主偏波を有する電波を効率良く受信する事ができる。
【0080】
【発明の効果】
以上従来技術の問題を鑑み本発明の目的は撮像装置本体が更に小型化し、特に手の中に入る程になった時にも、突起物を有せずデザイン的にも美観を損ねる事のない撮像装置を提供でき、撮像装置本体が金属筐体であって、筐体内部に空中線を実装しても、開口手段によって金属筐体外部に電波を放射する事ができ、また外部からの受信電波も筐体本体に設けた開口部から電波を入射し、筐体内部に実装された空中線に電波を入射する事が可能になる。
【0081】
また送信時には送信電力を複数の空中線手段に均等に電力分配する電力分配手段を有し、かつ受信時には複数の空中線手段からの受信電力を合成して出力する電力合成手段を有し、電力分配手段は送信電力を、主偏波が水平偏波の空中線手段と、主偏波が垂直偏波の空中線手段に均等に分配し、電力合成手段は主偏波が水平偏波である空中線手段からの受信電力と、主偏波が垂直偏波の空中線手段からの受信電力を同一の位相で合成する構成を有する事によって、撮像装置がいかなる方向を向いていても、送信時には異なる主偏波を同じ送信電力で効率良く放射できると共に、受信時には到来電波のどちらかの主偏波を効率良く受信する事が可能となる。
【0082】
よって特に複雑なアンテナダイバーシティを行なわずにいかなる方向からも最適な受信電力を受信でき、回路規模も少なく、低コストで良好な受信が可能となるような撮像装置を提供する事ができる。
【図面の簡単な説明】
【図1】本発明の実施例を説明する為の撮像装置の外観図
【図2】本発明の実施例の撮像装置の動作を説明する為のブロック
【図3】本発明の実施例の撮像装置の無線部の動作を説明する為のブロック図
【図4】本発明の撮像装置の無線部、特には方向性結合器の説明をする為のブロック図
【図5】本発明の内蔵アンテナの実装状態を説明する為の図
【図6】図5の断面を説明する為の図
【図7】本発明の内蔵アンテナの放射パターンの説明
【符号の説明】
101 撮像装置本体
105 レンズ
108 送信スイッチ
106,213,308,406,503 アンテナ1
107、214、309、407、506 アンテナ2
201 制御部
212 無線部
302、発振器
306 RFスイッチ
307 方向性結合器、
402 伝送線路1
403 伝送線路2
502,505,604 スリット状開口部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a portable wireless terminal device for various data communication, mobile communication, and the like.
[0002]
More specifically, the present invention relates to an imaging apparatus for transmitting and receiving digital data such as images wirelessly.
[0003]
[Prior art]
In recent years, various types of mobile communication terminals have been reduced in size and weight, and the data rate has been increased. Accordingly, the use frequency has been shifted to a higher frequency from the necessity of a wide band due to the increase in the data rate.
[0004]
As the operating frequency increases, it becomes easier to reduce the size of the high-frequency components constituting the wireless device, and accordingly, the size of the portable terminal has been further reduced.
[0005]
The antenna to be used does not jump out of the wireless terminal like a whip antenna, and a chip antenna or the like that is built into the device has been used.
[0006]
In the future, palm-sized portable wireless terminals will appear with further miniaturization.
[0007]
Such a portable terminal with excellent portability naturally propagates as a multi-wave while reflecting and diffracting by a shielding object such as a building or a reflecting object when performing data communication indoors and outdoors. The reception electric field strength at the reception point fluctuates with fading.
[0008]
Due to this multipath, depending on the position of the receiving point, the received electric field strength drops to the level of the natural noise, which hinders high-quality data transmission.
[0009]
As a method for preventing the deterioration of transmission quality due to such multipath, there is a diversity reception having a plurality of reception paths.
[0010]
In order to perform diversity reception, a plurality of receiving antennas are required.
[0011]
There are space diversity where the positions of the antennas are arranged with a certain distance, and polarization diversity where a plurality of antennas with different antenna directivities are arranged.Each effect depends on the fading state. Demonstrate.
[0012]
[Problems to be solved by the invention]
However, as the miniaturization of wireless terminals has progressed, chip antennas and the like that do not jump out of the device and are built into the device have been used. Even if an antenna is mounted inside the device, radio waves are radiated outside from the antenna to the outside of the device.However, when the device itself is a metal case, it is necessary to incorporate an antenna as a matter of course. It blocks the radio waves.
[0013]
In such a case, an opening surface is provided in the antenna mounting portion of the metal housing, and only that portion is provided. Although it is possible to use a resin housing, it is impossible to perform integral processing, and a sense of incongruity is felt due to the fact that the material is different only in that portion.
[0014]
In addition, in the conventional antenna diversity, the greater the number of antennas, the stronger the multipath becomes. You have to keep enough distance to be.
[0015]
For example, by increasing the distance between the receiving antennas by λ / 2 or more of the wavelength of the received signal, the correlation between the respective antennas is reduced.
[0016]
The same can be said for directional diversity.
[0017]
Therefore, in view of the further miniaturization of portable terminal devices in the future, such a diversity method has limitations in terms of miniaturization of devices.
[0018]
In particular, when the wireless terminal device is small enough to fit in the hand, such as the palm size, it becomes impossible to arrange even two antennas with little correlation.
[0019]
In recent years, with the miniaturization of terminal devices, the occupancy of components has been reduced by antennas and the like built in the terminal devices.
[0020]
Also, in order to obtain a diversity effect using a plurality of antennas, the antennas must be installed at intervals that are at least half the wavelength of the radio wave used to minimize the correlation between the antennas.
[0021]
Therefore, as the miniaturization of mobile terminals progresses, there is a limit to the arrangement of antennas, and there is a correlation between a plurality of antennas, a conventional antenna switching is performed, and a complicated configuration is required to perform the switching operation. In spite of this, a situation arises in which the effect cannot be expected.
[0022]
In view of the problems of the prior art described above, an object of the present invention is to provide an imaging device that does not impair the design aesthetics of a device even in a wireless terminal having a metal housing and that does not increase the number of manufacturing steps in the manufacturing process. In addition, even when the imaging device is further miniaturized, especially when it can be reached in the hands, it does not perform particularly complicated antenna diversity, the circuit scale is small, and good reception is possible at low cost. To provide a simple imaging device.
[0023]
[Means for solving the problem]
A plurality of radio waves radiating and entering radio waves inside the metal housing of the imaging device main body, an incident means, radio wave radiating and radiating from the incident means, radiating the incoming radio waves to the outside of the metal housing and transmitting the radio waves from outside to the metal housing. It is characterized by having a plurality of opening means for entering the inside of the housing.
[0024]
It is characterized in that it has a power distribution means for equally distributing transmission power to a plurality of antenna means at the time of transmission, and a power combining means for combining and outputting received power from the plurality of antenna means at the time of reception.
[0025]
That is, the technical contents of the present invention can solve the above problem by providing the following configuration.
[0026]
(1) In an imaging device that transmits and receives digital data by transmitting and receiving radio waves, a plurality of antennas disposed inside the metal housing of the imaging device main body to radiate and enter radio waves, and radio waves radiated from the antennas An image pickup apparatus characterized by having an opening means for radiating the light to the outside of the metal casing and for arriving radio waves from outside of the metal casing to enter the inside of the metal casing.
[0027]
(2) The imaging apparatus according to (1), wherein the plurality of antenna units have mutually different polarization planes for emitting and entering different main polarized waves.
[0028]
(3) The imaging apparatus according to the above (1), wherein the plurality of antenna units each emit a polarized light that radiates and enters a different main polarization of 90 °.
[0029]
(4) The opening means is arranged close to the front surface of each antenna means so as to radiate radio waves from the antenna means to the outside of the metal casing or to make incoming radio waves from outside the metal casing enter the inside of the metal casing. The imaging apparatus according to (1), comprising a plurality of slit-shaped openings having a fixed width and a fixed length.
[0030]
(5) The imaging apparatus according to the above (1), wherein the slit length of the plurality of openings of the opening means is at least 1 / of the wavelength of the frequency of the radio wave used.
[0031]
(6) The slit shape of the opening of the aperture means has a vertical slit shape when the main polarization of the antenna means is vertical polarization, and has a horizontal slit shape when the main polarization of the antenna means is horizontal polarization. The imaging device according to the above (1), wherein the imaging device has the following slit shape.
[0032]
(7) An imaging apparatus which transmits and receives digital data by transmitting and receiving radio waves, has power distribution means for equally distributing transmission power to a plurality of antenna means at the time of transmission, and receiving from a plurality of antenna means at the time of reception. An imaging apparatus comprising a power combining unit that combines and outputs power.
[0033]
(8) The power distributing means has a configuration in which the transmission power is evenly distributed to the antenna means whose main polarization is horizontal polarization and the antenna means whose main polarization is vertical polarization. The imaging device according to (1).
[0034]
(9) The power combining means has a configuration in which the received power from the antenna means whose main polarization is horizontal polarization and the reception power from the antenna means whose main polarization is vertical polarization are combined in the same phase. The imaging device according to the above (7), wherein:
[0035]
(10) The imaging apparatus according to (7), wherein the power distribution unit and the power combining unit perform a bidirectional operation of operating as a power distribution unit during transmission and as a power combining unit during reception.
[0036]
[Action]
According to the configuration of the present invention, a plurality of radio waves radiating and entering the inside of the metal casing of the imaging device main body, the incident means, the radio wave radiation, radiating from the incident means, and radiating the incoming radio waves to the outside of the metal casing. By providing a plurality of opening means for allowing an external radio wave to enter the inside of the metal housing, even if the imaging device body is a metal housing and an antenna is mounted inside the housing, the opening means can be used. Radio waves can be radiated to the outside of the body, and radio waves received from the outside can also enter the antenna through the opening provided in the housing body and can be incident on the antenna installed inside the housing. .
[0037]
The power distribution unit further includes a power distribution unit that equally distributes transmission power to the plurality of antenna units during transmission, and a power combining unit that combines and outputs reception power from the plurality of antenna units during reception. , The transmission power is evenly distributed to the antenna means whose main polarization is horizontal polarization, and the antenna means whose main polarization is vertical polarization, and the power combining means transmits from the antenna means whose main polarization is horizontal polarization. By having a configuration in which the received power and the main polarized wave are combined in the same phase with the received power from the vertically polarized antenna means, regardless of the direction of the imaging device, different main polarized waves are transmitted at the same time during transmission. In addition to being able to radiate efficiently with transmission power, it is also possible to efficiently receive either of the main polarized waves of the incoming radio wave during reception.
[0038]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is an external view of an imaging terminal having a wireless function for describing an embodiment of the present invention.
[0039]
In the drawing, reference numeral 101 denotes an imaging apparatus main body having a metal housing, 102 denotes a mode dial, 103 denotes a display panel, 104 denotes a release button, and 105 denotes an imaging lens.
[0040]
Reference numerals 106 and 107 denote aerials built in the imaging apparatus main body 101.
[0041]
An image signal 108 is captured via the imaging lens 105, and an image signal recorded as an image signal is converted into an RF signal by an RF unit (described later), and the image signal is transmitted through the antennas 106 and 107 to start radiation. Start switch.
[0042]
FIG. 2 is a schematic block diagram of an imaging terminal having a wireless function for describing an embodiment of the present invention.
[0043]
In the figure, reference numeral 202 denotes a lens control unit which controls lens driving during communication between the imaging device main body and the photographing lens.
[0044]
203 is an external display control means for controlling the liquid crystal display means 204, and 205 is a switch sense means for transmitting signals of a number of switches including an electronic dial 206 provided in the imaging device to the control means of the control means 201. Working.
[0045]
Reference numeral 211 denotes a shutter control unit that performs appropriate exposure on the solid-state imaging device 209 (CCD).
[0046]
Reference numeral 207 denotes an LCD monitor unit, 209 denotes a CCD which is the above-described imaging unit, and 210 denotes a recording unit.
[0047]
Reference numeral 208 denotes an image processing unit for temporarily recording a captured image, performing necessary processing and recording it on the recording unit 210, and displaying an image on the LCD monitor unit 207.
[0048]
Reference numeral 212 denotes a device that records the above-described captured image, performs appropriate modulation processing on the image signal of the recording unit, and radiates it to the air as a high-frequency signal, or converts a radio wave received by the antenna 213 into a high-frequency signal and It is a radio unit for performing a proper demodulation process and converting it into digital data.
[0049]
The operation of the imaging device of the present invention will be described with reference to FIG.
[0050]
In FIG. 1, an image captured by pressing a release button 104 via an imaging lens 105 is temporarily recorded in a recording unit 210.
[0051]
If the user wants to transmit the temporarily recorded image data via wireless communication, by operating the transmission start switch 108, the image data recorded in the recording means 210 is transmitted to the wireless unit 212 and converted to a high-frequency signal. It is converted and radiated via the antenna 213.
[0052]
FIG. 3 is a block diagram of the radio unit according to the embodiment of the present invention.
[0053]
Reference numeral 301 denotes a low-pass filter for removing harmonic components of digital data supplied from a baseband processing unit (not shown), for example, a digital transmission signal such as a captured image, and 302 denotes an oscillator for generating a high-frequency signal. And performs stable high-frequency oscillation in response to the feedback from the PLL unit, and performs direct modulation operation by the transmission signal in response to the output of 301.
[0054]
Although not shown, a control signal is supplied from a baseband processing unit to the PLL unit 303, and the PLL unit 303 performs a frequency hopping operation in which the frequency is shifted at a constant cycle by the control signal.
[0055]
A multiplier 304 multiplies the frequency, and a power amplifier 305 amplifies an output signal obtained by multiplying the output of the transmitter to a desired signal level.
[0056]
A transmission / reception switch 306 performs a switching operation between a transmission path and a reception path according to a control signal (not shown).
[0057]
Reference numeral 307 denotes a directional coupler, for example, a 3 dB directional coupler. At the time of transmission, the transmission output of the power amplifier 305 input via the RF switch 306 is equally distributed to supply power to the antennas 308 and 309.
[0058]
The antennas 308 and 309 radiate the two divided transmission powers into the air, respectively.
[0059]
At the time of reception, the received power received by the antennas 308 and 309 is input to the directional coupler 307, the power is combined, and the combined power is supplied to the RF switch 306.
[0060]
The received power input to the RF switch is input to the low-noise amplifier 310 during reception, amplified to a desired level, and supplied to the frequency converter 311.
[0061]
The received signal supplied to the frequency converter 311 is converted into a desired IF frequency and supplied to a subsequent bandpass filter 312, where unnecessary frequency components are removed by being subjected to a desired band limitation, and the received signal is supplied to a demodulator 313. The received signal is subjected to an appropriate demodulation process and a received signal is output.
[0062]
FIG. 4 is a diagram illustrating the operation of the directional coupler.
[0063]
In the figure, reference numeral 401 denotes an operation of switching between transmission and reception by the above-described RF switch.
[0064]
For example, at the time of transmission, a transmission signal is output via the RF switch 401.
[0065]
The transmission signal is transmitted to the transmission line 1 at 402 and also partially transmitted to the transmission line 2 terminated at one end by the terminator at 404 and transmitted.
[0066]
Here, it is known that by setting the distance between the transmission line 1 of 402 and the transmission line 2 of 403 to a desired value, it operates, for example, as a 3 dB directional coupler. It is distributed and supplied to the antennas 1 and 407 of the antenna 2.
[0067]
Here, reference numeral 405 denotes a phase shifter which corrects a phase shift of a transmission signal coupled from the transmission line 1 serving as a main line to the transmission line 2 serving as a subline at the time of transmission. Shows a phaser.
[0068]
Next, at the time of reception, the received signals respectively received by the antenna 1 of 406 and the antenna 2 of 407 are supplied to the transmission line 1 of 402 and the other to the transmission line 2 of 403 via the phase shifter 405, respectively. Evenly distributed and supplied to the RF switch.
[0069]
At this time, the powers received by the antennas 1 and 2 of the 406 and 407 are combined and input to the RF switch.
[0070]
FIG. 5 is a diagram for explaining a mounting state of the built-in antenna of the present invention.
[0071]
In FIG. 5A, reference numeral 501 denotes an imaging apparatus main body having a metal housing, and reference numeral 502 denotes an opening having a plurality of slit structures provided in the imaging apparatus main body 501 having a metal housing.
Reference numeral 503 denotes an antenna mounted inside the imaging device main body 501.
[0072]
Similarly, 504, 505, and 506 in FIG. 3B also indicate the imaging device main body, the opening, and the antenna.
[0073]
(A) In the figure, an antenna 503 is an antenna having a main polarized wave in a vertical direction with respect to a vertical direction of the antenna 503, and an opening of a slit structure of 502 is arranged in parallel with the main polarized wave.
[0074]
(B) In the drawing, the antenna 506 has a main polarization in a direction transverse to the vertical direction of the antenna 506, and the opening of the slit structure 505 is arranged in parallel with the main polarization.
[0075]
FIG. 6 is a cross-sectional view of FIG. 5A and FIG.
[0076]
601 is an antenna, 602 is a dielectric substrate on which the antenna is mounted, 603 is a metal housing of the imaging device main body, and 604 is an opening having a plurality of slit structures provided in the imaging device main body.
[0077]
FIG. 7 shows a schematic pattern of the radiation pattern of the antenna according to the embodiment of the present invention. For example, 701 shows a vertically polarized radiation pattern, while 702 shows a horizontally polarized radiation pattern.
[0078]
[Other embodiments]
It should be noted that the present invention is not limited to only the above embodiment.
[0079]
For example, in the present invention, two antennas having different main polarizations are arranged on the front surface of the imaging device by using two antennas having different main polarizations incorporated in the housing of the imaging device. By arranging the antennas on the surfaces of the image pickup devices that are different from each other by 90 °, it is possible to efficiently receive incoming radio waves having different main polarizations.
[0080]
【The invention's effect】
In view of the problems of the prior art described above, an object of the present invention is to reduce the size of the imaging device body, especially when the imaging device is in the hand, without having any projections and without deteriorating the aesthetic appearance. The imaging device body is a metal housing, and even if an antenna is mounted inside the housing, radio waves can be radiated to the outside of the metal housing by the opening means, and received radio waves from outside can also be provided. Radio waves can be incident from an opening provided in the housing body, and can be incident on an antenna mounted inside the housing.
[0081]
The power distribution unit further includes a power distribution unit that distributes transmission power evenly to the plurality of antenna units during transmission, and a power combination unit that combines and outputs reception power from the plurality of antenna units during reception. , The transmission power is evenly distributed to the antenna means whose main polarization is horizontal polarization, and the antenna means whose main polarization is vertical polarization, and the power combining means transmits from the antenna means whose main polarization is horizontal polarization. By having a configuration in which the reception power and the reception power of the main polarization from the antenna means of the vertical polarization are combined in the same phase, regardless of the direction of the imaging device, different main polarizations are transmitted at the same time. In addition to being able to radiate efficiently with transmission power, it is possible to efficiently receive one of the main polarized waves of the incoming radio wave at the time of reception.
[0082]
Therefore, it is possible to provide an imaging apparatus that can receive optimum reception power from any direction without performing particularly complicated antenna diversity, has a small circuit scale, and enables good reception at low cost.
[Brief description of the drawings]
FIG. 1 is an external view of an image pickup apparatus for explaining an embodiment of the present invention. FIG. 2 is a block diagram for explaining the operation of the image pickup apparatus of an embodiment of the present invention. FIG. 3 is an image pickup apparatus of an embodiment of the present invention. FIG. 4 is a block diagram for explaining an operation of a radio unit of the apparatus. FIG. 4 is a block diagram for explaining a radio unit of the image pickup apparatus of the present invention, particularly, a directional coupler. FIG. FIG. 6 is a view for explaining a mounting state. FIG. 6 is a view for explaining a cross section of FIG. 5. FIG. 7 is a view for explaining a radiation pattern of a built-in antenna of the present invention.
101 Imaging device main body 105 Lens 108 Transmission switch 106, 213, 308, 406, 503 Antenna 1
107, 214, 309, 407, 506 Antenna 2
201 control section 212 radio section 302, oscillator 306 RF switch 307 directional coupler,
402 Transmission Line 1
403 Transmission line 2
502, 505, 604 Slit opening

Claims (10)

電波を送受信してデジタルデータの送受信を行なう撮像装置に於いて当該撮像装置本体の金属筐体内部に配置され電波を放射、入射する複数の空中線手段と、当該空中線手段から放射する電波を金属筐体外部に放射させると共に金属筐体外部からの到来電波を金属筐体内部に入射させる開口手段を有する事を特徴とする撮像装置。In an imaging apparatus that transmits and receives radio waves and transmits and receives digital data, a plurality of antennas that are arranged inside a metal housing of the main body of the imaging apparatus and emit and receive radio waves, and a radio wave that is radiated from the antennas are disposed in a metal housing. An image pickup apparatus comprising an opening means for radiating radio waves from outside the metal housing to the outside of the body and for making the incoming radio waves enter the inside of the metal housing. 当該複数の空中線手段は各々異なる主偏波を放射、入射する偏波面を互いに有する事を特徴とする請求項1記載の撮像装置。2. The image pickup apparatus according to claim 1, wherein said plurality of antenna means have mutually different polarization planes for emitting and entering different main polarized waves. 当該複数の空中線手段は各々90°の異なる主偏波を放射、入射する偏波を有する事を特徴とする請求項1記載の撮像装置。2. The imaging apparatus according to claim 1, wherein each of the plurality of antennas has a polarization that radiates and enters a main polarization different by 90 degrees. 当該開口手段は各々の空中線手段の前面に近接して配置され空中線手段からの電波を金属筐体外部に放射、もしくは金属筐体外部からの到来電波を金属筐体内部に入射させる様一定幅、一定長のスリット状の複数の開口部から成る事を特徴とする請求項1記載の撮像装置。The opening means is arranged close to the front of each antenna means, radiates radio waves from the antenna means to the outside of the metal housing, or a certain width so that incoming radio waves from outside the metal housing enter the inside of the metal housing, 2. The imaging apparatus according to claim 1, comprising a plurality of slit-shaped openings having a predetermined length. 当該開口手段の複数の開口部のスリット長は使用する電波の周波数の波長の1/4以上である事を特徴とする請求項1記載の撮像装置。2. The imaging apparatus according to claim 1, wherein the slit length of the plurality of openings of the opening means is at least 1 / of the wavelength of the frequency of the radio wave used. 当該開口手段の開口部のスリット形状は空中線手段の主偏波が垂直偏波の場合は縦方向のスリット形状を有し、空中線手段の主偏波が水平偏波の場合は横方向のスリット形状を有する事を特徴とする請求項1記載の撮像装置。The slit shape of the opening of the opening means has a vertical slit shape when the main polarization of the antenna means is vertical polarization, and a horizontal slit shape when the main polarization of the antenna means is horizontal polarization. The imaging device according to claim 1, further comprising: 電波を送受信してデジタルデータの送受信を行なう撮像装置において、
送信時には送信電力を複数の空中線手段に均等に電力分配する電力分配手段を有し、かつ受信時には複数の空中線手段からの受信電力を合成して出力する電力合成手段を有する事を特徴とする撮像装置。
In imaging devices that transmit and receive digital data by transmitting and receiving radio waves,
An image pickup apparatus comprising: a power distributing unit that evenly distributes transmission power to a plurality of antenna units during transmission; and a power combining unit that combines and outputs received power from the plurality of antenna units during reception. apparatus.
当該電力分配手段は送信電力を、主偏波が水平偏波の空中線手段と、主偏波が垂直偏波の空中線手段に均等に分配する構成を有する事を特徴とする請求項7記載の撮像装置。8. The imaging apparatus according to claim 7, wherein the power distribution unit has a configuration in which the transmission power is evenly distributed to the antenna unit whose main polarization is horizontal polarization and the antenna unit whose main polarization is vertical polarization. apparatus. 当該電力合成手段は主偏波が水平偏波である空中線手段からの受信電力と、主偏波が垂直偏波の空中線手段からの受信電力を同一の位相で合成する構成を有する事を特徴とする請求項7項記載の撮像装置。The power combining means has a configuration in which the received power from the antenna means whose main polarization is horizontal polarization and the received power from the antenna means of vertical polarization are combined with the same phase. The imaging device according to claim 7, wherein: 当該電力分配手段と電力合成手段は送信時には電力分配手段として、受信時には電力合成手段として動作する双方向動作をする構成である事を特徴とする請求項7項記載の撮像装置。8. The imaging apparatus according to claim 7, wherein the power distribution unit and the power combining unit are configured to perform a bidirectional operation of operating as a power distribution unit during transmission and as a power combining unit during reception.
JP2002328325A 2002-11-12 2002-11-12 Imaging device Withdrawn JP2004165904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002328325A JP2004165904A (en) 2002-11-12 2002-11-12 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002328325A JP2004165904A (en) 2002-11-12 2002-11-12 Imaging device

Publications (1)

Publication Number Publication Date
JP2004165904A true JP2004165904A (en) 2004-06-10

Family

ID=32806658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002328325A Withdrawn JP2004165904A (en) 2002-11-12 2002-11-12 Imaging device

Country Status (1)

Country Link
JP (1) JP2004165904A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006217354A (en) * 2005-02-04 2006-08-17 Olympus Corp Digital camera, accessory unit, and digital camera system
CN112492229A (en) * 2019-09-11 2021-03-12 杭州海康威视数字技术股份有限公司 Camera device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006217354A (en) * 2005-02-04 2006-08-17 Olympus Corp Digital camera, accessory unit, and digital camera system
CN112492229A (en) * 2019-09-11 2021-03-12 杭州海康威视数字技术股份有限公司 Camera device
CN112492229B (en) * 2019-09-11 2022-08-30 杭州海康威视数字技术股份有限公司 Camera device

Similar Documents

Publication Publication Date Title
CN107534223B (en) Electronic device with millimeter wave antenna
JPWO2005011148A1 (en) Millimeter-wave wireless communication method and system
WO2006011322A1 (en) Mobile telephone device
US6694151B2 (en) Antenna apparatus for digital cameras incorporating wideband RF transceivers
TW200952250A (en) Portable electronic device having broadcast antenna
JP2002073210A (en) Portable information equipment with built-in radio communication antenna
JP2003087023A (en) Portable information equipment incorporating radio communication antenna
JP2006217200A (en) Radio communications device
EP2186162A1 (en) Antenna of resonance frequency variable type
JP3694014B2 (en) Wireless communication device
KR100610187B1 (en) High-frequency receiving unit and high-frequency receiving method
JP2004165904A (en) Imaging device
JP2007243276A (en) Antenna system and mobile wireless apparatus
JPH118893A (en) Receiving device
JPH11251981A (en) Mobile communication equipment
JP3603995B2 (en) High frequency wireless communication device
KR100652618B1 (en) Double antenna apparatus for mobile communication device
JP3980604B2 (en) Wireless communication device
JP2005217836A (en) Mobile wireless unit
JP5014905B2 (en) Variable directional antenna device
JP2013197636A (en) Radio communication type portable tv tuner
JP2006148948A (en) Wireless microphone
KR100800987B1 (en) Milliwave band radio communication method and system
JP2002094317A (en) Small-sized mobile terminal
JP4107649B2 (en) High frequency wireless communication device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060207