JP2004165683A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP2004165683A
JP2004165683A JP2003416169A JP2003416169A JP2004165683A JP 2004165683 A JP2004165683 A JP 2004165683A JP 2003416169 A JP2003416169 A JP 2003416169A JP 2003416169 A JP2003416169 A JP 2003416169A JP 2004165683 A JP2004165683 A JP 2004165683A
Authority
JP
Japan
Prior art keywords
light
layer
light emitting
emitting device
organic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003416169A
Other languages
Japanese (ja)
Other versions
JP4296921B2 (en
Inventor
Hisatoshi Nagamori
久稔 永森
Takashi Udagawa
隆 宇田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2003416169A priority Critical patent/JP4296921B2/en
Publication of JP2004165683A publication Critical patent/JP2004165683A/en
Application granted granted Critical
Publication of JP4296921B2 publication Critical patent/JP4296921B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain light emitting devices with different luminous wavelengths even if the stimulation light source layer is the same, and to provide a light emitting device by which polychromatic light can be obtained from a single device. <P>SOLUTION: In a light emitting device provided with a stimulation light source layer, a luminous layer, and a photo-degradation prevention layer, the stimulation light source layer is made of inorganic compound semiconductor light emitting devices, the luminous layer comprises multiple organic compounds which present different stimulation luminous colors according to the light from the stimulation light source layer, and the photo-degradation prevention layer works to prevent the photo-degradation of the organic compounds. Also, the luminous layer adjoins the photo-degradation prevention layer in the device structure. <P>COPYRIGHT: (C)2004,JPO

Description

本発明は発光素子、特に光励起発光を呈する有機化合物とそれを光励起し発光させるための無機化合物半導体を発光素子とする励起光源層とを備えた発光素子に関する。   The present invention relates to a light-emitting element, and more particularly to a light-emitting element including an organic compound exhibiting photoexcitation light emission and an excitation light source layer using an inorganic compound semiconductor for photoexcitation and emission of the organic compound.

多々ある発光現象の中で、有機化合物の呈する蛍光、燐光の現象は、有機化合物個々の分子構造を反映した発光色、色調を示す点で発光材料としての多色化の可能性を持っている。これらの発光の機構は、光による電子の発光電子準位への励起と、発光としてエネルギーを緩和させる過程から成る現象として知られている。この電子準位への励起が、電気的エネルギーによって起こり発光緩和過程を伴う場合、この現象は、エレクトロルミネッセンス現象の範疇に入る。中でも、有機化合物の発光の場合、いわゆる有機エレクトロルミネッセンスとして知られている。有機エレクトロルミネッセンスは、古くはアントラセン結晶等で観測されていたが、1980年半ば以降、薄膜形成した発光活性、特に蛍光を有する有機化合物を用いて観測され、薄膜型の有機エレクトロルミネッセント素子として発光素子への応用の研究、開発が行われてきた。   Among the various light-emitting phenomena, the fluorescent and phosphorescent phenomena exhibited by organic compounds have the potential to be multicolored as light-emitting materials in that they exhibit emission colors and color tones that reflect the molecular structure of each organic compound. . These light emission mechanisms are known as phenomena comprising excitation of electrons to emission light levels by light and a process of relaxing energy as light emission. When the excitation to the electronic level is caused by electric energy and involves a light emission relaxation process, this phenomenon falls into the category of the electroluminescence phenomenon. Above all, in the case of light emission of an organic compound, it is known as so-called organic electroluminescence. Organic electroluminescence has long been observed in anthracene crystals and the like, but since the mid-1980s, it has been observed using thin-film formed luminescent activities, particularly organic compounds that have fluorescence, and as thin-film organic electroluminescent devices Research and development of application to light emitting devices have been performed.

有機エレクトロルミネッセント素子では、上述の発光機構のうち、電気的エネルギーによって発光活性な有機化合物に外部より電荷を注入し、発光許容な励起状態を形成することで発光を得ている。従って、当該素子の応用では、本発光機構に基づき、より発光の効率を向上させる工夫、試みがためされ、その方策が模索されてきた。即ち、発光活性な有機化合物層で発光許容な電子と正孔の再結合を行わしめる方法であって、素子構造の通例としては、発光層が電子を注入する電子注入層と正孔を注入する正孔注入層との2層に挟まれた構造か、または、注入層のどちらか一方と接合した形態となっている。この形態は、発光層の持つ電荷移動性、注入層界面に於けるエネルギー障壁の大きさにより決まり、発光層、注入層の種類により最適な形態も異なる。この様な電荷の注入層と発光層とを、ITO(インジウム・錫酸化物)を代表とする透明電極を被着させた透明な基板と仕事関数の低い金属からなる電極との間に形成し、電荷注入することで発光を得ることが通例となっている。この様な、素子の一例を図5に示す。図では、ガラス等の基板(101)の表面上に被着させた透明電極(117)上に正孔注入層(111)と発光活性な有機化合物層(104)、電子注入層(110)及び、電極(107)とが順次積層された構成の素子を示している。   In the organic electroluminescent element, light is emitted by injecting an electric charge from the outside into an organic compound that is luminescent by electric energy and forming an excited state in which luminescence is allowed. Therefore, in the application of the element, based on the present light-emitting mechanism, devices and attempts have been made to improve the light-emitting efficiency, and measures have been sought. That is, this is a method in which light-permissible electrons and holes are recombined in a light-emitting organic compound layer. As a typical element structure, the light-emitting layer injects electrons into an electron injection layer and holes injects. It has a structure sandwiched between two layers with a hole injection layer, or has a mode in which it is bonded to one of the injection layers. This form is determined by the charge mobility of the light emitting layer and the size of the energy barrier at the interface of the injection layer, and the optimum form differs depending on the type of the light emitting layer and the injection layer. Such a charge injection layer and a light emitting layer are formed between a transparent substrate on which a transparent electrode represented by ITO (indium tin oxide) is deposited and an electrode made of a metal having a low work function. It is customary to obtain light emission by injecting charges. FIG. 5 shows an example of such an element. In the figure, a hole injection layer (111), a luminescent organic compound layer (104), an electron injection layer (110), and a hole injection layer (111) are formed on a transparent electrode (117) deposited on the surface of a substrate (101) such as glass. , Electrodes (107) are sequentially stacked.

有機エレクトロルミネッセント素子の場合、発光素子の多色化は比較的容易である。即ち、発光色は発光活性な有機化合物を替えることで容易に選択出来、また、合成手法により新たに作り出すことが可能である。これは、発光層に有機化合物を用いた当該素子の優位点の一つである。また、発光活性な有機化合物を複数適宜混合することで、白色発光を呈する有機エレクトロルミネッセント素子も最近報告されており(例えば、非特許文献1参照。)、発光色の制御、多色化の優位性を示している。上記の様にして形成した素子の典型的な性能は数ボルトで発光輝度数百〜数千Cd/m程度の発光を呈する。しかし、その寿命は長いものでも数千時間程度であり、長寿命化、安定性が特に課題である。 In the case of an organic electroluminescent device, it is relatively easy to make the light emitting device multicolor. That is, the luminescent color can be easily selected by changing the luminescent organic compound, and can be newly created by a synthesis method. This is one of the advantages of the element using an organic compound for the light emitting layer. Also, an organic electroluminescent device that emits white light by appropriately mixing a plurality of organic compounds that emit light has been reported recently (for example, see Non-Patent Document 1). Shows superiority. The typical performance of the element formed as described above exhibits light emission of several hundreds to several thousand Cd / m 2 at several volts. However, its long life is about several thousand hours even if it is long.

一方、無機化合物材料からなる発光素子の代表的な例に発光ダイオード(LED)があり、表示装置や光通信機器等に用いられている。発光波長によってLEDには種々の化合物半導体材料が使用される。例えば、可視赤色LEDにはAlGaAsが、可視緑色LEDにはGaPなど、Al、Ga等の元素周期律表の第III族元素と第V族元素としてPやAsを組合わせた化合物半導体材料が用いられている。また、最近では高輝度の青色LED材料としてIII−V族化合物半導体の一種であるGaNやAlGaN、GaInN等の混晶も利用されている(例えば、非特許文献2または非特許文献3参照。)。   On the other hand, a typical example of a light emitting element made of an inorganic compound material is a light emitting diode (LED), which is used for a display device, an optical communication device, and the like. Various compound semiconductor materials are used for the LED depending on the emission wavelength. For example, AlGaAs is used for a visible red LED, and a compound semiconductor material in which P and As are combined as a Group III element and a Group V element of the periodic table such as Al and Ga is used for a visible green LED such as GaP. Have been. Further, recently, mixed crystals of GaN, AlGaN, GaInN, etc., which are a kind of group III-V compound semiconductor, have been used as blue LED materials of high luminance (for example, see Non-Patent Document 2 or Non-Patent Document 3). .

これらの無機LEDにおいても光の3原色の発光が可能となればLEDを発光素子から表示素子へと応用することによって更に大きな応用範囲が広がるという点で、赤色、緑色、青色発光は重要であり、特に、短波長の緑色、青色LEDが期待されている。一例として、GaNの混晶であるGaInNを発光層とした青色LEDの従来構造の模式図を図6に示す(例えば、非特許文献4および非特許文献5参照。)。基板(101)としては透明なサファイア単結晶が使われている(例えば、非特許文献6参照。)。基板直上には緩衝層(102)としてGaNが設けられている。緩衝層はAlNから構成される例もある(例えば、非特許文献7、非特許文献8、非特許文献9参照。)。GaN緩衝層(102)の上にはAlGaNからなる下部クラッド層(103)が設けられる。下部クラッド層(103)の上にはGaInNからなる発光層(104)が設けられている。発光層材料としてはこの他、AluInvGawN(u+v+w=1、u≠0、u>0)が開示されている(例えば、特許文献1参照。)。 Red, green, and blue light emission is important in that, if these inorganic LEDs can emit light of three primary colors, the LED can be applied from a light emitting element to a display element to expand a wider application range. In particular, short-wavelength green and blue LEDs are expected. As an example, FIG. 6 shows a schematic diagram of a conventional structure of a blue LED using GaInN, which is a mixed crystal of GaN, as a light emitting layer (see, for example, Non-Patent Documents 4 and 5). As the substrate (101), a transparent sapphire single crystal is used (for example, see Non-Patent Document 6). GaN is provided directly above the substrate as a buffer layer (102). In some cases, the buffer layer is made of AlN (for example, see Non-Patent Document 7, Non-Patent Document 8, and Non-Patent Document 9). A lower cladding layer (103) made of AlGaN is provided on the GaN buffer layer (102). A light emitting layer (104) made of GaInN is provided on the lower cladding layer (103). Other is as a light emitting layer material, Al u In v Ga w N (u + v + w = 1, u ≠ 0, u> 0) has been disclosed (e.g., see Patent Document 1.).

図6に示す様に青色発光を呈する可視LEDには、発光層材料に2元化合物ではなく、わざわざ3元素からなるGaNの混晶の一例であるGaxIn1-xN(xは組成比を表し、0<x<1である。)を利用している。GaNではなく混晶化されたGaxIn1-xNを利用するのはInを混在させることにより、禁止帯幅を縮小させるためである。禁止帯幅(Eg、単位:eV)と発光波長(λ、単位:nm)とは(式1)の関係にある。
λ=1.24×103/Eg・・・・(式1)
As shown in FIG. 6, in a visible LED that emits blue light, Ga x In 1 -x N (x is a composition ratio), which is an example of a mixed crystal of GaN composed of three elements instead of a binary compound, is used as a light emitting layer material. And 0 <x <1) are used. The reason why mixed crystal Ga x In 1-x N is used instead of GaN is to reduce the band gap by mixing In. The forbidden band width (E g , unit: eV) and the emission wavelength (λ, unit: nm) have a relationship of (Equation 1).
λ = 1.24 × 10 3 / E g (Equation 1)

GaNの室温での禁止帯幅は3.4eVである(例えば、非特許文献10参照。)。従って、(式1)に依ればλは約365nmとなる。よって、GaNは紫外線を発光するLEDの発光層材料とはなるが可視LED用途の発光層材料にはならない。GaNにInを加えたGaxIn1-xNでは、(x)の如何に依って禁止帯幅をGaNの3.4eVからInNの1.9eV(例えば、非特許文献11参照。)の間で変化させる事ができる。例えば、波長が460nmの青色発光を得るには、(式1)によりEgを約2.7eVとする必要がある。GaxIn1-xNのEgの(x)依存性(例えば、非特許文献12参照。)から、(x)は約0.3とする必要がある。即ち、460nmの青色発光を得るにはGa0.7In0.3Nの組成の層を発光層とする必要がある。 The band gap of GaN at room temperature is 3.4 eV (for example, see Non-Patent Document 10). Therefore, according to (Equation 1), λ is about 365 nm. Therefore, GaN is a light emitting layer material for an LED that emits ultraviolet light, but is not a light emitting layer material for a visible LED. In Ga x In 1-x N obtained by adding In to GaN, the band gap is changed from 3.4 eV of GaN to 1.9 eV of InN (for example, see Non-Patent Document 11), depending on (x). Can be changed with. For example, in order to obtain blue light emission with a wavelength of 460 nm, E g needs to be about 2.7 eV according to (Equation 1). From the (x) dependency of E g of Ga x In 1-x N (for example, see Non-Patent Document 12), (x) needs to be about 0.3. That is, in order to obtain blue light emission of 460 nm, it is necessary to use a layer having a composition of Ga 0.7 In 0.3 N as a light emitting layer.

しかし、実際には(x)を小さくする、即ちInの組成比を高くするのは結晶成長の技術上、困難を伴っている。実用上は結晶性が悪化するためInの組成比を0.2〜0.3を越えて高めるのは困難となっている。また、禁止帯幅を変化させるという意味に於いては、従来では、GaxIn1-xN層の(x)を実用上0.8程度に抑制して上で亜鉛(元素記号:Zn)等の不純物をGaxIn1-xN混晶層に添加し、Znが形成する不純物準位を利用して見掛け上、禁止帯幅を縮小する操作が行われている。Znを添加した場合、禁止帯幅は約0.5eV縮小するとされる(例えば、非特許文献13参照。)。 However, in practice, it is difficult to reduce (x), that is, to increase the composition ratio of In, due to the technology of crystal growth. In practice, it is difficult to increase the composition ratio of In beyond 0.2 to 0.3 because crystallinity is deteriorated. In the sense that the band gap is changed, conventionally, (x) of the Ga x In 1 -xN layer is practically suppressed to about 0.8 and zinc (element symbol: Zn) An operation of adding such impurities to the Ga x In 1-x N mixed crystal layer and apparently reducing the forbidden band width using an impurity level formed by Zn is performed. When Zn is added, the forbidden band width is reduced by about 0.5 eV (for example, see Non-Patent Document 13).

不純物によって半導体の価電子帯−伝導帯間に形成される準位は一般に唯一ではない。よって、Znの様な不純物を添加した発光層からは種々の不純物の準位に対応した波長の発光が混在する。波長の異なる発光が混在すると、結果として発光スペクトルは幅広くなる。実際、Znを添加したGaInNには主発光に隣接した副次的な発光が観測されている(中村 修二、『InGaN高輝度青色発光ダイオード』(日本学術振興会光電相互変換第125委員会第148回研究会(平成6年5月27日)資料))。GaNにZnを添加した場合にも、Znの添加量の増大に伴いLEDの発光スペクトルが拡大されることが報告されている(T.Kawabata他、J.Appl.Phys.,56(8)(1984)、2367)。従って、不純物準位を利用して発光波長を長波長化させる従来の方法は、発光スペクトルの半値幅が狭い単色化された発光を得るには難があった。   The level formed between the valence band and the conduction band of the semiconductor by the impurity is generally not unique. Therefore, light having wavelengths corresponding to the levels of various impurities coexist from the light emitting layer to which an impurity such as Zn is added. When light emission having different wavelengths coexist, the emission spectrum becomes wider as a result. In fact, secondary light emission adjacent to main light emission is observed in Zn-doped GaInN (Shunji Nakamura, “InGaN high-brightness blue light-emitting diode” (JSPS 125th Committee, No. 148, 148). Meeting (May 27, 1994))). It has been reported that, even when Zn is added to GaN, the emission spectrum of the LED is expanded with an increase in the amount of Zn added (T. Kawabata et al., J. Appl. Phys., 56 (8) ( 1984), 2367). Therefore, the conventional method of increasing the emission wavelength using the impurity level has a difficulty in obtaining monochromatic emission having a narrow half width of the emission spectrum.

光の3原色の一つに青色よりも長波長である緑色がある。(式1)に依れば、より長波長の発光を得るにはEgを更に低下させる必要がある。GaxIn1-xN層を発光層材料として採用する場合には、更にInの組成比を上昇させなければならない。例えば波長が550nmの緑色発光を得るには、Egを2.25eVとする必要がある。Egを2.25eVとするにはInの組成比を約0.6に高めなければならない(S.SAKAI他、Jpn.J.Appl.Phys.、32(1993)、4413.参照)。前述の如く、結晶性を損なわずにInの組成比を高めるのは容易ではない。Znを発光不純物として添加し、0.5eV程度の禁止帯幅の縮小を意図するにしても(x)を約0.6、即ちIn組成比を約0.4とする必要があった。この組成比はGaxIn1-xNの結晶性を損なわない実用的なIn組成比の上限である0.2〜0.3を越えている。
「応用物理」第63巻第10号(1994)、1026頁 中村 修二、「電子情報通信学会誌」第76巻第9号(1993)、913頁 真部 勝英、「豊田合成技報」、第35巻第4号(1993)、68頁 NIKKEI MATERIALS&TECHNOLOGY94.4(no.140)、48頁 NIKKEIELECTRONICS1994.1.3(no.598)、59頁 H.M.Manasevit他、J.Electrochem.Soc.,118(1971)、1864 Yasuo KOIDE他、Jpn.J.Appl.Phys.,27(7)(1988)、p.p.1156−1161 H.Amano他、Thin Solid Films、163(1988)、415 小出 康夫他、「日本結晶成長学会誌」、第13巻第4号(1986)、8頁 特公平6−14564号公報 赤崎 勇編著、「III−V族化合物半導体」(1994年5月20日培風館発行)、150頁 K.Kubota他、J.Appl.Phys.、66(1989)、2984 S.SAKAI他、Jpn.J.Appl.Phys.、32(1993)、4413. 中村 修二、「日本学術振興会光電相互変換第125委員会第148回研究会資料(平成6年5月27日)
One of the three primary colors of light is green, which has a longer wavelength than blue. According to (Equation 1), it is necessary to further reduce E g in order to obtain emission of a longer wavelength. When a Ga x In 1-x N layer is used as a light emitting layer material, the composition ratio of In must be further increased. For example, the wavelength to obtain a green light emission of 550nm, it is necessary that the E g and 2.25 eV. The E g in a 2.25eV should increase to about 0.6 to the composition ratio of In (S.SAKAI other, Jpn.J.Appl.Phys., 32 (1993) , 4413. See). As described above, it is not easy to increase the composition ratio of In without deteriorating the crystallinity. Even if Zn is added as a light emitting impurity and the band gap is reduced to about 0.5 eV, (x) needs to be about 0.6, that is, the In composition ratio is about 0.4. This composition ratio exceeds the practical upper limit of 0.2 to 0.3 of the In composition ratio that does not impair the crystallinity of Ga x In 1 -xN.
"Applied Physics" Vol. 63, No. 10 (1994), p. 1026 Shuji Nakamura, Journal of the Institute of Electronics, Information and Communication Engineers, Vol. 76, No. 9 (1993), p. 913 Masabe Katsuhide, "Toyoda Gosei Giho," Vol. 35, No. 4, April 1993, p. 68 NIKKEI MATERIALS & TECHNOLOGY 94.4 (No. 140), p. 48 NIKKIEELECTRONICS 1994.1.3 (No. 598), p. 59 H. M. Manasevit et al. Electrochem. Soc. , 118 (1971), 1864. Yasuko KOIDE et al., Jpn. J. Appl. Phys. , 27 (7) (1988), p. p. 1156-161 H. Amano et al., Thin Solid Films, 163 (1988), 415. Yasuo Koide et al., "Journal of Japan Society for Crystal Growth", Vol. 13, No. 4 (1986), p. 8 Japanese Patent Publication No. 6-14564 Edited by Isamu Akasaki, "III-V Group Compound Semiconductor" (published on May 20, 1994 by Baifukan), p. 150 K. Kubota et al. Appl. Phys. , 66 (1989), 2984 S. SAKAI et al., Jpn. J. Appl. Phys. , 32 (1993), 4413. Shuji Nakamura, “JSPS Photoelectric Interconversion 125th Committee, 148th Meeting, May 27, 1994”

無機化合物からなる発光層材料を含み、無機化合物から構成さたLEDは、有機色素化合物からなる或いはそれを含む層を発光層として備えた発光素子に比べれば一般には、高輝度であるのが特長となっている。しかし、青色や緑色の発光を呈する短波長の可視LEDを得るに例えば、発光層にGaxIn1-xNを採用する場合にあっては、上述の様に良質の混晶層を得るに成長技術上の難しさを伴っており、Znを発光不純物として添加しても発光スペクトルが広がり、先鋭な単色化したスペクトルでなくなるという課題があった。 In general, an LED that includes a light-emitting layer material made of an inorganic compound and that is made of an inorganic compound has a higher luminance than a light-emitting element that has a layer made of an organic dye compound or has a layer containing it as a light-emitting layer. It has become. However, in order to obtain a short-wavelength visible LED that emits blue or green light, for example, in the case of using Ga x In 1-x N for the light emitting layer, it is necessary to obtain a high-quality mixed crystal layer as described above. There is a difficulty in the growth technique, and there is a problem that even if Zn is added as a light-emitting impurity, the light-emitting spectrum broadens and the spectrum does not become a sharp monochromatic spectrum.

一方、従来のGaxIn1-xNの様な混晶化された発光層ではなく、より成長が容易なGaN等の2元素からなる無機化合物半導体材料を利用すれば比較的簡便にLEDを得ることもできる。しかしながら、GaNを発光層とした場合はGaNのEgが3.4eVであるため紫外光を発光し、可視光は発しない。 On the other hand, if an inorganic compound semiconductor material composed of two elements such as GaN, which can be more easily grown, is used instead of a mixed-crystal light-emitting layer such as the conventional Ga x In 1-x N, the LED can be relatively easily manufactured. You can also get. However, when the GaN light-emitting layer emits ultraviolet light for GaN of E g is 3.4 eV, does not emit visible light.

他方、従来の有機化合物を利用した有機エレクトロルミネッセント素子の発光層からの発光は、有機化合物の選択性故に多色化が可能であるが、その発光自体は、電気エネルギーの注入によってもたらされている。このため、電気エネルギーが発光層や注入層といった有機化合物層中において熱エネルギーに変換され、熱による有機化合物層の劣化、即ち、熱エネルギーによる電子状態の変化によって発光許容が損なわれるという問題があり、注入されたエネルギーを有効に光のエネルギーに変換して高輝度発光を得、長寿命化を図るという高効率化が課題である。   On the other hand, light emission from the light-emitting layer of an organic electroluminescent device using a conventional organic compound can be made polychromatic due to the selectivity of the organic compound, but the light emission itself is brought about by injection of electric energy. Have been. For this reason, electric energy is converted into heat energy in an organic compound layer such as a light emitting layer and an injection layer, and there is a problem that deterioration of the organic compound layer due to heat, that is, a change in an electronic state due to heat energy impairs light emission allowance. The problem is how to efficiently convert the injected energy into light energy to obtain high-brightness light emission and extend the life of the device, thereby improving efficiency.

有機化合物は光エネルギーの注入に依っても発色を呈する。蛍光や燐光はその例であることは前に述べた。この場合、一般に発光波長に相当するエネルギーよりも大きなエネルギーで光エネルギーを注入する。即ち、可視光領域の発光を得るためには、それよりも大きなエネルギーの光、例えば、短波長の可視光や紫外光を適宜用いれば良い。尚、光の波長(λ)とそのエネルギーの大きさ(E)とは、プランク定数をh、光速度Cを用いると(式2)で表される関係にある。
E=h・C/λ・・・・(式2)
Organic compounds exhibit color even upon injection of light energy. It was mentioned earlier that fluorescence and phosphorescence are examples. In this case, light energy is generally injected with energy larger than the energy corresponding to the emission wavelength. That is, in order to obtain light emission in the visible light region, light having energy larger than that, for example, visible light or ultraviolet light having a short wavelength may be appropriately used. The wavelength (λ) of light and the magnitude (E) of its energy have a relationship represented by (Equation 2) when a Planck constant is h and a light speed C is used.
E = h · C / λ ··· (Equation 2)

従って、光励起により発光する有機化合物の発光源として無機化合物半導体からなる発光素子を利用することができる。例えば、上述のGaNからなる励起光源層から発せられる紫外線を有機色素化合物を光励起するための光源として利用し、有機化合物の発光を得ることも可能である。   Therefore, a light-emitting element made of an inorganic compound semiconductor can be used as a light-emitting source of an organic compound that emits light by light excitation. For example, it is also possible to use the ultraviolet light emitted from the above-mentioned excitation light source layer made of GaN as a light source for photo-exciting the organic dye compound, thereby obtaining light emission of the organic compound.

この様な構成からなる発光素子では、発光層にはわざわざGaxIn1-xNの様な混晶を敢えて必要とせず、よって長波長化を意図したInの組成比を上昇させる必要性もなくなる。GaNからの紫外域の発光は、有機化合物を光励起するには都合が良く、従って、GaxIn1-xNよりもGaNの様な禁止帯幅(Eg)のより大きな材料から発光層を構成するのが良い。しかし、この様な光励起光を供給する例えば、無機化合物からなる励起光源層と有機化合物からなる発光層との双方を備えた発光素子は知られていない。 In the light-emitting element having such a configuration, the light-emitting layer does not need to intentionally require a mixed crystal such as Ga x In 1-x N, and thus it is necessary to increase the composition ratio of In intended to increase the wavelength. Disappears. Ultraviolet light emission from GaN is convenient for photoexcitation of organic compounds, and therefore, the light emitting layer is made of a material having a larger band gap (E g ) such as GaN than Ga x In 1 -xN. It is good to configure. However, for example, a light-emitting element that supplies such an optical excitation light and includes both an excitation light source layer made of an inorganic compound and a light-emitting layer made of an organic compound is not known.

また、有機化合物からなる或いはそれを含む樹脂等を励起光源を発する例えば、無機化合物からなる励起光源層の周辺に配置することによっても、発光は得られる。しかし、この様な有機化合物を励起光源層の周辺に配置した簡易な構成からなる発光素子は知られていない。   In addition, light emission can also be obtained by disposing a resin or the like made of an organic compound or a resin containing the same around an excitation light source layer that emits an excitation light source, for example, an inorganic compound. However, a light-emitting element having a simple structure in which such an organic compound is arranged around the excitation light source layer is not known.

本発明者は上記の課題を解決すべく努力した結果、本発明に到達した。即ち、本発明は光励起発光を呈する有機化合物からなる若しくは光励起発光を呈する有機化合物を含んでなる発光層と該有機化合物を光励起により発光させるための無機化合物半導体を発光素子とする励起光源層とを備えてなる発光素子である。また光励起発光を呈する有機化合物からなる若しくは光励起発光を呈する有機化合物を含んでなる化合物と、該有機化合物を光励起により発光させるための励起光源層とを備え、該励起光源層を前記有機化合物若しくはそれを含む化合物で囲繞し、封止してなる発光素子である。これらの発光素子に於いて有機化合物を光励起により発光させるための励起光源層は、中心が400nm以下である波長の発光をもたらす材料から構成することができる。中心が400nm以下である波長の発光をもたらす励起光源層は例えばAlN、GaN若しくはそれらとInNとの混晶から構成するものである。更に、有機化合物は中心が400nm以下である波長の光によって光励起発光現象を呈する有機化合物とすることができる。   The present inventor has achieved the present invention as a result of efforts to solve the above problems. That is, the present invention provides a light emitting layer comprising an organic compound exhibiting photoexcited light emission or comprising an organic compound exhibiting photoexcited light emission, and an excitation light source layer having an inorganic compound semiconductor for emitting light by light excitation of the organic compound as a light emitting element. It is a light emitting element provided. Further, a compound comprising an organic compound exhibiting photoexcited light emission or comprising an organic compound exhibiting photoexcited light emission, and an excitation light source layer for causing the organic compound to emit light by photoexcitation are provided. Is a light emitting element which is surrounded by a compound containing and sealed. In these light-emitting elements, an excitation light source layer for causing an organic compound to emit light by photoexcitation can be made of a material that emits light of a wavelength whose center is 400 nm or less. The excitation light source layer that emits light of a wavelength whose center is 400 nm or less is made of, for example, AlN, GaN, or a mixed crystal of these and InN. Further, the organic compound can be an organic compound exhibiting a photoexcited light emission phenomenon by light having a wavelength of 400 nm or less at the center.

本発明の有機化合物からなる層若しくは有機化合物を含む層(以下、有機化合物層と称す。)と該有機化合物層を光励起し発光を得るための励起光を発する励起光源層とを備えてなる発光素子は、単純には基板上に設けられた例えば、GaNなどのpn接合からなる励起光源層の上方に有機化合物層を設ければ形成できる。また、基板とする材料が光学的に透明或いは透光性であれば、励起光源層の下方に位置する例えば基板の裏面側に設けても良い。基板材料が絶縁性で、これにより基板の一面に電極を形成するのが不可能な場合は、基板の表面側に設ける積層構造の中間に有機化合物層を挿入することもできる。また、絶縁性基板の上に設ける緩衝層が高抵抗層であれば、緩衝層の上に有機化合物層を設けることもできる。また、励起光源発生層を含む積層構造の側面の一部或いは全面を有機化合物層で被覆しても良い。これらの例をもとに構成すれば本発明のいう有機化合物層と有機化合物を光励起し発光させるための励起光源層とを備えた発光素子が形成される。   Emission comprising a layer comprising an organic compound or a layer containing an organic compound of the present invention (hereinafter referred to as an organic compound layer) and an excitation light source layer which emits excitation light for photoexcitation of the organic compound layer to obtain emission. The element can be formed simply by providing an organic compound layer above an excitation light source layer made of a pn junction such as GaN provided on a substrate. If the material used for the substrate is optically transparent or translucent, it may be provided, for example, on the back side of the substrate located below the excitation light source layer. If the substrate material is insulative and it is not possible to form an electrode on one surface of the substrate, an organic compound layer can be inserted in the middle of the laminated structure provided on the front surface side of the substrate. If the buffer layer provided on the insulating substrate is a high resistance layer, an organic compound layer can be provided on the buffer layer. Further, a part or the whole of the side surface of the laminated structure including the excitation light source generating layer may be covered with the organic compound layer. When configured based on these examples, a light-emitting element including the organic compound layer according to the present invention and an excitation light source layer for photo-exciting and emitting light from the organic compound is formed.

有機化合物層の導電性や伝導性には特に制限はない。有機化合物層が高抵抗層であれば、例えば電極を載置する無機化合物層の電極が形成される領域以外の領域を被覆する様に設ければ良い。また、導電性を有する有機化合物層であれば、当該有機化合物層そのものを電極とするか、金属電極と有機化合物とが接触する部分を光を透過する性質を有する絶縁材料で被覆すれば良い。また、励起光源層を含む積層構造の導電性であることが要求される層間、例えばクラッド層とコンタクト層の中間に挿入しても差し支えない。要は、有機化合物層を励起光源層からの発光を得るための動作駆動電流の流通を阻害せず、且つ励起光源層から放出される有機化合物を励起するための励起光を広範囲に亘り受光出来る様に配置する。   The conductivity and conductivity of the organic compound layer are not particularly limited. If the organic compound layer is a high-resistance layer, for example, the organic compound layer may be provided so as to cover a region other than the region where the electrode is formed of the inorganic compound layer on which the electrode is mounted. In the case of an organic compound layer having conductivity, the organic compound layer itself may be used as an electrode, or a portion where the metal electrode and the organic compound are in contact may be covered with an insulating material having a property of transmitting light. Further, it may be inserted between layers of the laminated structure including the excitation light source layer which are required to be conductive, for example, between the cladding layer and the contact layer. In short, the organic compound layer does not hinder the flow of operation drive current for obtaining light emission from the excitation light source layer, and can receive excitation light for exciting the organic compound emitted from the excitation light source layer over a wide range. Place it in the same way.

有機化合物層と励起光源層とを備えてなる発光素子の断面及び平面模式図の一例を図1及び図2に各々示す。この構造例では、基板(101)に透光性の窒化アルミニウム(AlN)を用いている。基板材料はAlNに限定されないが、基板材料の裏面側に有機化合物層を設ける場合には、励起光源層から発せられる波長の光を吸収しない、即ち励起光源層を構成している材料よりも大きなEgを有する材料から構成するのが好ましい。基板の裏面側に配置する有機化合物層を励起するための励起光の強度を減じないためである。基板の裏面側とは、励起光源層を備えた積層構造を堆積する、基板の表面とは反対側の基板の面のことをいう。基板の裏面側をも有機化合物層で被覆する場合、材料のEgの観点から励起光源層と基板材料との好ましい組合せの一例としては、励起光源層をGaNから構成し、基板をよりEgの大きい石英ガラス材料やAlNとする例がある。 FIGS. 1 and 2 each show an example of a cross-sectional view and a schematic plan view of a light-emitting element including an organic compound layer and an excitation light source layer. In this structural example, a light-transmitting aluminum nitride (AlN) is used for the substrate (101). The substrate material is not limited to AlN, but when an organic compound layer is provided on the back surface side of the substrate material, it does not absorb light having a wavelength emitted from the excitation light source layer, that is, is larger than the material constituting the excitation light source layer. Preferably, it is composed of a material having E g . This is because the intensity of the excitation light for exciting the organic compound layer disposed on the back side of the substrate is not reduced. The back surface side of the substrate refers to the surface of the substrate opposite to the surface of the substrate on which the laminated structure including the excitation light source layer is deposited. When the back surface side of the substrate is also coated with the organic compound layer, as an example of a preferable combination of the excitation light source layer and the substrate material from the viewpoint of E g of the material, the excitation light source layer is made of GaN, and the substrate is made of E g. There is an example in which a quartz glass material or AlN having a large value is used.

図1に示す如く、AlN基板(101)上には下部クラッド層としてp形の伝導を呈するAlyGa1-yN(yは組成比を表し、ここでは、0<y≦1である。)を下部クラッド層(103)として堆積してある。下部クラッド層(103)上にはp形のGaNからなる励起光源層(104)が設けられている。励起光源層(104)上には、n形のAlyGa1-yNからなる上部クラッド層(105)が在る。上下のクラッド層共にAlyGa1-yNから構成する必要はない。但し、上下のクラッド層((103)及び(105))は励起光源層(104)への電子や正孔を効率良く閉じ込めるために、即ち『発光の閉じ込め』を効率良く行うために設けるものであるため、励起光源層を構成する材料よりもEgの大きな材料から構成する必要がある。例えば、Alの組成比を0.2とするAl0.2Ga0.8Nを励起光源層とする場合、クラッド層をAlの組成比をより高めた例えば、Al0.4Ga0.6Nとするのがこの例に当たる。AlyGa1-yN混晶に於いては、Alの組成比を増加させることにより、Egを高められるからである(S.SAKAI他、Jpn.J.Appl.Phys.、32(1993)、4413.参照)。励起光源層/クラッド層の好ましい材料の組合せの例にはこの他、Ga0.85In0.15N/GaNやGaN/AlN等がある。励起光源層とクラッド層材料との組合せについて望ましくは、双方の材料をヘテロ接合させた際に室温での熱電子エネルギー(約0.026eV)の10倍程度の伝導帯間のバンド不連続性が得られる組合せが良い。また上、下クラッド層については同一の材料で構成する必要もない。 As shown in FIG. 1, on the AlN substrate (101), Al y Ga 1-y N (y represents a composition ratio, where 0 <y ≦ 1) exhibiting p-type conduction as a lower cladding layer. ) Is deposited as a lower cladding layer (103). An excitation light source layer (104) made of p-type GaN is provided on the lower cladding layer (103). On the excitation light source layer (104), there is an upper cladding layer (105) made of n-type Al y Ga 1-y N. Need not consist together the upper and lower clad layers Al y Ga 1-y N. However, the upper and lower cladding layers ((103) and (105)) are provided for efficiently confining electrons and holes in the excitation light source layer (104), that is, for efficiently performing “light emission confinement”. For this reason, it is necessary to form the excitation light source layer from a material having a larger E g than the material forming the excitation light source layer. For example, in the case where Al 0.2 Ga 0.8 N having an Al composition ratio of 0.2 is used as the excitation light source layer, this example corresponds to a case where the cladding layer is made of a higher Al composition ratio, for example, Al 0.4 Ga 0.6 N. . Is In Al y Ga 1-y N mixed crystal, by increasing the composition ratio of Al, is because it is enhanced E g (S.SAKAI other, Jpn.J.Appl.Phys., 32 (1993 ), 4413.). Other examples of preferable material combinations of the excitation light source layer / cladding layer include Ga 0.85 In 0.15 N / GaN and GaN / AlN. Desirably, the combination of the excitation light source layer and the cladding layer material has a band discontinuity between conduction bands of about 10 times thermionic energy (about 0.026 eV) at room temperature when both materials are heterojunctioned. The resulting combination is good. Also, the upper and lower cladding layers need not be made of the same material.

上部クラッド層(105)の中央部の上には、平面形状が円形の電極(107)が設けられている。他方の電極(108)は下部クラッド層(103)上に設けてある。下部クラッド層(103)上の電極(108)は、図2に示す様に平面的に見て上部クラッド層(105)の周囲に、電極(107)に対し同心円状に設けてある。電極の形状や配置は図1及び図2に例示した構成に限定されるものではない。   An electrode (107) having a circular planar shape is provided on a central portion of the upper cladding layer (105). The other electrode (108) is provided on the lower cladding layer (103). The electrode (108) on the lower cladding layer (103) is provided concentrically with the electrode (107) around the upper cladding layer (105) as viewed in plan as shown in FIG. The shape and arrangement of the electrodes are not limited to the configurations illustrated in FIGS. 1 and 2.

上記の様な無機化合物からなる積層構造の構成層は、有機金属熱分解気相成長方法(MOCVD法とかMOVPE法或いはOMVPE法などと称される。)、気相成長方法(VPE法)や分子線エピタキシャル法(MBE法)等の気相成長方法を利用すれば形成できる。例えばMOCVD法は、層を成長させるための気相成長反応を行う際の圧力に依って、常圧(大気圧)方式と減圧方式とに大まかに区別されるが、上記の様な構成層は方式を問わず得られる。また、MBE法にも使用する原料の種類や形態によってガスソースMBE(GS−MBE)や有機金属MBE(MO−MBE)法があるが、いずれの方式も利用できる。また、化学ビーム成長法(CBE法)も利用できる。   The constituent layers of the laminated structure made of the inorganic compound as described above are formed by a metalorganic thermal decomposition vapor deposition method (referred to as MOCVD method, MOVPE method, OMVPE method, or the like), a vapor phase growth method (VPE method), or a molecule. It can be formed by using a vapor phase growth method such as a line epitaxial method (MBE method). For example, the MOCVD method is roughly classified into a normal pressure (atmospheric pressure) method and a reduced pressure method depending on the pressure at which a vapor phase growth reaction for growing a layer is performed. It can be obtained regardless of the method. In addition, the MBE method includes a gas source MBE (GS-MBE) and an organic metal MBE (MO-MBE) depending on the type and form of the raw material used, and any of these methods can be used. Also, a chemical beam growth method (CBE method) can be used.

上部クラッド層(105)上の電極(107)の周囲は、有機化合物層(106)で被覆してある。この様な構成により無機化合物と有機化合物とからなる発光素子を構成できる。電極(107)上は結線のために有機化合物層(106)で被覆していない。有機化合物層(106)の表面は平坦でも良く、同層(106)からの発光を散乱させるためにその表面を凹凸状としても差し支えない。   The periphery of the electrode (107) on the upper clad layer (105) is covered with an organic compound layer (106). With such a structure, a light-emitting element including an inorganic compound and an organic compound can be formed. The electrode (107) is not covered with the organic compound layer (106) for connection. The surface of the organic compound layer (106) may be flat, and the surface may be uneven in order to scatter light emitted from the same layer (106).

励起光源により光励起さあれる発光活性有機化合物層は当該化合物そのもの、もしくは、該化合物を含有する組成物で形成される。発光活性有機化合物層中の当該化合物の含有量は、当該化合物の発光が得られる濃度であれば基本的には良く、0.0001〜100モル%の範囲で設定することができる。前者の光励起発光活性有機化合物そのものにより当該層を形成する場合には、化合物の蒸着やラングミュア−ブロジェット膜作製法によって形成できる他、該化合物を溶媒に溶解し利用することができる。特に、この溶媒への溶解は、可溶性の重合体の場合には有効である。また、組成物を用いて形成する場合、当該化合物を、該化合物の光励起発光による発光が吸収されない物質中に分散させる方法が簡便である。その方法としては、該化合物を可視光領域で光透過性を有する高分子重合体中に物理的に分散させた材料は工程上簡便で有用である。この高分子重合体には、ポリメタクリル酸メチルエステルやポリカーボネート、ポリスチレン等を挙げることができる。更に、この方法の分散方法としては、発光活性有機化合物と高分子重合体とを共通に溶解する溶媒に溶解するか、互いに相溶する溶媒に溶解し、この溶液同士を混合した溶液を当該化合物層の形成に利用できる。上記で、溶媒に溶解し溶液より当該層を形成する場合、塗布法が利用できる。当該溶液を当該層を備えた発光素子を設けようとする面に吹き付けるスプレー法、また、当該面を例えば、面に垂直な回転軸周りに回転させ溶液を滴下し塗布するスピンコート法、更に、当該面上にスクリーン印刷技術等を用いて層を形成し、然る後に固化することで容易に形成できる。この様な溶液の塗布は比較的簡単に大面積に亘り当該化合物を含む被膜層を形成できるため工程が簡略化され有用である。また、有機化合物層の積層方法は、発光活性有機化合物、若しくは当該化合物を含有する組成物を励起光源を備えた発光素子を設けようとする面に直接形成し当該層を積層する方法や、当該層を自立膜化させ発光素子を設けようとする面に接合、貼付する方法等で良く、また、これらを組合せて積層形成しても良い。   The luminescent organic compound layer that is photoexcited by the excitation light source is formed of the compound itself or a composition containing the compound. The content of the compound in the luminescent active organic compound layer is basically good as long as the compound can emit light, and can be set in the range of 0.0001 to 100 mol%. In the case of forming the layer with the former photoexcited light-emitting active organic compound itself, it can be formed by vapor deposition of a compound or a method of preparing a Langmuir-Blodgett film, or can be used by dissolving the compound in a solvent. In particular, dissolution in this solvent is effective in the case of a soluble polymer. In the case of using a composition, a simple method is to disperse the compound in a substance which does not absorb light emitted by photoexcitation of the compound. As the method, a material obtained by physically dispersing the compound in a high molecular polymer having light transmittance in a visible light region is simple and useful in the process. Examples of the high-molecular polymer include polymethyl methacrylate, polycarbonate, and polystyrene. Further, as a dispersion method of this method, the luminescent active organic compound and the high molecular polymer are dissolved in a common solvent or dissolved in a mutually compatible solvent, and a solution obtained by mixing the solutions is mixed with the compound. Can be used to form layers. When the layer is formed from a solution by dissolving in a solvent, a coating method can be used. A spray method in which the solution is sprayed on a surface on which a light emitting element provided with the layer is to be provided, or a spin coating method in which the surface is rotated around a rotation axis perpendicular to the surface and the solution is dropped and applied, for example. The layer can be easily formed by forming a layer on the surface by using a screen printing technique or the like and then solidifying the layer. The application of such a solution is useful because the process can be simplified since a coating layer containing the compound can be formed relatively easily over a large area. In addition, a method for laminating an organic compound layer includes a method of directly forming a light-emitting active organic compound or a composition containing the compound on a surface where a light-emitting element provided with an excitation light source is to be provided, and laminating the layer. A method in which the layer is formed into a self-supporting film and bonded and attached to a surface on which the light emitting element is to be provided, or the like may be used.

有機化合物層は1種類の発色を示す有機化合物から構成する必要もない。例えば、赤色と緑色の発色を示す有機化合物を混在させて含ませても良い。赤と緑色の発色を示す有機化合物を同一層内に混在させておけば、双方の発光が混合し、結果として橙色の発光素子を得ることもできる。或いは、被覆する領域を区分し、領域毎に異なる発光を呈する有機化合物層を設けても構わない。この様に図れば単一の光励起源のみからなる多色の発光素子を簡単に得ることができる。例えば、赤、緑及び青色の3原色を各々、発光する有機化合物層と単一の光励起源となるGaN励起光源層とを組合せて利用すれば白色の発光素子も得られる。励起光源層と有機化合物層とを組合せる利点の一つがここにある。   The organic compound layer does not need to be composed of an organic compound exhibiting one type of color. For example, organic compounds exhibiting red and green colors may be mixed and included. When organic compounds exhibiting red and green colors are mixed in the same layer, both lights are mixed, and as a result, an orange light-emitting element can be obtained. Alternatively, a region to be covered may be divided, and an organic compound layer which emits different light for each region may be provided. In this manner, a multi-color light emitting element composed of only a single light excitation source can be easily obtained. For example, if a combination of an organic compound layer that emits light of each of the three primary colors of red, green, and blue and a GaN excitation light source layer serving as a single light excitation source is used, a white light emitting element can also be obtained. This is one of the advantages of combining the excitation light source layer and the organic compound layer.

異なる発色を呈する有機化合物層を混在させるに際し、得られる発色の強度が有機化合物層毎に相対的に異なる場合にあっては、例えば相対的に発色強度が弱い有機化合物層の占有する面積を広くし、逆に相対的に発色強度が強い有機化合物層の占める領域を縮小する様に配置する。この様に図れば発する色の差異に依る元来の発光強度差に依存せずに強度的にほぼ同一な発光を混合できる。発光を呈する有機化合物層の面積を適宣、調整するのみでほぼ同一の強度を有する発色を混合させた光の調和性に優れる多色発光素子が得られのもまた利点である。   When mixing organic compound layers exhibiting different colors, when the obtained color intensity is relatively different for each organic compound layer, for example, the area occupied by the organic compound layer having a relatively weak color intensity is increased. On the contrary, they are arranged so as to reduce the area occupied by the organic compound layer having relatively high color intensity. In this way, it is possible to mix luminescence having substantially the same intensity without depending on the original luminescence intensity difference due to the difference in emitted color. It is also an advantage that a multicolor light-emitting element which is excellent in harmony of light by mixing colors having almost the same intensity can be obtained only by appropriately adjusting the area of the organic compound layer which emits light.

積層構造のある位置或いは基板材料に直接、有機化合物を被着せずに、励起光源層を含む発光素子を有機化合物を含む有機化合物等で封止しても新たな構成の発光素子とすることができる。   Even if the light emitting element including the excitation light source layer is sealed with the organic compound including the organic compound or the like without directly applying the organic compound to the position where the laminated structure is located or the substrate material, a light emitting element having a new configuration can be obtained. it can.

例えば、LEDの封止材料として従来から使用されている一般的なエポキシ樹脂などに有機化合物を含有させる。これにより、GaN等の紫外線発光材料からなる有機化合物を光励起するための励起光源層を備えたLEDを封止する。LEDから発せられる紫外光により例えばエポキシ樹脂内の有機化合物はその化合物に独特の発色を呈する。これにより、励起源は可視光でなくとも有機化合物を含む封止樹脂で封止する簡便な方法にて可視光を発する発光素子となすことができる。即ち、元来、紫外光を発する材料である2元化合物材料をより長波長側の発光を得るために結晶成長に困難さを伴う多元混晶とする必要もなく、また、Zn等の不純物の添加による長波長化に伴う発光スペクトルの半値幅の増大も招かずに可視光を発する発光素子を得ることができる。   For example, an organic compound is contained in a general epoxy resin or the like conventionally used as an LED sealing material. Thereby, the LED provided with the excitation light source layer for optically exciting the organic compound made of the ultraviolet light emitting material such as GaN is sealed. Due to the ultraviolet light emitted from the LED, for example, the organic compound in the epoxy resin exhibits a color unique to the compound. Thus, a light emitting element that emits visible light can be formed by a simple method in which the excitation source is not visible light but is sealed with a sealing resin containing an organic compound. That is, originally, it is not necessary to use a binary compound material, which is a material that emits ultraviolet light, as a multi-element mixed crystal with difficulty in crystal growth in order to obtain light emission on a longer wavelength side. A light-emitting element that emits visible light can be obtained without causing an increase in the half-value width of an emission spectrum due to an increase in wavelength due to addition.

有機化合物は封止用樹脂に均一に分散させても良い。また、励起光源層からの発光が集中して一部の領域に投射される工夫が施されている場合には、その一部領域に対応する封止用樹脂の領域に集中的に有機化合物を含有させても良い。封止用樹脂に混合させる有機化合物は1種類に限定されず、異なる発色を呈する多種の有機化合物を含有させるのも一つの応用として考えられる。この様な構成に於いても、例えば、GaN励起光源層から発せられる紫外光が封止材料内の有機化合物を光励起し、可視光が発光される。即ち、従来の如く可視光を得るためにわざわざ結晶を成長させるのが難しい混晶を利用する必要が無くなる。   The organic compound may be uniformly dispersed in the sealing resin. In the case where the light emitted from the excitation light source layer is condensed and projected onto a part of the region, the organic compound is concentrated on the region of the sealing resin corresponding to the part of the region. You may make it contain. The number of organic compounds to be mixed with the sealing resin is not limited to one, and it is considered as one application to include various kinds of organic compounds exhibiting different colors. Even in such a configuration, for example, ultraviolet light emitted from the GaN excitation light source layer optically excites the organic compound in the sealing material, and emits visible light. That is, it is not necessary to use a mixed crystal in which it is difficult to grow a crystal in order to obtain visible light as in the related art.

本発明に係わる有機化合物を含む物質で励起光源層を備えた発光素子を封止するには、従来の封止技術が利用できる。単に従来の封止材料を本発明に係わる有機化合物を含む封止材料に変更するのみで封止ができる。例えば、所望の外形を与える金型等に流し込まれ、加熱され融解された本発明に係わる有機化合物を含む封止用エポキシ樹脂等に励起光源層を備えた発光素子を含浸し、然る後、当該封止用材料を冷却し固化させれば発光素子を封止する事ができる。発光素子を適当な型の内部に載置し、この型の中に有機化合物を含む封止用樹脂を滴下し固化しても発光素子を封止できる。   A conventional sealing technique can be used to seal a light emitting element having an excitation light source layer with the substance containing an organic compound according to the present invention. The sealing can be performed simply by changing the conventional sealing material to the sealing material containing the organic compound according to the present invention. For example, a light emitting element having an excitation light source layer is impregnated with a sealing epoxy resin containing an organic compound according to the present invention, which is poured into a mold or the like that gives a desired outer shape, and is heated and melted. If the sealing material is cooled and solidified, the light emitting element can be sealed. The light emitting element can be sealed by placing the light emitting element inside an appropriate mold and dropping and solidifying a sealing resin containing an organic compound into the mold.

本発明は無機化合物からなる積層構造を励起用光として有機化合物を光励起して発光素子を得る訳であるが、この目的のためには光励起エネルギーが発光のエネルギーよりも高い方が好ましい。光エネルギーは(式2)により波長と関連付けられ、短波長になる程、光エネルギーは大きくなる。本発明では、有機化合物を効率良く励起するために、望ましい例としては、励起光源層の発光波長を規定する。具体的には励起光源層からの発光は中心波長を400nm以下とする。換言すれば、中心波長を400nm以下とする発光を与える材料から励起光源層を構成する。中心波長とは、或る波長の幅を持った発光の中で最大の発光強度をもたらす波長を指す。   In the present invention, a light emitting element is obtained by photoexciting an organic compound using a laminated structure composed of an inorganic compound as excitation light. For this purpose, it is preferable that the photoexcitation energy is higher than the light emission energy. Light energy is related to wavelength by (Equation 2), and the shorter the wavelength, the greater the light energy. In the present invention, in order to excite the organic compound efficiently, as a desirable example, the emission wavelength of the excitation light source layer is specified. Specifically, the light emitted from the excitation light source layer has a center wavelength of 400 nm or less. In other words, the excitation light source layer is made of a material that emits light having a center wavelength of 400 nm or less. The center wavelength refers to the wavelength that gives the maximum emission intensity among the emission having a certain wavelength width.

中心波長を400nm以下とするのは、(式2)により短波長の光である程、エネルギーが高いからである。特に波長が400nm以下の紫外線光は、光励起発光性を呈する有機化合物を光励起し、可視光領域の発光をもたらすに充分な励起エネルギーを有しているからである。   The reason for setting the center wavelength to 400 nm or less is that the shorter the wavelength of the light, the higher the energy according to (Equation 2). In particular, ultraviolet light having a wavelength of 400 nm or less has an excitation energy sufficient to optically excite an organic compound exhibiting photoexcited light emission and to emit light in the visible light region.

この中心波長の要件を満たす材料には例えば、GaN等のIII−V族化合物半導体がある。(式1)により算出されるGaNの発光波長は365nmである。GaNの他にはAlN(発光波長=207nm)やAl組成比に依って207nmから360nmに至る紫外線発光が得られるAlzGa1-zN(zは組成比を表し、≦z≦1である。)が適する。また、Egが3.1eV以上となるGaxIn1-xN混晶も適する。 Materials satisfying the requirement of the center wavelength include, for example, III-V compound semiconductors such as GaN. The emission wavelength of GaN calculated by (Equation 1) is 365 nm. In addition to GaN, AlN (emission wavelength = 207 nm) or Al z Ga 1-z N (z represents a composition ratio and ≦ z ≦ 1) that can emit ultraviolet light from 207 nm to 360 nm depending on the Al composition ratio. .) Is suitable. Also, Ga x In 1 -xN mixed crystals having an E g of 3.1 eV or more are suitable.

本発明に係る光励起発光活性有機化合物としては、有機分子の単量体、重合体、会合体等何れでも良く、基本的には光励起発光を呈する有機化合物であれば良い。ここで言う光励起発光とは、光照射により発光を呈する現象であり、例えば、蛍光、燐光といった現象は当然含まれる。その具体的な例としては、単量体では、アントラセン、ペリレン等の縮合六員環やパラ−オリゴフェニレン誘導体、オキサゾール誘導体、オキソジアゾール誘導体、スチルベン誘導体、クマリン誘導体、ローダミン系色素に代表されるキサニセン系色素、オキサジン系色素等を挙げることができる。また、重合体としては、主鎖が発光活性なものと側鎖が発光活性であるもの等に大別できるが、基本的には重合体の一部、若しくは、全体として発光活性を持つものと考えれば良い。前者の例としては、ポリパラフェニレン誘導体やポリパラフェニレンビニレン誘導体、ポリナフトビニレン誘導体に代表されるアリーレンビニレン誘導体、ポリ(3−アルキルチオフェン)等に代表されるポリチオフェン誘導体、ポリフルオレン誘導体等を挙げることができる。また、ポリメタクリル酸メチルやポリカーボネート、ポリスチレン等の高分子重合体の側鎖に上記の発光活性有機化合物の単量体を化学的に結合させた重合体が後者の例となる。更には、架橋体の一部が光励起発光活性であるものも、この重合体に含まれる。また、例えば、8−キノリノール誘導体が金属イオンに会合し形成した錯体やアゾメチン錯体等の金属錯体、シアニン系色素の会合体(J−会合体)等もここで云う化合物である。   The photoexcited light emitting active organic compound according to the present invention may be any of organic molecule monomers, polymers, aggregates and the like, and basically, any organic compound exhibiting photoexcited light emission may be used. The photoexcitation light emission here is a phenomenon that emits light by light irradiation, and for example, phenomena such as fluorescence and phosphorescence are naturally included. Specific examples thereof include, in the case of monomers, condensed six-membered rings such as anthracene and perylene, and para-oligophenylene derivatives, oxazole derivatives, oxodiazole derivatives, stilbene derivatives, coumarin derivatives, and rhodamine dyes. Examples thereof include a xanicene-based dye and an oxazine-based dye. Polymers can be broadly classified into those whose main chain has luminescence activity and those whose side chains have luminescence activity. Basically, some or all of the polymers have luminescence activity. Just think. Examples of the former include a polyparaphenylene derivative, a polyparaphenylenevinylene derivative, an arylenevinylene derivative represented by a polynaphthovinylene derivative, a polythiophene derivative represented by poly (3-alkylthiophene), a polyfluorene derivative, and the like. be able to. Further, a polymer in which a monomer of the above-mentioned luminescent organic compound is chemically bonded to a side chain of a high molecular polymer such as polymethyl methacrylate, polycarbonate, or polystyrene is an example of the latter. Furthermore, a polymer in which a part of the crosslinked product has photoexcited luminescence activity is also included in the polymer. Further, for example, a complex formed by associating an 8-quinolinol derivative with a metal ion, a metal complex such as an azomethine complex, an aggregate of a cyanine dye (J-aggregate), and the like are also compounds referred to herein.

これらの光励起発光活性有機化合物を用いれば、例えば、ローダミンBからは波長が630nm近傍の赤色発光、クマリン153からは波長が535nm近傍の、ポリパラフェニレンビニレンからは波長が510nm近傍のそれぞれ緑色発光、クマリン1からは波長が430nm近傍の、クマリン120では波長450nm近傍の青色発光を呈する。有機化合物からの発光は、一般には有機化合物の発光波長よりも短い波長の励起光を照射すれば得られる。従って、少なくとも光の3原色を得るには励起光の波長は400nmとすれば充分である。   When these photoexcited light emitting active organic compounds are used, for example, red light having a wavelength of about 630 nm from rhodamine B, green light having a wavelength of about 510 nm from coumarin 153, and polyparaphenylene vinylene having a wavelength of about 510 nm, Coumarin 1 emits blue light with a wavelength near 430 nm, and coumarin 120 emits blue light with a wavelength near 450 nm. Light emission from an organic compound is generally obtained by irradiating excitation light having a wavelength shorter than the emission wavelength of the organic compound. Therefore, it is sufficient that the wavelength of the excitation light is 400 nm to obtain at least three primary colors of light.

上記に例示した有機化合物からなる層或いはそれらを含む化合物からなる発光層には、発光活性な有機化合物からの発光を促進する発光の増感作用を持つ物質を添加させても良い。この場合、具体的な添加物質とその添加量は発光活性な有機化合物の発光の増感が保たれる様に選択すれば良い。   A substance having a sensitizing effect of light emission which promotes light emission from a light-emitting organic compound may be added to the layer made of the organic compound exemplified above or the light-emitting layer made of a compound containing them. In this case, the specific additive substance and the amount thereof may be selected so as to maintain the sensitization of the luminescence of the luminescent organic compound.

発光層には、発光活性な有機化合物の発光特性の劣化を防止、低減する化合物を添加しても良い。この場合、具体的な添加物質と添加量は発光活性な有機化合物の発光が阻害される事の無い範囲で選択できる。   The light-emitting layer may contain a compound that prevents or reduces the deterioration of the light-emitting characteristics of the light-emitting active organic compound. In this case, the specific additive substance and the amount added can be selected within a range where the emission of the luminescent active organic compound is not inhibited.

発光層を構成する有機化合物の光劣化を防止できる或いは低減できる物質を含有し、励起光である紫外光を減光し且つ発光層からの発光を透過する性質を有する発光層の光劣化を防止するための光劣化防止層を例えば、発光層と励起光源層との中間に設けることも有用である。この場合、光劣化防止層としては、光透過性の高分子材料、例えばポリメタクリル酸メチルエステルやポリカーボネート等の中に紫外線の吸収剤として例えば、サリチル酸誘導体、ベンゾフェノン誘導体、ベンゾトリアゾール誘導体やシアノアクリレート誘導体等や更には発光特性を安定化させるための例えば、ヒンダードアミン系等からなる単一或いは複数種の光安定剤を分散させて形成した有機組成物を挙げることができる。   Contains a substance that can prevent or reduce photodeterioration of the organic compound that constitutes the light emitting layer, and that prevents light from deteriorating in the light emitting layer having the property of reducing ultraviolet light as excitation light and transmitting light emitted from the light emitting layer. For example, it is also useful to provide a light deterioration preventing layer between the light emitting layer and the excitation light source layer. In this case, as the light deterioration preventing layer, for example, a salicylic acid derivative, a benzophenone derivative, a benzotriazole derivative, or a cyanoacrylate derivative is used as an ultraviolet absorber in a light-transmitting polymer material such as polymethyl methacrylate or polycarbonate. For example, an organic composition formed by dispersing a single or plural kinds of light stabilizers made of a hindered amine or the like for stabilizing the light emission characteristics can be used.

更に、本発明に係わる発光素子の外部からの紫外光が発光素子に入射することによる有機化合物層の光劣化を防止する場合には、上記の光劣化防止層を発光層からの発光を取り出す方向に形成すれば良い。発光層からの発光を取り出す方向にある例えば、封止外層を通過して逆に外部から光が侵入する確率が高いからである。例えば、発光層からの発光を上部に取り出す素子にあっては、発光層の上部に設けるのが良い。発光を取り出す方向に設出られた光劣化防止層は、発光素子の励起光源層からの励起光が発光層から発光された可視光と同時に出射されることを防止し低減する効果も合わせ持つ。   Further, in the case where ultraviolet light from the outside of the light emitting device according to the present invention prevents light deterioration of the organic compound layer due to being incident on the light emitting device, the light deterioration preventing layer is used to extract light emitted from the light emitting layer. What is necessary is just to form. This is because, for example, there is a high probability that light will enter from the outside through the sealing outer layer in the direction in which light is emitted from the light emitting layer. For example, in the case of an element for extracting light emitted from a light-emitting layer to the upper part, the element is preferably provided above the light-emitting layer. The light deterioration preventing layer provided in the direction of extracting light emission also has an effect of preventing and reducing excitation light from the excitation light source layer of the light emitting element from being emitted simultaneously with visible light emitted from the light emitting layer.

酸化珪素等に代表される光透過性を有する無機物からなる光透過性無機物層を有機化合物発光層に被着させても、発光素子の特性の劣化を防止するに効果がある。この様な光透過性無機物層は例えば、水とか酸素等が有機化合物発光層の表面に直接、吸着するのを防止できるため、素子の寿命特性などの特性を向上させる。   Even if a light-transmitting inorganic layer made of a light-transmitting inorganic material typified by silicon oxide or the like is applied to the organic compound light-emitting layer, it is effective in preventing deterioration of the characteristics of the light-emitting element. Such a light-transmitting inorganic layer can prevent, for example, water, oxygen, and the like from directly adsorbing to the surface of the organic compound light-emitting layer, thereby improving the characteristics such as the life characteristics of the device.

励起光源から発光せられる光を有機化合物層或いは有機化合物を含む封止用樹脂に入射させることにより、光励起により有機化合物を発光させる。この有機化合物から発光される光の波長は励起光源層から発せられる光の波長よりも長いものとなる。   The light emitted from the excitation light source is incident on the organic compound layer or the sealing resin containing the organic compound, so that the organic compound emits light by light excitation. The wavelength of light emitted from the organic compound is longer than the wavelength of light emitted from the excitation light source layer.

(実施例1)本発明を実施例を基に詳細に説明する。図3は本発明に係わる発光素子の断面模式図である。無機化合物からなる積層構造を形成するための基板(101)には硫黄(元素記号:S)が添加されたn形GaP単結晶を用いた。基板(101)の面方位は<111>±2゜とした。基板(101)の形状は直径約50mmの円形で厚さは約200μmであった。 (Example 1) The present invention will be described in detail based on examples. FIG. 3 is a schematic sectional view of a light emitting device according to the present invention. An n-type GaP single crystal to which sulfur (element symbol: S) was added was used for a substrate (101) for forming a laminated structure made of an inorganic compound. The plane orientation of the substrate (101) was <111> ± 2 °. The shape of the substrate (101) was a circle having a diameter of about 50 mm and a thickness of about 200 μm.

基板(101)の表面(101−1)上に0.2μmの膜厚のn形のAlN層を下部クラッド層(103)として堆積した。下部クラッド層(103)のキャリア濃度は約1×1018cm-3とした。下部クラッド層(103)上にはp形のGaNからなる励起光源層(104)を設けた。励起光源層(104)のキャリア濃度は約9×1016cm-3とし、膜厚は約0.1μmとした。励起光源層(104)上には、p形のAl0.2Ga0.8N層を上部クラッド層(105)として堆積した。同層(105)の膜厚は0.2μmとし、キャリア濃度は2×1018cm-3とした。積層構造の各構成層((102)から(105))は、常圧のMOCVD法により成長させた。成長温度は構成層に依らず750℃とした。 On the surface (101-1) of the substrate (101), an n-type AlN layer having a thickness of 0.2 μm was deposited as a lower cladding layer (103). The carrier concentration of the lower cladding layer (103) was about 1 × 10 18 cm −3 . An excitation light source layer (104) made of p-type GaN was provided on the lower cladding layer (103). The carrier concentration of the excitation light source layer (104) was about 9 × 10 16 cm −3 , and the film thickness was about 0.1 μm. On the excitation light source layer (104), a p-type Al 0.2 Ga 0.8 N layer was deposited as an upper cladding layer (105). The layer (105) had a thickness of 0.2 μm and a carrier concentration of 2 × 10 18 cm −3 . Each of the constituent layers ((102) to (105)) of the laminated structure was grown by MOCVD under normal pressure. The growth temperature was 750 ° C. irrespective of the constituent layers.

上部クラッド層(105)上に、青色の発光を呈する有機化合物であるクマリン1と可視光領域で光透過性な高分子重合体、ポリメチルメタクリル酸メチルエステルとを溶媒クロロホルムに重量比1:5:125となるように溶解し、この溶液を室温に於いて市販のマイクロディスペンサーを利用して定量、滴下しスピンコート法により塗布した。滴化後、温度を室温から固化温度である70℃に昇温し、溶媒を揮散させると共に固化させた。使用する有機化合物は本実施例の化合物に限定されず、所望する発色に応じて溶質を変え、また溶質に応じて溶媒を選択しても良いのは勿論である。固化は酸化を防止するため、不活性ガスである窒素気流中で約200Torrの減圧下で実施した。固化をある程度の減圧環境下で実施すると溶液に溶解している気体成分の発散が促進されるため、従って、良く脱泡された気泡の少ない緻密な絶縁性の有機化合物層(106)が得られた。有機化合物層(106)の膜厚は約0.3μmであった。   On the upper cladding layer (105), coumarin 1 which is an organic compound which emits blue light and a high molecular weight polymer which is light-transmissive in the visible light region, polymethyl methacrylate methyl ester, are added to a solvent chloroform at a weight ratio of 1: 5. : 125, and the solution was quantified at room temperature using a commercially available microdispenser, dropped, and applied by spin coating. After dropping, the temperature was raised from room temperature to 70 ° C., which is a solidification temperature, to evaporate the solvent and solidify. The organic compound to be used is not limited to the compound of the present embodiment, and it is needless to say that the solute may be changed according to the desired color development, and the solvent may be selected according to the solute. The solidification was performed under a reduced pressure of about 200 Torr in a nitrogen gas stream as an inert gas to prevent oxidation. When the solidification is performed under a certain degree of reduced pressure environment, the diffusion of the gas component dissolved in the solution is promoted, and therefore, a dense insulating organic compound layer (106) which is well defoamed and has few bubbles can be obtained. Was. The thickness of the organic compound layer (106) was about 0.3 μm.

固化させた有機化合物層(106)の表面を一旦、通常のプラズマCVD堆積法により二酸化珪素(SiO2)膜を被膜した。その後、素子形状のパターニングに一般的に使用されるフォトレジスト剤を塗布した。その後、従来からの一般的な露光工程を経て、上部クラッド層(105)上に設ける電極(107)の形状にパターニングした。パターニング後、電極(107)を形成する領域に於いて露出したSiO2膜及び有機化合物層(106)を有機溶剤によりエッチングし除去し、上部クラッド層(105)の表面を露呈させた。本実施例では電極形状を円形としたため、有機化合物層(106)が除去された領域は電極形状と相似の円形領域となった。 The surface of the solidified organic compound layer (106) was once coated with a silicon dioxide (SiO 2 ) film by ordinary plasma CVD deposition. Thereafter, a photoresist agent generally used for patterning the element shape was applied. Thereafter, through a conventional general exposure step, patterning was performed into the shape of the electrode (107) provided on the upper clad layer (105). After patterning, the exposed SiO 2 film and organic compound layer (106) in the region where the electrode (107) was to be formed were removed by etching with an organic solvent to expose the surface of the upper cladding layer (105). In this embodiment, since the shape of the electrode was circular, the region from which the organic compound layer (106) was removed was a circular region similar to the shape of the electrode.

パターニング終了後、電極材料とする純度99.999%の高純度アルミニウムを残存するフォトレジスト上及びパターニングにより露出した上部クラッド層(105)の一部表面上に通常の真空蒸着法により蒸着した。蒸着後、フォトレジスト剤をレジスト剥離用の薬品を用い剥離した。これにより、レジスト剤上に被着したAl膜は、レジスト剤が上部クラッド層(105)から剥離されるに伴って同時に除去された。電極(107)の形成領域に於いては、蒸着されたAl膜の直下にはフォトレジスト剤が存在しないため、リフトオフ法では除去されず、電極の形成領域に円形に残存した。基板(101)の裏面側(101−2)には高純度Alからなるいわゆる『べた』電極(108)を設けた。然る後に基板(101)上の全面に形成された素子を個別に分割してチップ化し図3に示す様な断面構造を有する無機化合物から構成される励起光源層と有機色素化合物を含む層とを備えた発光素子を形成した。   After patterning, high-purity aluminum of 99.999% purity as an electrode material was deposited on the remaining photoresist and on a part of the surface of the upper cladding layer (105) exposed by patterning by a normal vacuum deposition method. After the vapor deposition, the photoresist agent was stripped off using a resist stripping chemical. As a result, the Al film deposited on the resist material was simultaneously removed as the resist material was peeled off from the upper cladding layer (105). In the region where the electrode (107) was formed, the photoresist agent was not present immediately below the deposited Al film, so that it was not removed by the lift-off method and remained in a circle in the region where the electrode was formed. A so-called "solid" electrode (108) made of high-purity Al was provided on the back surface (101-2) of the substrate (101). Thereafter, the elements formed on the entire surface of the substrate (101) are individually divided into chips to form an excitation light source layer composed of an inorganic compound having a sectional structure as shown in FIG. 3 and a layer containing an organic dye compound. Was formed.

電極((107)及び(108))間に20mAの駆動用電流を流通させ、有機化合物層(106)を光励起により発光させた。得られた発光波長は約430nm近傍の青色発光であった。発光スペクトルの半値幅は約70nmで、従来のGaxIn1-xN混晶を発光層とした青色LEDのそれに比較すれば顕著に単色化されていた。 A driving current of 20 mA was passed between the electrodes ((107) and (108)) to cause the organic compound layer (106) to emit light by photoexcitation. The resulting emission wavelength was blue emission at about 430 nm. The half-width of the emission spectrum was about 70 nm, which was markedly monochromatic compared to that of a conventional blue LED using a Ga x In 1 -xN mixed crystal as a light-emitting layer.

(実施例2)先ず図3に示すような発光素子チップを得た。n形のGaP単結晶を基板(101)として使用した。基板(101)上にn形のAl0.8Ga0.2Nからなる下部クラッド層(103)、p形励起光源層(104)及びp形のAl0.7Ga0.3Nからなる上部クラッド層(105)を順次、堆積した。励起光源層(104)は理論上、波長が約253nmの紫外線を発するp形Al0.6Ga0.4Nから構成した。各層のキャリア濃度及び膜厚は実施例1に記載の数値とほぼ同一とした。 Example 2 First, a light emitting element chip as shown in FIG. 3 was obtained. An n-type GaP single crystal was used as the substrate (101). A lower cladding layer (103) made of n-type Al 0.8 Ga 0.2 N, a p-type excitation light source layer (104) and an upper cladding layer (105) made of p-type Al 0.7 Ga 0.3 N are sequentially formed on a substrate (101). , Deposited. Excitation light source layer (104) is constructed from theory, p-type wavelength emits ultraviolet approximately 253nm Al 0.6 Ga 0.4 N. The carrier concentration and the film thickness of each layer were almost the same as the numerical values described in Example 1.

Al0.7Ga0.3N上部クラッド層(105)上には、緑色の発光をもたらすクマリン153を含む有機化合物層(106)を堆積した。有機化合物(106)は、電極(107)の表面を被覆せずに、その周囲の上部クラッド層(105)の表面上を覆う様に設けた。有機化合物層(106)は基板(101)の裏側(101−2)には設けなかった。基板上には発光素子が多数配列されているので、これを裁断して各発光素子チップとした。 Al 0.7 Ga 0.3 N upper cladding layer on the (105) was deposited organic compound layer (106) containing coumarin 153 resulting in green light. The organic compound (106) was provided so as not to cover the surface of the electrode (107), but to cover the surface of the surrounding upper clad layer (105). The organic compound layer (106) was not provided on the back side (101-2) of the substrate (101). Since a large number of light-emitting elements are arranged on the substrate, the light-emitting elements are cut into individual light-emitting element chips.

次いでこの発光素子チップを用いて樹脂で封止した発光素子をつくった。その断面構造を図4に示す。発光素子チップ(112)を市販のステム(113)にマウントし、基板(101)の裏面側(101−2)の電極(108)とステム(113)を導通させた。次に電極(107)をボンデングワイヤ(114)によりリード端子部(115−1)に結線した。   Next, a light emitting element sealed with a resin was manufactured using the light emitting element chip. FIG. 4 shows the cross-sectional structure. The light emitting element chip (112) was mounted on a commercially available stem (113), and the electrode (108) on the back surface side (101-2) of the substrate (101) was electrically connected to the stem (113). Next, the electrode (107) was connected to the lead terminal portion (115-1) by a bonding wire (114).

電気結線後、ステム(113)にマウントした発光素子チップ(112)を本発明に係わる有機化合物である一つであるクマリン153を含有した半導体素子封止用のエポキシ樹脂(116)で外囲し封止した。エポキシ樹脂(116)には上記の緑色を発光する有機化合物を重量にして約2重量%含有させた。封止に際しては、温度が約190℃に保持された金型の中に流し込まれたエポキシ樹脂内に発光素子チップ(112)を含浸させた。冷却後、エポキシ樹脂(116)で周囲を成形し、有機化合物を含む物質で外囲された発光素子を形成した。図4に本実施例に係わる封止された状態に於ける構造断面図を示す。   After the electrical connection, the light emitting element chip (112) mounted on the stem (113) is surrounded with an epoxy resin (116) for encapsulating a semiconductor element containing coumarin 153, which is one of the organic compounds according to the present invention. Sealed. The epoxy resin (116) contained about 2% by weight of the above-mentioned organic compound which emits green light. At the time of sealing, the light emitting element chip (112) was impregnated in an epoxy resin poured into a mold maintained at a temperature of about 190 ° C. After cooling, the periphery was molded with an epoxy resin (116) to form a light-emitting element surrounded by a substance containing an organic compound. FIG. 4 shows a sectional view of the structure in a sealed state according to the present embodiment.

リード端子(115−1及び115−2)を通じての駆動用の電流を流通させ、波長が535nm近傍の緑色の発光を示す発光素子が得られた。半値幅は約40nmであった。また、従来の白色EL素子に色フィルターを取り付けることによって得られる同色よりも発光強度は優れていた。   A driving current was passed through the lead terminals (115-1 and 115-2), and a light-emitting element emitting green light having a wavelength of about 535 nm was obtained. The half width was about 40 nm. Also, the emission intensity was superior to that of the same color obtained by attaching a color filter to a conventional white EL device.

光励起され発光を呈する有機化合物からなる或いはそれを含む層を備えることにより、従来の如く成長に困難さが伴う多元混晶ではなく、結晶成長が容易な2元化合物が利用できる。可視光を発する発光素子を得るにあたり、安定的に成長が果たせる結晶成長層を光励起元源の発生層として利用できることにより、発光素子を安定して提供することが可能となり、また、発光素子の低価格化を可能にする経済的効果も生まれる。更に、従来のLEDにあっては、特定の波長の発光を得るには、その都度その波長に対応した結晶層なり組成が特定された混晶層を発光層とする必要があった。即ち、発光波長と発光層の材質、組成とは1:1の対応が必要とされていたが、本発明に依れば、発光の励起源として、中心波長が400nm以下の近紫外線若しくは紫外線を発する材料でさえあれば所望する発光波長に依って発光層の材料を変更する必要もなく、単に同一の光励起源をもってしてでも有機色素化合物の種類を変えることにより所望の発光或いは多色の発光が得られる。しかも、従来の如く白色EL素子と色フィルターの組合せによる多色発光素子とは異なり、有機化合物が光エネルギーの大きい紫外線による光励起に基づいて発光するため、より強度的に優れる発光素子がもたらされる。
By providing a layer made of or containing an organic compound that emits light by photoexcitation, it is possible to use a binary compound that is easy to grow, instead of a multi-element mixed crystal, which is difficult to grow as in the related art. In obtaining a light-emitting element that emits visible light, a crystal growth layer that can stably grow can be used as a generation layer of a photoexcitation source, so that the light-emitting element can be provided stably, There is also an economic effect that enables pricing. Further, in the conventional LED, in order to obtain light emission of a specific wavelength, it is necessary to use a crystal layer corresponding to the wavelength or a mixed crystal layer whose composition is specified each time as a light emitting layer. That is, it was required that the emission wavelength correspond to the material and composition of the emission layer in a ratio of 1: 1. However, according to the present invention, near-ultraviolet light or ultraviolet light having a center wavelength of 400 nm or less was used as an emission excitation source. There is no need to change the material of the light-emitting layer depending on the desired emission wavelength as long as the material emits light. Even if the same light excitation source is used, the desired light emission or multicolor light emission can be obtained by changing the kind of the organic dye compound. Is obtained. In addition, unlike a conventional multicolor light emitting device using a combination of a white EL device and a color filter, the organic compound emits light based on photoexcitation by ultraviolet light having a large light energy, so that a light emitting device having more excellent intensity is provided.

本発明に係わる発光素子の一例を示す断面模式図である。FIG. 2 is a schematic cross-sectional view illustrating an example of a light emitting device according to the present invention. 図1に示す発光素子の平面模式図である。FIG. 2 is a schematic plan view of the light emitting device shown in FIG. 1. 実施例1に記載の本発明に係わる発光素子の断面構造を示す模式図である。FIG. 2 is a schematic diagram illustrating a cross-sectional structure of a light emitting device according to the present invention described in Example 1. 実施例2に記載の本発明に係わる発光素子の断面模式図である。FIG. 3 is a schematic cross-sectional view of a light emitting device according to the present invention described in Example 2. 従来の有機EL素子の構造の一例を示す断面模式図である。It is a cross section showing an example of the structure of the conventional organic EL element. 従来の構造の模式図である。It is a schematic diagram of the conventional structure.

符号の説明Explanation of reference numerals

101 基板
101−1 基板表面
101−2 基板裏面
102 緩衝層
103 下部クラッド層
104 励起光源層
105 上部クラッド層
106 有機化合物の発光層
107 電極
108 電極
110 電子注入層
111 正孔(ホール)注入層
112 チップ
113 ステム
114 ボンデイングワイヤ
115 リード端子
116 有機色素化合物を含有させたエポキシ樹脂
117 透明電極
Reference Signs List 101 substrate 101-1 substrate front surface 101-2 substrate back surface 102 buffer layer 103 lower cladding layer 104 excitation light source layer 105 upper cladding layer 106 organic compound light emitting layer 107 electrode 108 electrode 110 electron injection layer 111 hole (hole) injection layer 112 Chip 113 Stem 114 Bonding wire 115 Lead terminal 116 Epoxy resin 117 containing an organic dye compound Transparent electrode

Claims (20)

励起光源層と発光層と光劣化防止層を備える発光素子であって、励起光源層は無機化合物半導体発光素子からなり、発光層は励起光源層からの光により異なる励起発光色を呈する複数の有機化合物を含み、光劣化防止層は有機化合物の光劣化を防止する作用を有することを特徴とする発光素子。 A light-emitting element including an excitation light source layer, a light-emitting layer, and a light deterioration prevention layer, wherein the excitation light source layer is formed of an inorganic compound semiconductor light-emitting element, and the light-emitting layer is formed of a plurality of organic light-emitting layers that exhibit different excitation emission colors depending on light from the excitation light source layer. A light-emitting element including a compound, wherein the light-deterioration preventing layer has an action of preventing light deterioration of the organic compound. 発光層と光劣化防止層とが接していることを特徴とする請求項1に記載の発光素子。 The light emitting device according to claim 1, wherein the light emitting layer and the light deterioration preventing layer are in contact with each other. 発光層内の複数の有機化合物が、その層内において各々別の領域に設けられていることを特徴とする請求項1または2に記載の発光素子。 The light emitting device according to claim 1, wherein a plurality of organic compounds in the light emitting layer are provided in different regions in the layer. 複数の有機化合物を各々別の領域に設ける際の各領域の面積を、発色強度が弱い有機化合物については広くし、発色強度が強い有機化合物については狭くすることを特徴とする請求項3に記載の発光素子。 The area of each region when a plurality of organic compounds are provided in different regions is increased for organic compounds having low color intensity and narrow for organic compounds with high color intensity. Light emitting element. 励起光源層が、III−V族化合物半導体発光素子であることを特徴とする請求項1〜4の何れか1項に記載の発光素子。 The light emitting device according to any one of claims 1 to 4, wherein the excitation light source layer is a group III-V compound semiconductor light emitting device. 励起光源層が、Alz Ga1-zN(zは組成比を表し、0≦z≦1である。)または、Egが3.1eV以上のGaxIn1-xN(xは組成比を表し、0≦x≦1である。)であることを特徴とする請求項1〜5の何れか1項に記載の発光素子。 The excitation light source layer is made of Al z Ga 1 -z N (z represents a composition ratio, and 0 ≦ z ≦ 1) or Ga x In 1 -x N (x is a composition ratio) of 3.1 eV or more. And 0 ≦ x ≦ 1). 6. The light-emitting device according to claim 1, wherein 励起光源層が、窒化アルミニウム・ガリウム(組成式:AlGaN:0≦X,Y≦1、X+Y=1)を上部および下部クラッド層としたダブルヘテロ接合構造であることを特徴とする請求項1〜6の何れか1項に記載の発光素子。 The excitation light source layer has a double heterojunction structure in which aluminum / gallium nitride (composition formula: Al X Ga Y N: 0 ≦ X, Y ≦ 1, X + Y = 1) is used as an upper and lower cladding layer. The light emitting device according to claim 1. 励起光源層が、非対称型バンド構造であることを特徴とする請求項1〜7の何れか1項に記載の発光素子。 The light emitting device according to any one of claims 1 to 7, wherein the excitation light source layer has an asymmetric band structure. 発光層が、上部クラッド層上の電極の周囲に被覆されていることを特徴とする請求項1〜8の何れか1項に記載の発光素子。 The light emitting device according to any one of claims 1 to 8, wherein the light emitting layer is coated around an electrode on the upper clad layer. 発光層の表面に、凹凸が設けられていることを特徴とする請求項1〜9の何れか1項に記載の発光素子。 The light emitting device according to any one of claims 1 to 9, wherein the light emitting layer has irregularities on a surface thereof. 励起光源層が、有機化合物を含む樹脂材料で囲繞され、かつ封止されていることを特徴とする請求項1〜10の何れか1項に記載の発光素子。 The light emitting device according to any one of claims 1 to 10, wherein the excitation light source layer is surrounded by a resin material containing an organic compound and is sealed. 有機化合物が、有機分子の単量体、重合体、会合体であることを特徴とする請求項1〜11の何れか1項に記載の発光素子。 The light emitting device according to any one of claims 1 to 11, wherein the organic compound is a monomer, a polymer, or an aggregate of organic molecules. 有機分子の単量体が、アントラセン、ペリレンの縮合六員環やパラ−オリゴフェニレン誘導体、オキサゾール誘導体、オキソジアゾール誘導体、スチルベン誘導体、クマリン誘導体、ローダミン系色素に代表されるキサニセン系色素、オキサジン系色素であることを特徴とする請求項12に記載の発光素子。 The monomer of the organic molecule is a condensed six-membered ring of anthracene or perylene, a para-oligophenylene derivative, an oxazole derivative, an oxodiazole derivative, a stilbene derivative, a coumarin derivative, a xanicene-based dye represented by a rhodamine-based dye, or an oxazine-based dye. The light emitting device according to claim 12, wherein the light emitting device is a dye. 有機分子の重合体が、主鎖が発光活性の物質、または側鎖が発光活性の物質であることを特徴とする請求項12または13に記載の発光素子。 14. The light emitting device according to claim 12, wherein the polymer of the organic molecule is a substance whose main chain is a luminescent active substance or whose side chain is a luminescent active substance. 主鎖が発光活性の物質が、ポリパラフェニレン誘導体、ポリパラフェニレンビニレン誘導体、ポリナフトビニレン誘導体に代表されるアリーレンビニレン誘導体、ポリ(3−アルキルチオフェン)等に代表されるポリチオフェン誘導体、ポリフルオレン誘導体であることを特徴とする請求項14に記載の発光素子。 Substances whose main chain is luminescent are polyparaphenylene derivatives, polyparaphenylene vinylene derivatives, arylene vinylene derivatives represented by polynaphthovinylene derivatives, polythiophene derivatives represented by poly (3-alkylthiophene), and polyfluorene derivatives The light emitting device according to claim 14, wherein: 側鎖が発光活性の物質が、ポリメタクリル酸メチル、ポリカーボネート、ポリスチレンの高分子重合体の側鎖に発光活性有機化合物の単量体を化学的に結合させた重合体、または、架橋体の一部が光励起発光活性であるもの、または、8−キノリノール誘導体が金属イオンに会合し形成した錯体やアゾメチン錯体等の金属錯体、シアニン系色素の会合体(J−会合体)であることを特徴とする請求項14に記載の発光素子。 A substance whose side chain has luminescence activity is a polymer or a crosslinked body in which a monomer of a luminescence active organic compound is chemically bonded to the side chain of a high molecular polymer of polymethyl methacrylate, polycarbonate, or polystyrene. Wherein the moiety is a photoexcited luminescent activity, or a complex formed by associating an 8-quinolinol derivative with a metal ion, a metal complex such as an azomethine complex, or an aggregate of a cyanine dye (J-aggregate). The light emitting device according to claim 14, wherein: 光劣化防止層を、透光性の高分子材料から構成することを特徴とする請求項1〜16の何れか1項に記載の発光素子。 The light-emitting device according to any one of claims 1 to 16, wherein the light degradation prevention layer is made of a light-transmitting polymer material. 透光性の高分子材料が、ポリメタクリル酸メチルエステルまたはポリカーボネートの中に、サリチル酸誘導体、ベンゾフェノン誘導体、ベンゾトリアゾール誘導体、シアノアクリレート誘導体、ヒンダードアミン系物質からなる群から選ばれる何れか1種以上を分散させたものであることを特徴とする請求項17に記載の発光素子。 A translucent polymer material disperses at least one selected from the group consisting of a salicylic acid derivative, a benzophenone derivative, a benzotriazole derivative, a cyanoacrylate derivative, and a hindered amine-based material in polymethyl methacrylate or polycarbonate. The light-emitting device according to claim 17, wherein the light-emitting device is provided. 基板上に励起光源層、発光層、光劣化防止層を設け、基板を光学的に透明、或いは透光性の材料から構成し、発光層を、励起光源層と基板を挟んで反対側に設けることを特徴とする請求項1〜18の何れか1項に記載の発光素子。 An excitation light source layer, a light-emitting layer, and a light deterioration prevention layer are provided on a substrate, and the substrate is made of an optically transparent or translucent material. The light-emitting layer is provided on the opposite side of the excitation light source layer and the substrate. The light-emitting device according to any one of claims 1 to 18, wherein: 基板を、励起光源層を構成している材料よりも大きな禁止帯幅を有する材料から構成することを特徴とする請求項19に記載の発光素子。
20. The light emitting device according to claim 19, wherein the substrate is made of a material having a larger band gap than a material of the excitation light source layer.
JP2003416169A 2003-12-15 2003-12-15 Light emitting element Expired - Lifetime JP4296921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003416169A JP4296921B2 (en) 2003-12-15 2003-12-15 Light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003416169A JP4296921B2 (en) 2003-12-15 2003-12-15 Light emitting element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10811795A Division JPH08279627A (en) 1995-04-07 1995-04-07 Light emitting element

Publications (2)

Publication Number Publication Date
JP2004165683A true JP2004165683A (en) 2004-06-10
JP4296921B2 JP4296921B2 (en) 2009-07-15

Family

ID=32821829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003416169A Expired - Lifetime JP4296921B2 (en) 2003-12-15 2003-12-15 Light emitting element

Country Status (1)

Country Link
JP (1) JP4296921B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080113468A1 (en) * 2004-10-01 2008-05-15 Merck Patent Gmbh Electronic Devices Containing Organic Semi-Conductors
WO2009082121A3 (en) * 2007-12-20 2009-09-11 Lg Innotek Co., Ltd Semiconductor light emitting device and method of fabricating the same
JP2016510502A (en) * 2013-01-11 2016-04-07 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic semiconductor chip

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080113468A1 (en) * 2004-10-01 2008-05-15 Merck Patent Gmbh Electronic Devices Containing Organic Semi-Conductors
US9150687B2 (en) * 2004-10-01 2015-10-06 Merck Patent Gmbh Electronic devices containing organic semi-conductors
WO2009082121A3 (en) * 2007-12-20 2009-09-11 Lg Innotek Co., Ltd Semiconductor light emitting device and method of fabricating the same
US8772815B2 (en) 2007-12-20 2014-07-08 Lg Innotek Co., Ltd. Semiconductor light emitting device having a protecting member and method of fabricating the same
JP2016510502A (en) * 2013-01-11 2016-04-07 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic semiconductor chip
US9496462B2 (en) 2013-01-11 2016-11-15 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip

Also Published As

Publication number Publication date
JP4296921B2 (en) 2009-07-15

Similar Documents

Publication Publication Date Title
JP6697033B2 (en) Light emitting device with nanostructured phosphor
US6744196B1 (en) Thin film LED
JP4205075B2 (en) Nanowire light emitting device and manufacturing method thereof
US6639354B1 (en) Light emitting device, production method thereof, and light emitting apparatus and display unit using the same
KR101662010B1 (en) Light Emitting Device
US6828599B2 (en) Semiconductor light-emitting diode
JP2002222989A (en) Semiconductor light-emitting device
JPH08279627A (en) Light emitting element
JP2009530803A (en) Monolithic white light emitting diode
KR20050077247A (en) Manufacturing method and device for white light emitting
Huang et al. High-stability quantum dot-converted 3-in-1 full-color mini-light-emitting diodes passivated with low-temperature atomic layer deposition
US11715813B2 (en) Quantum well-based LED structure enhanced with sidewall hole injection
KR100433989B1 (en) Semiconductor LED device and manufacturing metheod thereof
JP4296921B2 (en) Light emitting element
US20170207365A1 (en) Layered active region light emitting diode
CN210837761U (en) Display panel and display device
Wu et al. Quantum-dot-based full-color micro-LED displays
JP5060823B2 (en) Semiconductor light emitting device
KR20040005270A (en) Light emitting diode and method for fabricating thereof
JP6058946B2 (en) Nitride semiconductor device having a plurality of active layers, nitride semiconductor light emitting device, nitride semiconductor light receiving device, and method for manufacturing nitride semiconductor device
JP4851648B2 (en) Semiconductor components that generate mixed color electromagnetic radiation
Kovác et al. Advanced light emitting devices for optoelectronic applications
JP4503316B2 (en) Multicolor light emission method
JP2005228802A (en) Fluorescence emitting device, fluorescence emitting element and fluorescence substance
AU2021275060C1 (en) Quantum well-based led structure enhanced with sidewall hole injection

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150424

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150424

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150424

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150424

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term