JP2004163121A - Leukemia detection method and reagent for the same - Google Patents

Leukemia detection method and reagent for the same Download PDF

Info

Publication number
JP2004163121A
JP2004163121A JP2002326045A JP2002326045A JP2004163121A JP 2004163121 A JP2004163121 A JP 2004163121A JP 2002326045 A JP2002326045 A JP 2002326045A JP 2002326045 A JP2002326045 A JP 2002326045A JP 2004163121 A JP2004163121 A JP 2004163121A
Authority
JP
Japan
Prior art keywords
leukemia
antigen
atl
antibody
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002326045A
Other languages
Japanese (ja)
Other versions
JP3761861B2 (en
Inventor
Hiroshi Takahashi
弘 高橋
Shuichi Hanada
修一 花田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SRL Inc
Original Assignee
SRL Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SRL Inc filed Critical SRL Inc
Priority to JP2002326045A priority Critical patent/JP3761861B2/en
Publication of JP2004163121A publication Critical patent/JP2004163121A/en
Application granted granted Critical
Publication of JP3761861B2 publication Critical patent/JP3761861B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ATL detection method and a reagent for it which easily detect smoldering ATL (adult T-cell leukemia), and a leukemia detection method and a reagent for it which easily detect non-ATL leukemia. <P>SOLUTION: The leukemia detection method measures a SF-25 antigen on a surface of a leukocyte cell separated from a living body. Both of the ATL after sideration and the smoldering ATL can be detected by using the SF-25 antigen on the surface of the leukocyte cell as a cancer marker. The non-ATL leukemia such as B cell chronic lymphocytic leukemia, acute lymphocytic leukemia, acute myelocytic leukemia, etc. can be detected by using the SF-25 antigen on the surface of the leukocyte cell as the cancer marker. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、成人T細胞白血病、B細胞性慢性リンパ性白血病、急性リンパ性白血病又は急性骨髄性白血病等の白血病の検出方法及び臨床上発症していない白血病(例えば、くすぶり型成人T細胞白血病)の検出方法及びそのための試薬に関する。
【0002】
【従来の技術】
成人T細胞白血病(adult T−cell luekemia, 以下、「ATL」ということがある)は、ヒトT細胞白血病ウイルス−I(human T−cell leukemia virus−I, HTLV−I)により、T細胞が癌化する白血病であり、皮膚病変、肝脾腫大、リンパ節腫脹が高率で起きる。HTLV−Iに感染しても、発病する者は約2000人に1人と少なく、ほとんど全ての感染者(キャリア)は、ATLを発病することなく生涯を終える。しかし、一旦発病すれば、治療法はなく、ほとんどの患者は発病から1年以内に死亡する。従来、ATLの診断は、臨床症状並びに白血球の検鏡及び抗体検査等の結果を総合的に考慮して行われている。
【0003】
キャリアが発症する場合、「くすぶり型」(smoldering type)を経由して完全な発症に至る。くすぶり型では、癌化したT細胞は極僅かであり、T細胞のほとんどは正常であるため、この段階で治療を行えば、発症を防ぐことが可能である。したがって、くすぶり型を検出することができれば、ATLの発症を防止することができ、医療上、極めて有利である。
【0004】
【発明が解決しようとする課題】
しかしながら、くすぶり型では、未だ臨床的には発症していないので、臨床症状に基づく診断はもちろんできない。また、抗体検査では、キャリアか否かは区別できるが、キャリアとくすぶり型の区別はできない。さらに、くすぶり型では、ほとんどのT細胞は正常細胞であり、癌化しているのは極少数であるから、検鏡によって癌化した極少数のT細胞を見つけ出すことはなかなか困難である。このように、くすぶり型を容易に検出できる診断方法は現在までに知られていない。
【0005】
したがって、本発明の目的は、くすぶり型のATLをも容易に検出することができる、ATLの検出方法及びそのための試薬を提供することである。さらにまた、本発明の目的は、ATL以外の白血病をも容易に検出することができる、白血病の検出方法及びそのための試薬を提供することである。
【0006】
【課題を解決するための手段】
本願発明者は、鋭意研究の結果、白血球細胞上のSF−25抗原を癌マーカーとして用いることにより、発症後のATLのみならず、くすぶり型のATLをも検出することができることを見出し、本発明を完成した。また、本願発明者らは、白血球細胞上のSF−25抗原を癌マーカーとして用いることにより、B細胞性慢性リンパ性白血病、急性リンパ性白血病及び急性骨髄性白血病のような、ATL以外の白血病をも検出することができることを見出し、本発明を完成した。
【0007】
すなわち、本発明は、生体から分離した白血球細胞表面上のSF−25抗原を測定することを含む白血病の検出方法を提供する。また、本発明は、SF−25抗原と抗原抗体反応する抗体又はその抗原結合性断片を含む、白血病診断用試薬を提供する。
【0008】
【発明の実施の形態】
上記の通り、本発明の白血病の検出方法は、生体から分離した白血球細胞表面上のSF−25抗原を測定することを含む。SF−25抗原は、1987年に発見された分子量約125 kDaの公知の糖タンパク抗原である(WO89/05307, 欧州特許第0 397 700号、米国特許第5,212,085号、Takahashi H, Wilson B, Ozturk M, Motte P, Strauss W, Isselbacher KJ and Wands JR. In vivo localization of colon adenocarcinoma by monoclonal antibody binding to a highly expressed cell surface antigen. Cancer Research 1988; 48: 6573−6579. 、Wilson B, Ozturk M, Takahashi H, Motte P, Kew M, Isselbacher KJ and Wands JR. Cell surface changes associated with transformation of human hepatocytes to the malignant phenotype. Proc. Natl. Acad. Sci. USA 1988; 85: 3140−3144.、TakahashiH, Carlson R, Ozturk M, Sun S, Motte P, Strauss W, Isselbacher KJ and Wands JR, Shouval D. Radioimmunolocalization of hepatic and pulmonary metastasis of human colon adenocarcinoma. Gastroenterology 1989; 96: 1317−1329.、Hurwitz E, Stancovski I, Wilcheck M, Shouval D, Takahashi H, WandsJR, Sela M. A conjugate of 5−Fluorourodine−poly(L−lysine) and an antibody reactive with human colon carcinoma. Bioconjugate Chemistry 1990; 1: 285−290.、Wands JR, Takahashi H. Studies on cell surface changes associated with transformation of human hepatocytes to the malignant phenotype and their role as potential immunotargeting sites. In Frontiers of Mucosal Immunology. Volume 2. Eds by Tsuchiya M. 1991 pp. 295−298. Hurwitz E,Adler R, Shouval D, Takahashi H, Wands JR, Sela M. Immunotargeting of daunomycin to localized and metastatic human colon adenocarcinoma in athymic mice. Cancer Immunology Immunotherapy 1992; 35: 186−192.、Takahashi H, Nakada T, Puisieux I. Inhibition of human colon cancer growth by antibody−directed human LAK cells in SCID mice. Science 1993; 259: 1460−1463.、Takahashi H, Nakada T, Nakaki M, Wands JR. Inhibition of hepatic metastases of human colon cancer in nude mice by a chimeric SF−25 monoclonal antibody. Gastroenterology 1995; 108: 172−182.)。SF−25抗原は、ヒト結腸腺腫細胞株(例えば、LS 180 (ATCC No. CL0187), COLO 320 (ATCC No. CCL−220.1), WiDr (ATCC No. CCL−218), Caco−2 (HTB−37)や、ヒト肝臓癌細胞株(例えばFOCUS (Lun H. et al., in Vitro 20; 493−504(1984))の表面上に発現していることが知られている。また、抗SF−25モノクローナル抗体も公知であり(WO89/05307, 欧州特許第0 397 700号、米国特許第5,212,085号)、抗SF−25モノクローナル抗体を産生するハイブリドーマがATCCに寄託されている(ATCC No. HB9599)。
【0009】
上記の通り、SF−25抗原は、ヒト結腸腺腫細胞及びヒト肝臓癌細胞上に発現される癌関連抗原であることは知られているが、ATL患者の単核球上に発現することはこれまでに知られておらず、また、白血病との関連もはっきりしていなかった。下記実施例に具体的に記載するように、本願発明者らは、急性及び慢性ATL患者並びにくすぶり型のATL患者の単核球表面上にSF−25抗原が発現され、健常者及びHTLV−1の健常キャリアの単球上にはSF−25抗原がほとんど全く発現されていないことを見出し、これを利用してATL、とりわけ、くすぶり型のATLを検出できることを見出した。さらに、下記実施例に具体的に記載するように、インバースPCRにより、HTLV−1がプロウイルス化(ヒトの染色体DNA中に、ウイルスDNAが組み込まれること)することによりSF−25抗原が単核球表面上に出現することを確認し、これにより、本発明の方法で、急性及び慢性ATL並びにくすぶり型ATLが検出できることが確認された。
【0010】
本発明の方法では、生体から分離された白血球細胞表面上のSF−25抗原を検出する。白血球細胞としては、特に限定されず、単核球や多核球を挙げることができる。血液から白血球細胞を分離する方法は周知であり、下記実施例にも単核球の分離方法が記載されている。
【0011】
白血球細胞表面上のSF−25抗原の検出は、白血球細胞と抗SF−25抗体又はその抗原結合性断片との抗原抗体反応を利用して、周知の免疫学的方法により行うことができる。抗SF−25抗体は、モノクローナル抗体であることが好ましい。上記の通り、抗SF−25モノクローナル抗体は公知であり、寄託もされている。寄託されている、ハイブリドーマATCC No. HB9599により産生されるモノクローナル抗体は、上記したヒト肝臓癌細胞株FOCUSを免疫原としてマウスに免疫し、常法によりモノクローナル抗体を産生するハイブリドーマを作製し、得られたモノクローナル抗体のうち、上記した各種ヒト結腸腺腫細胞株と抗原抗体反応するモノクローナル抗体を選択することにより得られた。本発明の方法には、この寄託された抗SF−25モノクローナル抗体を用いることもできるし、同様な方法で作製される他のモノクローナル抗体を用いることもできる。なお、ATCC No. HB9599を記載しているWO89/05307, 欧州特許第0 397 700号及び米国特許第5,212,085号の実施例に具体的に記載されているように、上記の方法により、抗SF−25モノクローナル抗体を産生するハイブリドーマは、ATCC No. HB9599以外にも1回の作製操作で多数得られているから、抗SF−25モノクローナル抗体は、公知の方法により容易に作製可能なものであり、したがって、本発明の方法に用いられるモノクローナル抗体は、寄託されたハイブリドーマが産生するものに限定されるものでは全くない。また、上記したSF−25抗原を発現していることが知られているヒト結腸腺腫細胞株やヒト肝臓癌細胞株を免疫原として動物を免疫し、常法によりモノクローナル抗体を作製し、正常ヒト白血球細胞と抗原抗体反応しないモノクローナル抗体を選択することによっても容易に得ることができる。また、抗体自体のみならず、FabフラグメントやF(ab’)フラグメントのような、抗原との結合性を有する断片も用いることができる。
【0012】
抗SF−25抗体を用いて、SF−25抗原を発現している白血球細胞を検出すること、さらには、白血球細胞のうち、その表面上にSF−25抗原を発現する細胞の割合を測定することは、周知のフローサイトメトリーにより容易に行うことができる。フローサイトメトリーでは、蛍光標識した抗体を細胞と接触させ、抗原抗体反応により細胞に蛍光標識抗体が結合した細胞数を計数することができ、ひいては、抗体と結合した細胞の割合を算出することができる。フローサイトメトリーの装置及び必要な試薬類は市販されており、当業者が容易に実施することが可能である。
【0013】
下記実施例に具体的に記載するように、SF−25抗原を発現している単核球の割合は、平均して、急性ATL患者で約43%、慢性ATL患者で約28%、くすぶり型ATL患者で約15%であったが、健常人では約0.4%、健常キャリアで約0.6%であり、健常人+健常キャリアの群と、急性+慢性+くすぶり型の群とは明瞭に区別することができる。すなわち、健常人の値と比較して、有意に高ければATL(くすぶり型を含む)であると診断できる。また、下記実施例に具体的に記載するように、インバースPCRにより、HTLV−1がプロウイルス化することによりSF−25抗原が単核球表面上に出現することを確認し、これにより、本発明の方法で、ATL及びくすぶり型ATLが検出できることが確認された。
【0014】
本発明の方法は、急性及び慢性ATLのみならず、くすぶり型ATLをも検出することができるという、医療上、非常に重要な特徴を有する。なお、くすぶり型ATLを検出できるということは、本発明の方法の重要な特徴であるが、本発明の方法によって、急性及び慢性ATLの診断も行えるので、本発明の方法は、急性及び慢性ATLの診断にも用いることができることは言うまでもない。
【0015】
さらに、下記実施例に具体的に記載するように、SF−25抗原は、ATL以外の他の白血病であるB細胞性慢性リンパ性白血病、急性リンパ性白血病及び急性骨髄性白血病の患者の単核球上にも存在することが明らかになった。したがって、上記した白血球細胞上のSF−25抗原の検出は、ATLのみならず、他の白血病の検出にも適用することができることが明らかになった。
【0016】
なお、白血球細胞上のSF−25抗原の検出のみでは、白血病がATL、B細胞性慢性リンパ性白血病、急性リンパ性白血病及び急性骨髄性白血病のいずれであるのかを識別することはできない。これらの識別は、公知の血液学的検査や、遺伝子検査(例えばATLの場合には、下記実施例に具体的に記載するインバースPCR等)により行うことができる。
【0017】
【実施例】
以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。
【0018】
実施例1 ATLの検出
1. 試料の調製
急性ATL患者7名、慢性ATL患者5名、くすぶり型ATL患者9名、健常ATLキャリア42名及び健常人(HTLV−1非感染者)8名の末梢血から単核球を分離した。単核球の分離は、具体的に次のようにして行った。Lymphaprep(商品名) (Axis−Sheld PoC AS, Oslo, Norway)5mlを遠心管にとり、前記対象からえられたヘパリン加静脈血5mlを静かに重層する。その後400g、30分遠心し血漿と分離液の中間に帯上に浮遊する単核球を毛細管ピペットで回収した。回収した単核球をリン酸バッファー生理食塩水(PBS)を用いて3回遠心洗浄し、以下の実験に用いた。
【0019】
2. フローサイトメトリー
マウス抗SF−25モノクローナル抗体(ATCC No. HB9599により産生)を常法により、周知の蛍光標識であるフルオレッセインイソチオシアネート(FITC)で標識し、得られた蛍光標識抗SF−25モノクローナル抗体を用い、上記1で分離した単核球についてフローサイトメトリーを行った。フローサイトメトリーは、具体的に次のようにして行った。PBS中に5x10/mlとなるよう調整した単核球浮遊液から、0.1mlずつ2本の小試験管に分注し、1本には希釈した蛍光標識抗SF−25モノクローナル抗体を10μl加え、他の1本には同様にFITC標識マウスIgG1を10μl加えた。10分ごとに静かに混和させながら、4℃30分間反応させた。反応終了後PBSを加え、2回遠心洗浄後フローサイトメーター(EPICS XL(商品名)、Coulter, Miami, Florida, U.S.A.)にアプライし、FITC標識マウスIgG1をコントロールとして約1万個の細胞をカウントし陽性細胞の比率を求めた。
【0020】
上記フローサイトメトリーにより、全単核球中の、SF−25抗原を発現している単核球の割合を計測した。結果を下記表1及び図1に示す。
【0021】
【表1】
表1

Figure 2004163121
【0022】
表1及び図1から明らかなように、本発明の方法により、健常人+健常キャリアの群と、急性+慢性+くすぶり型の群とは明瞭に区別することが可能である。とりわけ、くすぶり型であっても、健常HTLV−Iキャリアとは明瞭に区別できることがわかる。
【0023】
3. インバースPCR及びサザンブロット
次に、SF−25抗原を発現している単核球の染色体DNAに、HTLV−I遺伝子がプロウイルス化して挿入されているか否かをインバースPCR及びサザンブロットにより調べた。これらは、具体的に次のようにして行った。
【0024】
インバースPCRの方法:
くすぶり型ATL患者の末梢血から上記のようにして分離した単核球10をリン酸緩衝生食水(pH 7.2、0.5%牛血清アルブミンおよび2mM EDTAを含むー以下バッファー)60μlに浮遊させた。次に、FITC標識したマウス抗SF−25モノクローナル抗体(ATCC No. HB9599により産生)溶液(濃度0.1%)10μlを加え4C5分間反応させ、2回洗浄し未吸着の抗体を除去した。この細胞に90μlのバッファ−を加え再浮遊させ、10μlの Anti−FITC マイクロ磁性ビ−ズ(Miltenyi Biotec GmbH, Bergish Gladbach, Germany 粒子直径50nm)を加え、6C15分間標識し、SF−25抗原を表面に有する単核球を磁性ビーズと結合させた。未吸着の磁性ビーズを除去するため細胞を2回洗浄後、500μlのバッファーに再浮遊させた。マックスミディセット(Miltenyi Biotec GmbH, Bergish Gladbach, Germany) を用いて、この細胞をMACS分離ポジティブセレクションMSカラム(Miltenyi Biotec GmbH, Bergish Gladbach, Germany) (一度バッファー500μlで洗浄したもの)にアプライし、磁力により磁性ビーズで標識された細胞(SF−25抗原陽性細胞)と磁性ビーズで標識されなかった細胞(SF−25抗原陰性細胞)を分画し、以下の実験で検体として用いた。
【0025】
Takemoto Sらによる報告(Blood Vol 84 No9 3080−3085, 1994)に基づき以下のように行った。DNAzol(Molecular Research Center, Inc., Montgomery Rd., Cincinnati, Ohio.)を用いて各検体より染色体DNAを抽出し、このDNAをSau3AIを用いて切断し、T4 DNA ligaseをもちいてセルフライゲーションを行った。この方法により、HTLV−1 5’LTR及びgag sequnceからなるものと、HTLV−1 3’−LTRと染色体DNAからなるものとができる。HTLV−1の5’ proviral DNAからなるものを除く目的で、Sac IIで加熱処理した。このDNAをテンプレートとしてprimer 1 ; primer 1: 5’−aagccggcagtcagtcgtga−3’(HTLV−I 塩基配列の8946−8927)、 primer 2: 5’−aagtaccggcaactctgctg−3’ (HTLV−I 塩基配列の8958−8977)で第一段階のPCRを行い、次いでnested primerとして 3: 5’−gaaagggaaaggggtggaac−3’ (HTLV−I 塩基配列の8924−8905) primer 4: 5’−ccagcgacagcccattctat−3’.(HTLV−I 塩基配列の8986−9005) で第二段階のnested PCRを行った。各PCRはThermal Cycler を用いて94℃20秒、55℃20秒、72℃30秒のサイクルを第一段階は50回、第二段階は35回行った。このPCR産物 5mlをとり2% アガロースゲル電気泳動を行い、エチジウムブロマイドで染色後、バンドを確認しHTLV−Iのクローナルな組み込みの有無をみた。
【0026】
サザンブロット:
上記の泳動産物を、ナイロンメンブランフィルタ−にトランスファーし、オリゴヌクレチド(5’−ctccaggagagaaatttagtacac−3’ HTLV−I塩基配列の9012−9035)をプローブとしてHTLV−Iの組み込みを確認した。Takemotoらによる報告によると、この方法により染色体遺伝子を含むHTLV−1の3’LTRのU5領域が増幅されると考えられる。ATL患者におけるHTLV−1遺伝子の組み込みは各症例間でランダムであるが、1人の患者ATL細胞におけるHTLV−1遺伝子の組み込みはモノクローナルであり、染色体DNAを含むHTLV−1の3’LTRのU5領域を増幅することで、モノクローナルな増殖であるか否かを決定できる。事実彼らは染色体DNAを含むHTLV−1の3’LTRのU5領域のDNA sequence行うことによりそのことを確認している。
【0027】
その結果、SF−25抗原陽性単核球では、HTLV−Iプロウイルス化DNAが、モノクローナルに組み込まれており、SF−25抗原陰性細胞では、HTLV−Iのプロウイルス化は検出されなかった。このことから、本発明の方法により、急性、慢性及びくすぶり型ATLが検出できることが確認された。
【0028】
実施例2 B細胞性慢性リンパ性白血病、急性リンパ性白血病及び急性骨髄性白血病の検出
実施例1と同様な方法により、B細胞性慢性リンパ性白血病患者12名、急性リンパ性白血病患者10名及び急性骨髄性白血病患者12名の末梢血中の単核球について、SF−25抗原を発現している単核球の割合を測定した。結果を下記表2に示す。
【0029】
【表2】
表2
Figure 2004163121
【0030】
上記のとおり、健常人中のSF−25抗原発現単核球の割合(%)は0.4%であるから、SF−25抗原をマーカーとしてB細胞性慢性リンパ性白血病、急性リンパ性白血病及び急性骨髄性白血病の検出も可能であることが明らかになった。
【0031】
【発明の効果】
本発明により、くすぶり型ATLを包含するATLを、容易に高感度に検出することができる方法が初めて提供された。本発明によれば、末梢血中の単核球を用いて、容易にくすぶり型ATLを包含するATLを検出することができる。くすぶり型ATLは治療可能であるので、くすぶり型ATLを容易に高感度に検出できることは、医療上、非常に有利である。
【0032】
【配列表】
Figure 2004163121
【0033】
Figure 2004163121
【0034】
Figure 2004163121
【0035】
Figure 2004163121
【0036】
Figure 2004163121
【0037】
Figure 2004163121

【図面の簡単な説明】
【図1】本発明の実施例において、急性ATL患者、慢性ATL患者、くすぶり型ATL患者、健常ATLキャリア及び健常人(HTLV−1非感染者)の末梢血中の単核球を被検試料とし、抗SF−25モノクローナル抗体を用いたフローサイトメトリーにより測定した、全単核球中のSF−25抗原陽性単核球の割合を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for detecting leukemia such as adult T-cell leukemia, B-cell chronic lymphocytic leukemia, acute lymphocytic leukemia or acute myeloid leukemia, and leukemia that has not clinically developed (for example, smoldering adult T-cell leukemia). The present invention relates to a detection method and a reagent therefor.
[0002]
[Prior art]
Adult T-cell leukemia (hereinafter sometimes referred to as “ATL”) is caused by human T-cell leukemia virus-I (HTLV-I), and T cells are cancerous. Leukemia that develops, with high rates of skin lesions, hepatosplenomegaly, and lymphadenopathy. Even if it is infected with HTLV-I, only about 1 in 2000 people will get sick, and almost all infected people (carriers) will end their lives without getting ATL. However, once ill, there is no cure and most patients die within a year of illness. Conventionally, the diagnosis of ATL has been performed by comprehensively considering clinical symptoms and results of microscopic examination of leukocytes and antibody tests.
[0003]
When a carrier develops, it reaches a complete onset via a “smolding type”. In the smoldering type, the number of cancerous T cells is very small, and most of the T cells are normal. Therefore, treatment can be prevented at this stage. Therefore, if the smoldering type can be detected, the onset of ATL can be prevented, which is extremely advantageous from a medical viewpoint.
[0004]
[Problems to be solved by the invention]
However, since the smoldering type has not yet clinically developed, it cannot be diagnosed based on clinical symptoms. In antibody testing, it can be distinguished whether it is a carrier, but it cannot be distinguished from a carrier and a smoldering type. Furthermore, in the smoldering type, since most T cells are normal cells and only a very small number are cancerous, it is difficult to find a very small number of T cells that have become cancerous by microscopic examination. Thus, there is no known diagnostic method that can easily detect the smoldering type.
[0005]
Therefore, an object of the present invention is to provide an ATL detection method and a reagent therefor that can easily detect smoldering ATL. Furthermore, an object of the present invention is to provide a leukemia detection method and a reagent therefor that can easily detect leukemia other than ATL.
[0006]
[Means for Solving the Problems]
As a result of intensive studies, the present inventor has found that not only ATL after onset but also smoldering ATL can be detected by using SF-25 antigen on white blood cells as a cancer marker. Was completed. In addition, the present inventors have used leukocyte SF-25 antigen as a cancer marker, thereby allowing leukemias other than ATL such as B cell chronic lymphocytic leukemia, acute lymphocytic leukemia and acute myeloid leukemia. The present invention has been completed.
[0007]
That is, the present invention provides a method for detecting leukemia comprising measuring SF-25 antigen on the surface of leukocyte cells separated from a living body. The present invention also provides a reagent for diagnosing leukemia comprising an antibody or antigen-binding fragment thereof that undergoes an antigen-antibody reaction with SF-25 antigen.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
As described above, the method for detecting leukemia of the present invention includes measuring SF-25 antigen on the surface of white blood cells separated from a living body. The SF-25 antigen is a known glycoprotein antigen discovered in 1987 and having a molecular weight of about 125 kDa (WO89 / 05307, EP 0 397 700, US Pat. No. 5,212,085, Takahashi H, .. Wilson B, Ozturk M, Motte P, Strauss W, Isselbacher KJ and Wands JR In vivo localization of colon adenocarcinoma by monoclonal antibody binding to a highly expressed cell surface antigen Cancer Research 1988; 48:. 6573-6579, Wilson B, Ozturk M, Takahashi H, M tte P, Kew M, Isselbacher KJ and Wands JR Cell surface changes associated with transformation of human hepatocytes to the malignant phenotype Proc Natl Acad Sci USA 1988; 85:....... 3140-3144, TakahashiH, Carlson R, Ozturk M, Sun S, Mott P, Strauss W, Isselbacher KJ and Wands JR, Shouval D. Radioimmunocalofation and pulmonary metastasis. .. Ocarcinoma Gastroenterology 1989; 96: 1317-1329, Hurwitz E, Stancovski I, Wilcheck M, Shouval D, Takahashi H, WandsJR, Sela M. A conjugate of 5-Fluorourodine-poly (L-lysine) and an antibody reactive with human colon carcinoma Bioconjugate Chemistry 1990; 1: 285-290. Wands JR, Takahashi H .; Studios on cell surface changes associated with transformation of human hepatocytes to the maligantic phenotype and therientantpotent. In Frontiers of Mucosal Immunology. Volume Eds by Tsuchiya M .; 1991 pp. 295-298. Hurwitz E, Adler R, Shouval D, Takahashi H, Wands JR, Sela M. et al. Immunotargeting of daunomycin to localized and metastatic human colon adenocarcino in amicic. Cancer Immunology Immunotherapy 1992; 35: 186-192. Takahashi H, Nakada T, Puisiux I .; Inhibition of human colon cancer growth by antibody-directed human LAK cells in SCID rice. Science 1993; 259: 1460-1463. Takahashi H, Nakada T, Nakaki M, Wands JR. Inhibition of hepatic metastases of human colon cancer in nudice by a chimeric SF-25 monoclonal antibody. Gastroenterology 1995; 108: 172-182. ). The SF-25 antigen is expressed in human colon adenoma cell lines (for example, LS 180 (ATCC No. CL0187), COLO 320 (ATCC No. CCL-220.1), WiDr (ATCC No. CCL-218), Caco-2 ( It is known that it is expressed on the surface of HTB-37) and human liver cancer cell lines (for example, FOCUS (Lun H. et al., In Vitro 20 ; 493-504 (1984)). Anti-SF-25 monoclonal antibodies are also known (WO89 / 05307, EP 0 397 700, US Pat. No. 5,212,085), and hybridomas producing anti-SF-25 monoclonal antibodies have been deposited with ATCC. (ATCC No. HB9599).
[0009]
As mentioned above, the SF-25 antigen is known to be a cancer-associated antigen expressed on human colon adenoma cells and human liver cancer cells, but it is expressed on mononuclear cells of ATL patients. It was not known until now, and the connection with leukemia was not clear. As specifically described in the Examples below, the present inventors expressed SF-25 antigen on the surface of mononuclear cells of acute and chronic ATL patients and smoldering ATL patients, and found that healthy subjects and HTLV-1 It was found that almost no SF-25 antigen was expressed on monocytes of healthy carriers, and it was found that ATL, particularly smoldering ATL, could be detected using this. Furthermore, as specifically described in the following Examples, HTLV-1 is converted into a provirus by inverse PCR (by incorporating viral DNA into human chromosomal DNA), whereby SF-25 antigen is mononuclear. As a result, it was confirmed that acute and chronic ATL and smoldering ATL can be detected by the method of the present invention.
[0010]
In the method of the present invention, SF-25 antigen on the surface of white blood cells separated from a living body is detected. The white blood cell is not particularly limited, and examples thereof include mononuclear cells and polynuclear cells. Methods for separating white blood cells from blood are well known, and mononuclear cell separation methods are also described in the following examples.
[0011]
Detection of SF-25 antigen on the surface of white blood cells can be performed by a well-known immunological method using an antigen-antibody reaction between white blood cells and anti-SF-25 antibody or antigen-binding fragment thereof. The anti-SF-25 antibody is preferably a monoclonal antibody. As described above, anti-SF-25 monoclonal antibodies are known and have been deposited. The hybridoma ATCC No. deposited therewith. Monoclonal antibodies produced by HB9599 were prepared by immunizing mice with the above human liver cancer cell line FOCUS as an immunogen, producing hybridomas producing monoclonal antibodies by conventional methods, and among the obtained monoclonal antibodies, It was obtained by selecting monoclonal antibodies that react antigen-antibody with a human colon adenoma cell line. In the method of the present invention, the deposited anti-SF-25 monoclonal antibody can be used, and other monoclonal antibodies prepared by the same method can be used. In addition, ATCC No. As specifically described in the examples of WO 89/05307, EP 0 397 700 and US Pat. No. 5,212,085 describing HB9599, anti-SF-25 is obtained by the above method. Hybridomas producing monoclonal antibodies are ATCC No. In addition to HB9599, many anti-SF-25 monoclonal antibodies can be easily produced by known methods since they are obtained in a single production operation. Therefore, the monoclonal antibodies used in the method of the present invention are It is not limited to those produced by the deposited hybridoma. In addition, an animal is immunized with the human colon adenoma cell line or human liver cancer cell line known to express the SF-25 antigen as described above as an immunogen, and a monoclonal antibody is prepared by a conventional method. It can also be easily obtained by selecting a monoclonal antibody that does not react with white blood cells for antigen-antibody reaction. Further, not only the antibody itself but also a fragment capable of binding to an antigen such as Fab fragment or F (ab ′) 2 fragment can be used.
[0012]
Using anti-SF-25 antibody, detecting white blood cells expressing SF-25 antigen, and further measuring the proportion of white blood cells expressing SF-25 antigen on the surface thereof. This can be easily done by well-known flow cytometry. In flow cytometry, a fluorescently labeled antibody can be brought into contact with a cell, and the number of cells bound to the fluorescently labeled antibody by the antigen-antibody reaction can be counted, and thus the percentage of cells bound to the antibody can be calculated. it can. Flow cytometry apparatuses and necessary reagents are commercially available and can be easily implemented by those skilled in the art.
[0013]
As specifically described in the examples below, the percentage of mononuclear cells expressing SF-25 antigen averages about 43% in acute ATL patients, about 28% in chronic ATL patients, smoldering It was about 15% in ATL patients, but about 0.4% in healthy people and about 0.6% in healthy carriers. The group of healthy people + healthy carriers and the group of acute + chronic + smoldering type It can be clearly distinguished. That is, it can be diagnosed as ATL (including smoldering type) if it is significantly higher than the value of a healthy person. In addition, as specifically described in the examples below, it was confirmed by inverse PCR that HTLV-1 was converted to a provirus and that SF-25 antigen appeared on the surface of mononuclear cells. It was confirmed that ATL and smoldering ATL can be detected by the method of the invention.
[0014]
The method of the present invention has a very important medical feature that not only acute and chronic ATL but also smoldering ATL can be detected. Note that the ability to detect smoldering ATL is an important feature of the method of the present invention, but acute and chronic ATL can be diagnosed by the method of the present invention. Needless to say, it can also be used for diagnosis.
[0015]
In addition, as specifically described in the Examples below, the SF-25 antigen is a mononuclear of patients with B cell chronic lymphocytic leukemia, acute lymphocytic leukemia and acute myeloid leukemia other than ATL. It became clear that it also exists on the sphere. Therefore, it was revealed that the above-described detection of SF-25 antigen on white blood cells can be applied not only to ATL but also to other leukemias.
[0016]
Note that it is not possible to identify whether the leukemia is ATL, B-cell chronic lymphocytic leukemia, acute lymphocytic leukemia or acute myeloid leukemia only by detecting SF-25 antigen on white blood cells. These identifications can be performed by a known hematological test or a genetic test (for example, in the case of ATL, inverse PCR specifically described in the following examples).
[0017]
【Example】
Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the following examples.
[0018]
Example 1 Detection of ATL Sample preparation Mononuclear cells were isolated from peripheral blood of 7 acute ATL patients, 5 chronic ATL patients, 9 smoldering ATL patients, 42 healthy ATL carriers and 8 healthy persons (HTLV-1 non-infected). . The mononuclear cells were specifically separated as follows. 5 ml of Lymphaprep (trade name) (Axis-Sheld PoC AS, Oslo, Norway) is placed in a centrifuge tube, and 5 ml of heparin-added venous blood obtained from the subject is gently overlaid. Thereafter, the mixture was centrifuged at 400 g for 30 minutes, and mononuclear cells floating on the band between the plasma and the separated solution were collected with a capillary pipette. The collected mononuclear cells were centrifugally washed three times with phosphate buffer saline (PBS) and used for the following experiments.
[0019]
2. A flow cytometry mouse anti-SF-25 monoclonal antibody (produced by ATCC No. HB9599) is labeled with a well-known fluorescent label, fluorescein isothiocyanate (FITC), by a conventional method, and the resulting fluorescent labeled anti-SF-25 Using a monoclonal antibody, flow cytometry was performed on the mononuclear cells separated in 1 above. Specifically, flow cytometry was performed as follows. From a mononuclear cell suspension adjusted to 5 × 10 6 / ml in PBS, aliquot 0.1 ml each into two small test tubes, each containing 10 μl of diluted fluorescent-labeled anti-SF-25 monoclonal antibody. In addition, 10 μl of FITC-labeled mouse IgG1 was similarly added to the other one. The mixture was reacted at 4 ° C. for 30 minutes with gentle mixing every 10 minutes. After completion of the reaction, PBS was added, and after washing twice by centrifugation, it was applied to a flow cytometer (EPICS XL (trade name), Coulter, Miami, Florida, USA), and about 10,000 using FITC-labeled mouse IgG1 as a control. Individual cells were counted and the ratio of positive cells was determined.
[0020]
By the flow cytometry, the ratio of mononuclear cells expressing SF-25 antigen in all mononuclear cells was measured. The results are shown in Table 1 below and FIG.
[0021]
[Table 1]
Table 1
Figure 2004163121
[0022]
As is clear from Table 1 and FIG. 1, the method of the present invention makes it possible to clearly distinguish the group of healthy people + healthy carriers from the group of acute + chronic + smoldering type. In particular, even the smoldering type can be clearly distinguished from a healthy HTLV-I carrier.
[0023]
3. Inverse PCR and Southern Blot Next, it was examined by inverse PCR and Southern blot whether or not the HTLV-I gene was inserted into the chromosomal DNA of a mononuclear cell expressing SF-25 antigen. These were specifically performed as follows.
[0024]
Inverse PCR method:
The smoldering ATL patient mononuclear 10 7 phosphate buffered saline from peripheral blood were isolated as described above (chromatography following buffer containing pH 7.2,0.5% bovine serum albumin and 2 mM EDTA) 60 [mu] l Floated. Next, 10 μl of FITC-labeled mouse anti-SF-25 monoclonal antibody (produced by ATCC No. HB9599) solution (concentration 0.1%) was added, reacted for 4 ° C. for 5 minutes, washed twice to remove unadsorbed antibody. . 90 μl of buffer was added to the cells and resuspended, 10 μl of Anti-FITC micromagnetic beads (Miltenyi Biotec GmbH, Bergish Gladbach, Germany particle diameter 50 nm) were added, labeled for 6 ° C. for 15 minutes, and SF-25 antigen. Mononuclear spheres having a surface thereof were bound to magnetic beads. Cells were washed twice to remove unadsorbed magnetic beads and then resuspended in 500 μl buffer. Using Maxmidy set (Miltenyi Biotec GmbH, Bergish Gladbach, Germany), the cells were washed with a MACS-separated positive selection MS column (Miltenyi Biotec GmbH, Bergish Glamu), once magnetically buffered. The cells labeled with magnetic beads (SF-25 antigen positive cells) and the cells not labeled with magnetic beads (SF-25 antigen negative cells) were fractionated and used as specimens in the following experiments.
[0025]
Based on a report by Takemoto S et al. (Blood Vol 84 No9 3080-3085, 1994), the following was performed. Chromosomal DNA was extracted from each specimen using DNAzol (Molecular Research Center, Inc., Montgomery Rd., Cincinnati, Ohio.), This DNA was cleaved using Sau3AI, and self-ligation was performed using T4 DNA ligase. It was. By this method, one consisting of HTLV-1 5 ′ LTR and gag sequence and one consisting of HTLV-1 3′-LTR and chromosomal DNA can be produced. Heat treatment with Sac II was performed for the purpose of removing HTLV-1 5 'proviral DNA. Primer 1: 5′-aagccgggcagtcagtcgtga-3 ′ (HTLV-I nucleotide sequence 8946-8927), primer 2: 5′-aagaccgggactactgctactgctctgctgctLg89-89 ), And then, as a nested primer, 3: 5′-gaaaggggaaggggtggaac-3 ′ (HTLV-I nucleotide sequence 8924-8905) primer 4: 5′-ccagcacagccccattctat-3 ′. (HTLV-I nucleotide sequence 8986-9005) The second-stage nested PCR was performed. Each PCR was carried out using a thermal cycler at a temperature of 94 ° C. for 20 seconds, 55 ° C. for 20 seconds, and 72 ° C. for 30 seconds for the first step and 50 times for the second step. 5 ml of this PCR product was taken and subjected to 2% agarose gel electrophoresis. After staining with ethidium bromide, the band was confirmed and the presence of clonal integration of HTLV-I was observed.
[0026]
Southern blot:
The above electrophoresis product was transferred to a nylon membrane filter, and the incorporation of HTLV-I was confirmed using an oligonucleotide (90′-9035 of 5′-ctccggagagaagaatttagacac-3 ′ HTLV-I base sequence) as a probe. According to a report by Takemoto et al., It is considered that the U5 region of the 3′LTR of HTLV-1 containing the chromosomal gene is amplified by this method. The integration of the HTLV-1 gene in ATL patients is random between cases, but the integration of the HTLV-1 gene in one patient ATL cell is monoclonal and the U5 of the 3 ′ LTR of the HTLV-1 containing chromosomal DNA By amplifying the region, it can be determined whether the growth is monoclonal. In fact, they have confirmed this by performing DNA sequence of the U5 region of the 3 ′ LTR of HTLV-1 containing chromosomal DNA.
[0027]
As a result, in the SF-25 antigen-positive mononuclear cells, the HTLV-I proviral DNA was incorporated in a monoclonal manner, and in the SF-25 antigen negative cells, HTLV-I proviralization was not detected. From this, it was confirmed that acute, chronic and smoldering ATL can be detected by the method of the present invention.
[0028]
Example 2 Detection of B-cell chronic lymphocytic leukemia, acute lymphoblastic leukemia and acute myeloid leukemia By the same method as in Example 1, 12 B-cell chronic lymphocytic leukemia patients, 10 acute lymphoblastic leukemia patients and For the mononuclear cells in the peripheral blood of 12 patients with acute myeloid leukemia, the proportion of mononuclear cells expressing the SF-25 antigen was measured. The results are shown in Table 2 below.
[0029]
[Table 2]
Table 2
Figure 2004163121
[0030]
As described above, since the ratio (%) of SF-25 antigen-expressing mononuclear cells in healthy persons is 0.4%, B cell chronic lymphocytic leukemia, acute lymphocytic leukemia and It became clear that it was possible to detect acute myeloid leukemia.
[0031]
【The invention's effect】
The present invention provides for the first time a method that can easily detect ATL including smoldering ATL with high sensitivity. According to the present invention, ATL including smoldering ATL can be easily detected using mononuclear cells in peripheral blood. Since the smoldering ATL can be treated, it is very advantageous from a medical viewpoint that the smoldering ATL can be easily detected with high sensitivity.
[0032]
[Sequence Listing]
Figure 2004163121
[0033]
Figure 2004163121
[0034]
Figure 2004163121
[0035]
Figure 2004163121
[0036]
Figure 2004163121
[0037]
Figure 2004163121

[Brief description of the drawings]
In the examples of the present invention, test samples of mononuclear cells in peripheral blood of acute ATL patients, chronic ATL patients, smoldering ATL patients, healthy ATL carriers, and healthy persons (HTLV-1 non-infected persons) FIG. 5 shows the ratio of SF-25 antigen-positive mononuclear cells in total mononuclear cells measured by flow cytometry using an anti-SF-25 monoclonal antibody.

Claims (14)

生体から分離した白血球細胞表面上のSF−25抗原を測定することを含む白血病の検出方法。A method for detecting leukemia, comprising measuring SF-25 antigen on the surface of a white blood cell separated from a living body. 白血球細胞のうち、その表面上にSF−25抗原を発現する細胞の割合を測定することを含む請求項1記載の方法。The method according to claim 1, comprising measuring the proportion of white blood cells expressing SF-25 antigen on the surface thereof. 白血球細胞が単核球である請求項1又は2記載の方法。The method according to claim 1 or 2, wherein the white blood cells are mononuclear cells. SF−25抗原と抗原抗体反応する抗体又はその抗原結合性断片と、白血球細胞上のSF−25抗原との抗原抗体反応を利用して行う請求項1ないし3のいずれか1項に記載の方法。The method according to any one of claims 1 to 3, which is carried out using an antigen-antibody reaction between an antibody or antigen-binding fragment thereof that reacts with an SF-25 antigen and an antigen-binding fragment thereof, and an SF-25 antigen on white blood cells. . 前記抗体又はその抗原結合性断片が蛍光標識されており、フローサイトメトリーにより行う請求項4記載の方法。The method according to claim 4, wherein the antibody or antigen-binding fragment thereof is fluorescently labeled and is performed by flow cytometry. 前記抗体がモノクローナル抗体である請求項4又は5記載の方法。The method according to claim 4 or 5, wherein the antibody is a monoclonal antibody. 前記白血病が成人T細胞白血病、B細胞性慢性リンパ性白血病、急性リンパ性白血病又は急性骨髄性白血病である請求項1ないし6のいずれか1項に記載の方法。The method according to any one of claims 1 to 6, wherein the leukemia is adult T cell leukemia, B cell chronic lymphocytic leukemia, acute lymphocytic leukemia or acute myeloid leukemia. 前記白血病が成人T細胞白血病である請求項7記載の方法。8. The method of claim 7, wherein the leukemia is adult T cell leukemia. くすぶり型を検出する請求項8記載の方法。The method according to claim 8, wherein the smoldering mold is detected. SF−25抗原と抗原抗体反応する抗体又はその抗原結合性断片を含む、白血病診断用試薬。A reagent for diagnosing leukemia, comprising an antibody or antigen-binding fragment thereof that reacts with the SF-25 antigen for antigen-antibody reaction. 前記抗体が蛍光標識されている請求項10記載の試薬。The reagent according to claim 10, wherein the antibody is fluorescently labeled. 前記抗体がモノクローナル抗体である請求項10又は11記載の試薬。The reagent according to claim 10 or 11, wherein the antibody is a monoclonal antibody. 成人T細胞白血病、B細胞性慢性リンパ性白血病、急性リンパ性白血病又は急性骨髄性白血病診断用試薬である請求項10ないし12記載の試薬。13. The reagent according to claim 10, which is a reagent for diagnosing adult T cell leukemia, B cell chronic lymphocytic leukemia, acute lymphocytic leukemia or acute myeloid leukemia. 成人T細胞白血病診断用試薬である請求項13記載の試薬。The reagent according to claim 13, which is a reagent for diagnosing adult T cell leukemia.
JP2002326045A 2002-11-08 2002-11-08 Leukemia detection method and reagent therefor Expired - Lifetime JP3761861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002326045A JP3761861B2 (en) 2002-11-08 2002-11-08 Leukemia detection method and reagent therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002326045A JP3761861B2 (en) 2002-11-08 2002-11-08 Leukemia detection method and reagent therefor

Publications (2)

Publication Number Publication Date
JP2004163121A true JP2004163121A (en) 2004-06-10
JP3761861B2 JP3761861B2 (en) 2006-03-29

Family

ID=32805094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002326045A Expired - Lifetime JP3761861B2 (en) 2002-11-08 2002-11-08 Leukemia detection method and reagent therefor

Country Status (1)

Country Link
JP (1) JP3761861B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292474A (en) * 2007-04-27 2008-12-04 Nationa Hospital Organization Adult t-cell leukemia onset risk determination method
WO2021090786A1 (en) * 2019-11-05 2021-05-14 日本電気株式会社 Method for diagnosing human t-cell leukemia virus type 1 (htlv-1)-related disease
CN113466459A (en) * 2021-09-02 2021-10-01 信纳克(北京)生化标志物检测医学研究有限责任公司 Detection reagent for B cell tumor after targeted therapy, therapeutic target and related application

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292474A (en) * 2007-04-27 2008-12-04 Nationa Hospital Organization Adult t-cell leukemia onset risk determination method
JP2013083670A (en) * 2007-04-27 2013-05-09 Nationa Hospital Organization Method for determining blast crisis of adult t-cell leukemia
WO2021090786A1 (en) * 2019-11-05 2021-05-14 日本電気株式会社 Method for diagnosing human t-cell leukemia virus type 1 (htlv-1)-related disease
JPWO2021090786A1 (en) * 2019-11-05 2021-05-14
JP7356650B2 (en) 2019-11-05 2023-10-05 日本電気株式会社 Diagnostic method for human T-cell leukemia virus type 1 (HTLV-1) related diseases
CN113466459A (en) * 2021-09-02 2021-10-01 信纳克(北京)生化标志物检测医学研究有限责任公司 Detection reagent for B cell tumor after targeted therapy, therapeutic target and related application
US11953500B2 (en) 2021-09-02 2024-04-09 Synarc Research Laboratory (beijing) Ltd. Detection reagent and therapeutic target for B cell tumor after targeted therapy and related application

Also Published As

Publication number Publication date
JP3761861B2 (en) 2006-03-29

Similar Documents

Publication Publication Date Title
JP6483071B2 (en) Peptide cancer antigen-specific T cell receptor gene
Epstein et al. Biology of the human malignant lymphomas. IV. Functional characterization of ten diffuse histiocytic lymphoma cell lines
JPH10503656A (en) Diagnosis and treatment of cell proliferative diseases involving clonal macrophages
EP2523687B1 (en) Methods for diagnosis and treatment of cutaneous T cell lymphomas using the NKp46 receptor
JPH05500599A (en) Polymorphisms of human platelet membrane glycoprotein IIIA and their diagnostic and therapeutic applications
JPH06505332A (en) Treatment and diagnostic methods using total leukocyte surface antigen
JP4695982B2 (en) Method for detecting liver cancer, liver cancer diagnostic agent, and cancer therapeutic agent
Tamaki et al. Relationship between soluble MICA and the MICA A5. 1 homozygous genotype in patients with oral squamous cell carcinoma
JPWO2005070964A1 (en) How to isolate monocytes
US20020102244A1 (en) Method of identifying and/or isolating stem cells and prognosing responsiveness to leukemia treatment
JP3761861B2 (en) Leukemia detection method and reagent therefor
June et al. Phenotypic analysis of complement receptor 2+ T lymphocytes: reduced expression on CD4+ cells in HIV-infected persons.
JPWO2004042401A1 (en) Method for examining cancer cells and reagent therefor
US6280962B1 (en) Whole blood/mitogen assay for the early detection of a subject with cancer and kit
D'arena et al. Morphologically typical and atypical B-cell chronic lymphocytic leukemias display a different pattern of surface antigenic density
JPH08500731A (en) Diagnostic method
JPH01105160A (en) Detection of abnormal response lymphocyte and eragent and kit for detection to be used therein
Zola et al. Expression of the p70 chain of the IL‐2 receptor on human lymphoid cells: Analysis using a monoclonal antibody and high‐sensitivity immunofluorescence
JP5371778B2 (en) Method for detecting leukemia cells
JP2009011236A (en) Method for analyzing/identifying t-cell antigen receptor gene at one cell level
JP2005147798A (en) Diagnostic drug for adult t-cell leukemia
JONAK et al. Detection of neuroblastoma cells in human bone marrow using a combination of monoclonal antibodies
CN111690730B (en) Application of IL-8 positive initial T cell as target for diagnosing thymus placeholder disease
US20050106642A1 (en) Saliva test for early diagnosis of cancers
AU681605B2 (en) Immunological purging of tumor cells from bone marrow using microspheres and monoclonal antibodies

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050921

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060111

R150 Certificate of patent or registration of utility model

Ref document number: 3761861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term