JP2004162752A - Regeneration structure and regeneration method for conduit - Google Patents

Regeneration structure and regeneration method for conduit Download PDF

Info

Publication number
JP2004162752A
JP2004162752A JP2002327203A JP2002327203A JP2004162752A JP 2004162752 A JP2004162752 A JP 2004162752A JP 2002327203 A JP2002327203 A JP 2002327203A JP 2002327203 A JP2002327203 A JP 2002327203A JP 2004162752 A JP2004162752 A JP 2004162752A
Authority
JP
Japan
Prior art keywords
pipe
rehabilitating
underground pipe
regeneration
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002327203A
Other languages
Japanese (ja)
Inventor
Takahiro Ogawa
隆弘 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Tec Corp
Original Assignee
Asahi Tec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Tec Corp filed Critical Asahi Tec Corp
Priority to JP2002327203A priority Critical patent/JP2004162752A/en
Publication of JP2004162752A publication Critical patent/JP2004162752A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sewage (AREA)
  • Pipe Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a regeneration structure and a regeneration method for a conduit enabling inexpensive regeneration of the flat conduit while holding predetermined mechanical strength. <P>SOLUTION: A regeneration self-standing pipe 1 formed by a hardening regeneration member E and having substantially complete round cross section is formed on an inner side of an existing underground pipe F to be regenerated irrespective of a shape of an inner wall of the underground pipe F. A withstand pressure material 4 is filled and fixed in a clearance caused between the regeneration self-standing pipe 1 and the underground pipe F. The flexible and cylindrical regeneration member E in which hardening resin is impregnated is mounted on the inner side of the existing underground pipe F. Internal pressure is applied from the inner side of the regeneration member E and the regeneration self-standing pipe 1 is formed by causing a clearance 3 in at least a part on a cross section in the direction in which an internal wall 2 and the regeneration member E cross the axial direction orthogonally while maintaining substantially complete round irrespective of the shape of the inner wall of the underground pipe F. Then, the withstand pressure material 4 having fluidity is filled and fixed in the clearance 3 caused in outer surroundings of the regeneration self-standing pipe 1. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、土圧、輪圧などにより偏平した地中管等、又は既存の地中管等で補強を行いたいときの管路の更生構造及び更生方法に関する。
【0002】
【従来の技術】
老朽化や地震及び地盤沈下などにより下水管等の地中管の本体にひび割れが生じたり接続部がずれてしまったりした場合に、古い地中管の内側に新しい管路を形成する管路の更生(補修を含む)方法が広く行われている。
【0003】
このような管路の更生方法として、硬化性材料が含浸された可撓性の更生材を用い、古い管路の内側から更生材に内圧をかけつつ更生材を硬化させて新しい更生管路を形成する管路の更生方法が知られている(例えば、非特許文献1、特許文献1参照。)。
【0004】
このような管路の更生方法では、例えば、図8に示すように、断面形状(軸方向と直角な断面)が略円形である筒状体Bの外側にゴム製のスリーブCを有し、スリーブCと筒状体Bとの間に空気を供給する空気供給管Dを備えたパッカAが用いられている。
【0005】
このようなパッカAを用いて、空気供給管Dから空気を供給するとスリーブCが膨張し、このスリーブCの外周に巻かれていた更生材Eが地中管Fの内面に押し付けられた状態で更生材Eを加熱することにより、更生材E内に含まれている熱硬化性樹脂が硬化される。更生材Eの硬化後にスリーブCと筒状体Bとの間の空気を抜けば、スリーブCは収縮して更生材Eから離れる。その後、このパッカAを地上に引き上げて地中管Fの更生作業は完了して新しい管路が形成される。ここで、更生材Eとして充分な機械的強度を備えたものを用いれば、新しい管路としての更生自立管1が形成される。
【0006】
【非特許文献1】
大塚捷徳、中村勝巳、小野田信彦著「特集:下水道管路メンテナンス(更生)の展開;オールライナー工法−あらゆるニーズに応えて−」オールライナー協会出版、平成12年12月、P.1−7
【特許文献1】
特開平7−77296号公報(第6図、第2頁左欄)
【0007】
【発明が解決しようとする課題】
しかしながら、パッカAを用いて古い管路の内側から更生材Eに内圧をかけつつ更生材Eを硬化させて管路を更生する方法によれば、地中管Fが土カブリ圧などの土圧により図9に示すように偏平している場合、図10に示すように、地中管Fの内壁に沿って偏平となった更生自立管1´が形成される。
【0008】
ここで、図10のような楕円形に偏平した更生自立管1´では、断面形状が略真円の更生自立管1に比べて鉛直方向の耐圧性が低下する。それ故、所定の輪圧を有する更生自立管を敷設する必要がある場合には、更生材Eとして剛性に優れた物を採用するか、又は更生材Eの厚みを増大させる必要が生じるが、剛性の優れた更生材Eは高価である。また、更生材Eの厚みを増大させる場合には材料高に加え、作業性の低下による工事費高もあり、全体としての価格が上昇するという課題がある。
【0009】
例えば、本発明者等の試算によれば、呼び径1350mmのヒューム管(内径1350mm、外径1400mm)の中に略真円の更生自立管1を形成する場合、土カブリを5m、地下水位を0m、輪荷重種類T−25、曲げ強度40N/mmの更生材Eを用い、許容応力20N/mm、設計弾性率1750N/mm,安全率2では、地下水圧に対する更生材の要求厚さは11.5mmと計算され、土圧に対する厚さは17.5mmと計算され、結果として更生材Eの必要厚さは17.5mmとなる。
【0010】
これに対して、偏平した更生自立管1´を形成する一例として、例えば、偏平率10%の管路(管径1500mm、縦距離1350mm、横距離1650mm)において、略同条件、即ち、土カブリを5m、地下水位を0m、輪荷重種類T−25と仮定し、曲げ強度40N/mmの更生材Eを用い、許容応力20N/mm、設計弾性率1750N/mm,安全率2では、土圧に対する厚さは35.98mmと計算され、結果として更生材Eの必要厚さは37mmとなる。ここで土カブリ圧の計算にはマーストンの公式および垂直公式から求めた値の内大きい値を採用している。
【0011】
そして、このような課題は、輪圧が大きい高速道路下にある管路の更生において要求される。管路の更生を依頼する道路管理者側からの要求は、所定の断面積の管路の確保と所定の機械的強度が満たされた管路を廉価に更生することである。
【0012】
そこで、この発明は、このような偏平の管路を所定の機械的強度を保持しつつ廉価に更生できる管路の更生構造及び更生方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
請求項1記載の発明は、既存の更生すべき地中管の内側に、該地中管の内壁の形状にかかわらず、硬化性更生材から形成された断面形状が略真円の更生自立管を形成し、該更生自立管と前記地中管との間に生じた隙間に耐圧材料を充填して固定したことを特徴とする管路の更生構造である。
【0014】
請求項2記載の発明は、既存の地中管の内側に、硬化性樹脂が含浸された可撓性の筒状の更生材を装填し、該更生材の内側から内圧を付与して前記地中管の内壁の形状にかかわらず略真円を維持した状態で前記内壁と前記更生材とは地中管の軸方向とは直交する方向の断面において、少なくとも一部では隙間を開けて更生自立管を形成した後に、該更生自立管の外周囲に生じた隙間に流動性の耐圧材料を充填して固定させることを特徴とする管路の更生方法である。
【0015】
このように構成すれば、更生自立管は、断面形状が略円形であるので、例えば、偏平な楕円に比べて管の厚みが薄くても更生自立管として要求される機械的強度を確保することができる。また、更生自立管と地中管との間の隙間には、耐圧材料が充填されているので、更生自立管に鉛直方向に荷重が掛かった場合にもその荷重は更生自立管を伝わり分散されて、さらに周囲の耐圧材料で支持されるので機械的強度は一層高くなる。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照しつつ説明する。
【0017】
先ず、この発明の管路の更生構造では、図9に示すような既存の偏平した更生すべき地中管Fを更生する。
【0018】
この地中管Fの内側に、図1に示すように、硬化性の更生材Eから形成された断面形状が略真円の新しい更生自立管1が形成される。これにより、更生自立管1と地中管Fの内壁2との間には隙間3が形成されている。この隙間3には、図2に示すように、耐圧材料4が充填される。この耐圧材料4としては、周囲の土壌よりも硬い材料であることが好ましく、例えば、モルタルなどの無機硬化性材料が例示される。
【0019】
ここで、この図1の地中管Fの断面形状はきれいな楕円を示しているが、地中管Fの断面形状は、このようなきれいな楕円に限らず、変形していてもよい。本発明においては、更生すべき地中管Fの内壁2の断面形状にかかわらず、断面形状が略真円の更生自立管1を形成することを特徴としている。このような略真円の更生自立管1を形成すれば、楕円の更生自立管1´に比べて同一材料で同一厚みで有れば、大きな土圧、輪圧に耐えることができる。
【0020】
また、本発明においては、例えば、図3に示すように、更生自立管1の頂部上面と地中管Fの頂部下面との間に距離dがあってもよい。この場合も、周囲の隙間3には、図4に示すように、耐圧材料4が充填される。このように、更生自立管1の管径を小さくすることにより、更生自立管1の厚みが同じであれば、隙間に充填される耐圧材料がより強度が大きいため、一層機械的強度を強くすることができる。更生自立管1の管径を小さくしても所定の管路内の有効断面積が確保できれば、更生自立管1の管径は小さいほど材料費も少なくてよい。これにより、偏平の管路を所定の機械的強度を保持しつつ廉価に更生できる管路の更生構造を提供することができる。
【0021】
次に、このような構成の更生自立管1の更生方法及び管路の更生構造を得る方法の一例について説明する。
【0022】
偏平した地中管Fの短径に比べて直径の小さい装置を用いた以外は図8に示す装置を用いる。ここで、空気供給管Dには不図示の電気ヒータなどを配置することにより不図示のコンプレッサーから送られてきた空気を加熱可能にする。
【0023】
更生材Eとして熱硬化性樹脂が含浸された筒状の繊維質基材であってスリーブ内の圧力を高めても膨張性の小さい基材を選択する。空気供給管Dに温風を供給することにより、更生材EはスリーブCにより外方に向けて膨張圧を受けるが、膨張性の小さい基材が選択されているので断面形状が略真円となる。この断面形状が略真円を維持している状態で温風がスリーブC内に吹き込まれることにより更生材Eは略真円を維持したままで硬化される。
【0024】
スリーブCと筒状体Bとの間の空気を排出することにより、地中管F内に断面形状が略真円の更生自立管1が形成される。この更生自立管1は、地中管Fの内壁の形状及び地中管Fの内径にかかわらず、例えば、図1(又は図3)に示すように形成される。空隙(隙間)3にモルタル、コンクリートなどや無機質主材のコンパウンドエマルジョンなどの流動性の耐圧材料を、例えば、空隙3に入る程度の小径のホースなどを利用して充填させて固化させることにより、図2(又は図4)に示すような、地中管Fの更生構造を得ることができる。
【0025】
つぎに、このような更生材Eの構成の一例を図5及び図6により説明する。なお、これらの図において、更生材Eは、略真円の一部を形成している円弧状として図示されているが、これは構造を便宜的に説明するためのものであり、これらの更生材Eが偏平になってロール状に巻かれたり、又は折りたたまれた状態で保管されたり、作業現場へ移送されたりできる。
【0026】
まず、図5は、その更生材Eの一例を示す部分断面図である。熱硬化性樹脂が含浸された更生自立管用の繊維質基材5の外周に繊維質基材5の膨張を制限する筒状の制限部材6を被覆する。
【0027】
ここで、図5に示す制限部材6は、例えば、円周方向に伸びの小さい補強繊維(例えば、ガラス繊維等)により補強された筒状体であったり、機械的強度の強い筒状のシート材料等からなり、繊維質基材5を外から覆って繊維質基材5が内圧により膨張するのを制限している。この制限部材6は繊維質基材5とは接着剤などにより固定されていてもよい。
【0028】
また、この更生材Eの変形例では、図6に示すように、制限部材6が繊維質基材5内に埋設されている例である。この場合も内圧をかけることにより筒状の繊維質基材5は円筒形に膨張するが、制限部材6の作用により所定の径で膨張が抑制される。繊維質基材5そのものが非膨張性の基材で有れば、制限部材6はあってもなくてもよい。
【0029】
なお、これらの更生材Eは軸に対して直交する方向の断面が略真円となれば、その円の直径が軸方向に変化していてもよい。また、繊維質基材5は、簡略化のために単層で示しているが、繊維質基材とシート又はフィルムが2層乃至5層に積層された多層構造となっているものでもよい。また、含浸される樹脂成分は、熱硬化性樹脂であったり、光硬化性樹脂であったり、何でも自由に選択できる。
【0030】
【変形例】
以上の実施の形態では、加熱空気により熱硬化性樹脂を硬化させていたが、更生材Eとして長手方向に長さが長い材料を用いる場合などでは、加熱空気よりも水蒸気を用いる方がよい場合がある。この場合、水蒸気を導入する水蒸気導入手段が必要であるが、さらに凝縮して生じたドレンを汲み出すドレン汲み出し手段をも設けているのがよい。
【0031】
例えば、図7に示すように、更生すべき地中管Fは高速道路などの雨水を収集する管路であり、高速道路の両側帯の長手方向に沿って形成された路面排出部7などから中央の合流管8に向かって傾斜して形成された雨水管路である。その地中管Fの一断面は図1に示すように土圧により偏平に変形している。なお、この図では地中管Fは長手方向に略同一管径であるが、長手方向に波打って管径に変化があってもよい。
【0032】
更生材Eは、図5又は図6に示すような断面構造を備えた空気不透過性の材料から形成された軸方向に長い可撓性の筒状材料である。その更生材Eは内圧を付加して膨張した場合にも、地中管Fの内径との関係が、図1又は図3に示されるように、偏平な地中管Fの短径(縦方向の直径)と外径が同等又は小さいものが選択されている。
【0033】
更生材Eの先端9は適宜の手法により密封されている。このような更生材Eは、例えば、反転法などにより地中管F内に敷設することができる。もちろんロープなどにより牽引して敷設してもよい。その先端9が合流管8に到達するように配設されることにより、地中管Fの長手方向に沿って更生自立管1を形成することができる。
【0034】
路面排出部7側に位置する更生材Eの一端は、例えば、密封栓10により密閉される。また、この密封栓10には耐圧性でかつ耐熱性の供給ホース11と内部に溜まったドレン搬出用の可撓性の耐圧の排出ホース12が装着される。供給ホース11は更生材Eの内部に空気(air)を供給して更生材Eを略真円に膨張させるとともに、水蒸気を供給して更生材Eを硬化させるためのものである。
【0035】
これにより、供給ホース11より空気を供給して更生材Eをその軸方向に直角な断面が、例えば、図1(又は図3)に示されるような略真円となるように0.07−0.08pa程度の内圧を付加する。ついで、排出ホース12から内部の空気を排出しつつ、供給ホース11より同程度の圧力の水蒸気を導入して更生材Eを加熱させる。凝縮して生じたドレンは、排出ホース12の先端から排出される。排出ホース12は可撓性であるので、水(ドレン)が滞留する滞留部13に先端を配置することにより、ドレンは内部圧により自然に排出できる。
【0036】
所定の時間で硬化が完了後、更生自立管1と地中管Fとの間に生じた隙間3にモルタルなどの充填材(耐圧材料4)を充填させて硬化させることにより、地中管F内に、図2(又は図4)で示すような更生自立管1を形成することができる。先端9等を公知の手法により切り開いて合流管8又は路面排出部7との接続部の更生を行うことができる。
【0037】
このように既存の偏平した地中管路の内側に、硬化性樹脂が含浸された可撓性の筒状の更生材を装填し、更生材の内側から内圧を付与して、管路の内壁の形状にかかわらず、略真円の更生された管路を形成した後に、更生された管路の外周囲の余剰スペースに耐圧材料を充填して硬化させることにより、既存の更生すべき地中管の内側に地中管の内壁の形状にかかわらず、硬化性更生材から形成された断面形状が略真円の更生自立管を形成し更生自立管と地中管との間に生じた隙間に耐圧材料を充填して固定した管路の更生構造が提供される。
【0038】
このように構成すれば、更生自立管は断面形状が略円形であるので、偏平な楕円に比べて管の厚みが薄くても更生自立管として要求される機械的強度を確保することができる。また、更生自立管と地中管との間の隙間には、耐圧材料が充填されているので、更生自立管に鉛直方向に荷重が掛かった場合にもその荷重は更生自立管を伝わり分散されて、さらに周囲の耐圧材料で支持されるので機械的強度は一層高くなる。
【0039】
なお、以上の発明の実施の形態では、主に熱硬化性樹脂が含浸された更生材Eを用いていたが、光硬化性樹脂が含浸されたものでもよい。また、これらの硬化性樹脂は含浸に限らず塗布されたものでもよい。
【0040】
また、更生材Eを略真円とする手法も自由である。例えば、更生自立管1の管径が小さい場合(例えば、250mm以下)、更生材Eを略真円とする媒体として気体に代えて液体を用いてもよい。温水を用いれば、略真円に維持しつつ熱硬化性樹脂を加熱して硬化させることができる。
【0041】
また、以上の実施の形態では、偏平した地中管を更生していたが、図8に示されるような、断面が方形の地中管の中に更生自立管1を形成するように構成してもよい。
【0042】
また、以上の説明では、地中管は更生されていたが、本発明に係る管路の更生構造及び更生方法には、地中管の補修構造、補強構造及び補修方法、補強方法が含まれる。
【0043】
【発明の効果】
以上説明したように、本発明に従えば、管路を所定の機械的強度を保持しつつ廉価に更生できる管路の更生構造及び更生方法を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る地中管の更生構造を説明する断面図である。
【図2】本発明に係る地中管の更生構造を説明する断面図である。
【図3】本発明に係る地中管の更生構造を説明する断面図である。
【図4】本発明に係る地中管の更生構造を説明する断面図である。
【図5】本発明に係る地中管の更生方法に用いる更生材の部分断面図である。
【図6】本発明に係る地中管の更生方法に用いる更生材の部分断面図である。
【図7】本発明に係る地中管の更生方法を断面により説明する模式図である。
【図8】従来例及び本発明に係る地中管の更生方法を断面により説明する模式図である。
【図9】従来例に係る地中管の更生構造を説明する断面図である。
【図10】従来例に係る地中管の更生構造を説明する断面図である。
【符号の説明】
A:パッカ
B:筒状体
C:スリーブ
D:空気供給管
E:更生材
F:地中管
1:更生自立管
1´:(偏平な)更生自立管
2:内壁
3:空隙(隙間)
4:耐圧材料
5:繊維質基材
6:制限部材
7:路面排出部
8:合流管
9:先端
10:密封栓
11:供給ホース
12:排出ホース
13:滞留部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rehabilitation structure and a rehabilitation method of a pipeline when reinforcement is required with an underground pipe or the like that is flattened due to earth pressure, wheel pressure, or the like, or an existing underground pipe or the like.
[0002]
[Prior art]
When cracks occur in the body of underground pipes such as sewage pipes due to aging, earthquakes, land subsidence, etc., or the connection parts are displaced, new pipelines are formed inside old underground pipes. Rehabilitation (including repair) methods are widely practiced.
[0003]
As a method for rehabilitating such a pipeline, a flexible rehabilitation material impregnated with a curable material is used, and the rehabilitation material is cured while applying internal pressure to the rehabilitation material from the inside of the old pipeline to form a new rehabilitation pipeline. A method for rehabilitating a pipe to be formed is known (for example, see Non-Patent Document 1 and Patent Document 1).
[0004]
In such a pipe rehabilitation method, for example, as shown in FIG. 8, a rubber sleeve C is provided outside a cylindrical body B having a substantially circular cross-sectional shape (a cross section perpendicular to the axial direction). A packer A having an air supply pipe D for supplying air between the sleeve C and the cylindrical body B is used.
[0005]
When air is supplied from the air supply pipe D using such a packer A, the sleeve C expands, and the rehabilitating material E wound on the outer periphery of the sleeve C is pressed against the inner surface of the underground pipe F. By heating the rehabilitation material E, the thermosetting resin contained in the rehabilitation material E is cured. If the air between the sleeve C and the cylindrical body B is released after the rehabilitating material E is cured, the sleeve C contracts and separates from the rehabilitating material E. Thereafter, the packer A is pulled up to the ground, and the rehabilitation work of the underground pipe F is completed, and a new pipeline is formed. Here, if a material having sufficient mechanical strength is used as the rehabilitating material E, the rehabilitating self-standing tube 1 as a new pipeline is formed.
[0006]
[Non-patent document 1]
"Special Issue: Development of Sewer Pipeline Maintenance (Rehabilitation); All-Liner Method-Responding to All Needs-", written by Katsunori Otsuka, Katsumi Nakamura and Nobuhiko Onoda, All Liner Association Press, December 2000, p. 1-7
[Patent Document 1]
JP-A-7-77296 (FIG. 6, left column of page 2)
[0007]
[Problems to be solved by the invention]
However, according to the method of applying the internal pressure to the rehabilitating material E from the inside of the old pipeline using the packer A and hardening the rehabilitating material E to rehabilitate the pipeline, the underground pipe F causes the earth pressure such as earth fog pressure or the like. Accordingly, in the case of flattening as shown in FIG. 9, a flattened rehabilitated self-standing pipe 1 ′ is formed along the inner wall of the underground pipe F as shown in FIG. 10.
[0008]
Here, in the rehabilitation self-standing pipe 1 ′ which is flattened in an elliptical shape as shown in FIG. 10, the pressure resistance in the vertical direction is lower than that of the rehabilitation self-standing pipe 1 having a substantially circular cross section. Therefore, when it is necessary to lay a self-supporting rehabilitating pipe having a predetermined wheel pressure, it is necessary to adopt a material having excellent rigidity as the rehabilitating material E or to increase the thickness of the rehabilitating material E. Rehabilitating material E having excellent rigidity is expensive. In addition, when the thickness of the rehabilitating material E is increased, there is a problem that, in addition to the material height, there is also a high construction cost due to a decrease in workability, and the overall price increases.
[0009]
For example, according to trial calculations by the present inventors, when forming a substantially round rehabilitation self-standing pipe 1 in a fume pipe (inner diameter 1350 mm, outer diameter 1400 mm) having a nominal diameter of 1350 mm, soil fog is 5 m and groundwater level is 0 m, using a wheel load type T-25, flexural strength 40N / mm 2 of rehabilitating material E, allowable stress 20 N / mm 2, designed elastic modulus 1750 N / mm 2, the safety factor 2, requests the thickness of rehabilitating material against groundwater pressure The thickness is calculated to be 11.5 mm, the thickness with respect to the earth pressure is calculated to be 17.5 mm, and as a result, the required thickness of the rehabilitating material E is 17.5 mm.
[0010]
On the other hand, as an example of forming the flat rehabilitated self-standing pipe 1 ′, for example, in a pipe with a flatness of 10% (pipe diameter 1500 mm, vertical distance 1350 mm, horizontal distance 1650 mm), substantially the same condition, that is, soil fog the 5 m, the groundwater level assumed 0 m, the wheel load type T-25, bending using a rehabilitating material E strength 40N / mm 2, the allowable stress 20 N / mm 2, designed elastic modulus 1750 N / mm 2, the safety factor 2 , The thickness with respect to the earth pressure is calculated to be 35.98 mm, and as a result, the required thickness of the rehabilitating material E is 37 mm. Here, the larger value of the values obtained from the Marston formula and the vertical formula is used for the calculation of the soil fog pressure.
[0011]
Such a problem is required in rehabilitation of a pipeline under a highway where wheel pressure is large. The request from the road manager to rehabilitate the pipeline is to secure a pipeline with a predetermined cross-sectional area and rehabilitate the pipeline with a predetermined mechanical strength at low cost.
[0012]
Accordingly, an object of the present invention is to provide a rehabilitation structure and a rehabilitation method of such a flat pipeline which can rehabilitate the pipeline at a low cost while maintaining a predetermined mechanical strength.
[0013]
[Means for Solving the Problems]
The invention according to claim 1 is a self-standing rehabilitating pipe having a substantially circular cross section formed of a hardening rehabilitating material inside an existing underground pipe to be rehabilitated, regardless of the shape of the inner wall of the underground pipe. And a gap formed between the self-supporting free-standing pipe and the underground pipe is filled with a pressure-resistant material and fixed, and is fixed.
[0014]
According to a second aspect of the present invention, a flexible tubular rehabilitating material impregnated with a curable resin is loaded inside an existing underground pipe, and an internal pressure is applied from the inside of the rehabilitating material to the ground. Regardless of the shape of the inner wall of the middle pipe, the inner wall and the rehabilitating material are at least partially opened in a cross section in a direction orthogonal to the axial direction of the underground pipe while maintaining a substantially perfect circle, and at least a part of the inner wall and the rehabilitating material are rehabilitated independently. A method for rehabilitating a pipe line, characterized in that after forming the pipe, a gap formed around the outside of the rehabilitation free-standing pipe is filled with a fluid pressure-resistant material and fixed.
[0015]
With this configuration, the rehabilitated freestanding pipe has a substantially circular cross-sectional shape. For example, even when the pipe is thinner than a flat ellipse, it is possible to secure the mechanical strength required for the rehabilitated freestanding pipe. Can be. In addition, since the gap between the rehabilitated freestanding pipe and the underground pipe is filled with a pressure-resistant material, even if a load is applied to the rehabilitated freestanding pipe in the vertical direction, the load is transmitted through the rehabilitated freestanding pipe and dispersed. Further, since it is supported by the surrounding pressure-resistant material, the mechanical strength is further increased.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0017]
First, in the pipe rehabilitation structure of the present invention, an existing flat underground pipe F to be rehabilitated as shown in FIG. 9 is rehabilitated.
[0018]
Inside the underground pipe F, as shown in FIG. 1, a new rehabilitated self-standing pipe 1 having a substantially perfect circular cross section formed from a hardening rehabilitating material E is formed. As a result, a gap 3 is formed between the rehabilitated freestanding pipe 1 and the inner wall 2 of the underground pipe F. This gap 3 is filled with a pressure-resistant material 4 as shown in FIG. The pressure-resistant material 4 is preferably a material that is harder than the surrounding soil, and examples thereof include an inorganic curable material such as mortar.
[0019]
Here, the cross-sectional shape of the underground pipe F in FIG. 1 shows a clean ellipse, but the cross-sectional shape of the underground pipe F is not limited to such a clean ellipse and may be deformed. The present invention is characterized in that, regardless of the cross-sectional shape of the inner wall 2 of the underground pipe F to be rehabilitated, the cross-sectional shape forms the rehabilitation self-standing pipe 1 having a substantially perfect circle. When such a rehabilitated self-standing pipe 1 having a substantially perfect circle is formed, if it is made of the same material and has the same thickness as the elliptical rehabilitated self-standing pipe 1 ′, it can withstand large earth pressure and wheel pressure.
[0020]
Further, in the present invention, for example, as shown in FIG. 3, there may be a distance d between the top upper surface of the rehabilitated freestanding pipe 1 and the top lower surface of the underground pipe F. Also in this case, the surrounding gap 3 is filled with a pressure-resistant material 4 as shown in FIG. As described above, by reducing the diameter of the rehabilitated free-standing pipe 1, if the thickness of the rehabilitated self-standing pipe 1 is the same, the pressure-resistant material filled in the gap has a higher strength, so that the mechanical strength is further increased. be able to. As long as the effective cross-sectional area within a predetermined pipeline can be ensured even if the diameter of the rehabilitated self-standing pipe 1 is reduced, the smaller the diameter of the rehabilitated self-standing pipe 1, the less the material cost. Thus, it is possible to provide a pipe rehabilitation structure that can rehabilitate a flat pipe at low cost while maintaining a predetermined mechanical strength.
[0021]
Next, an example of a method of rehabilitating the rehabilitation self-standing pipe 1 having such a configuration and a method of obtaining a rehabilitation structure of a pipeline will be described.
[0022]
The apparatus shown in FIG. 8 is used except that an apparatus whose diameter is smaller than the short diameter of the flat underground pipe F is used. Here, an air heater or the like (not shown) is disposed in the air supply pipe D so that air sent from a compressor (not shown) can be heated.
[0023]
As the rehabilitating material E, a tubular fibrous base material impregnated with a thermosetting resin and having a small expandability even when the pressure in the sleeve is increased is selected. By supplying warm air to the air supply pipe D, the rehabilitating material E receives an inflation pressure toward the outside by the sleeve C. However, since a base material having a small inflation property is selected, the cross-sectional shape becomes substantially circular. Become. When the hot air is blown into the sleeve C in a state where the cross-sectional shape maintains a substantially perfect circle, the rehabilitating material E is hardened while maintaining the substantially perfect circle.
[0024]
By discharging the air between the sleeve C and the cylindrical body B, the rehabilitated self-standing pipe 1 having a substantially perfect cross section is formed in the underground pipe F. This rehabilitated self-standing pipe 1 is formed, for example, as shown in FIG. 1 (or FIG. 3) regardless of the shape of the inner wall of the underground pipe F and the inner diameter of the underground pipe F. The gap (gap) 3 is filled with a fluid pressure-resistant material such as mortar, concrete, or a compound emulsion of an inorganic main material, for example, by using a hose having a small diameter enough to enter the gap 3 and solidified. As shown in FIG. 2 (or FIG. 4), a rehabilitation structure of the underground pipe F can be obtained.
[0025]
Next, an example of the configuration of such a rehabilitating material E will be described with reference to FIGS. In these drawings, the rehabilitating material E is shown as an arc forming a part of a substantially perfect circle, but this is for the sake of convenience of explanation of the structure, and The material E can be flattened and wound into a roll, or stored in a folded state, or transferred to a work site.
[0026]
First, FIG. 5 is a partial sectional view showing an example of the rehabilitating material E. The outer periphery of the fibrous base material 5 for the rehabilitated self-standing pipe impregnated with the thermosetting resin is covered with a cylindrical restricting member 6 for restricting the expansion of the fibrous base material 5.
[0027]
Here, the restricting member 6 shown in FIG. 5 is, for example, a cylindrical body reinforced by a reinforcing fiber (for example, glass fiber or the like) having a small elongation in the circumferential direction, or a cylindrical sheet having high mechanical strength. It is made of a material or the like, and covers the fibrous base material 5 from outside to restrict the fibrous base material 5 from expanding due to internal pressure. The restriction member 6 may be fixed to the fibrous base material 5 with an adhesive or the like.
[0028]
Further, in this modified example of the rehabilitating material E, as shown in FIG. 6, the restricting member 6 is embedded in the fibrous base material 5. Also in this case, the tubular fibrous base material 5 expands into a cylindrical shape by applying the internal pressure, but the expansion is suppressed at a predetermined diameter by the action of the restricting member 6. If the fibrous base material 5 itself is a non-expandable base material, the restricting member 6 may or may not be provided.
[0029]
In addition, as for these rehabilitating materials E, if the cross section in the direction orthogonal to the axis is a substantially perfect circle, the diameter of the circle may change in the axial direction. Although the fibrous base material 5 is shown as a single layer for simplicity, the fibrous base material 5 may have a multilayer structure in which two to five layers of a fibrous base material and a sheet or film are laminated. Further, the resin component to be impregnated is a thermosetting resin or a photocurable resin, and any resin component can be freely selected.
[0030]
[Modification]
In the above embodiment, the thermosetting resin is cured by the heated air. However, when a material having a long length in the longitudinal direction is used as the rehabilitating material E, it is better to use steam than the heated air. There is. In this case, a steam introducing means for introducing steam is necessary, but it is preferable to further provide a drain pumping means for pumping drain generated by condensation.
[0031]
For example, as shown in FIG. 7, the underground pipe F to be rehabilitated is a pipe for collecting rainwater such as a highway, from a road surface discharge portion 7 formed along the longitudinal direction of both sides of the highway. This is a rainwater pipe formed to be inclined toward the central junction pipe 8. One section of the underground pipe F is deformed flat by the earth pressure as shown in FIG. In addition, in this figure, the underground pipe F has substantially the same pipe diameter in the longitudinal direction, but the pipe diameter may be changed by waving in the longitudinal direction.
[0032]
The rehabilitating material E is a flexible tubular material that is long in the axial direction and formed of an air-impermeable material having a sectional structure as shown in FIG. 5 or FIG. Even when the rehabilitating material E is expanded by applying an internal pressure, the relationship with the inner diameter of the underground pipe F, as shown in FIG. 1 or FIG. Is smaller or equal to the outer diameter.
[0033]
The tip 9 of the rehabilitating material E is sealed by an appropriate technique. Such a rehabilitating material E can be laid in the underground pipe F by, for example, an inversion method. Of course, it may be laid by pulling with a rope or the like. By arranging the tip 9 so as to reach the merging pipe 8, the rehabilitating self-standing pipe 1 can be formed along the longitudinal direction of the underground pipe F.
[0034]
One end of the rehabilitating material E located on the road surface discharge portion 7 side is sealed by, for example, a sealing plug 10. The sealing plug 10 is provided with a pressure-resistant and heat-resistant supply hose 11 and a flexible pressure-resistant discharge hose 12 for discharging the drain collected inside. The supply hose 11 supplies air (air) to the inside of the rehabilitating material E to expand the rehabilitating material E into a substantially perfect circle, and supplies steam to cure the rehabilitating material E.
[0035]
Thus, air is supplied from the supply hose 11 to rehabilitate the renewed material E so that its cross section perpendicular to the axial direction becomes, for example, approximately 0.07− so that it becomes a substantially perfect circle as shown in FIG. 1 (or FIG. 3). An internal pressure of about 0.08 pa is applied. Next, while the internal air is being discharged from the discharge hose 12, steam having the same pressure is introduced from the supply hose 11 to heat the rehabilitating material E. The drain generated by condensation is discharged from the tip of the discharge hose 12. Since the discharge hose 12 is flexible, the drain can be spontaneously discharged by the internal pressure by arranging the distal end in the retaining portion 13 where water (drain) is retained.
[0036]
After the hardening is completed for a predetermined time, the gap 3 between the rehabilitated self-standing pipe 1 and the underground pipe F is filled with a filler material (pressure-resistant material 4) such as mortar and hardened, so that the underground pipe F Inside, a rehabilitation self-standing tube 1 as shown in FIG. 2 (or FIG. 4) can be formed. The tip 9 and the like can be cut open by a known method to rehabilitate the junction with the merging pipe 8 or the road surface discharge portion 7.
[0037]
In this manner, a flexible tubular rehabilitation material impregnated with a curable resin is loaded inside the existing flat underground pipe, and internal pressure is applied from the inside of the rehabilitation material to form an inner wall of the pipe. Regardless of the shape of the rehabilitated pipe, after forming a rehabilitated pipe with a substantially perfect circle, the extra space around the rehabilitated pipe is filled with pressure-resistant material and hardened. Regardless of the shape of the inner wall of the underground pipe inside the pipe, a gap formed between the rehabilitated freestanding pipe and the underground pipe, which forms a rehabilitated freestanding pipe with a substantially circular cross section formed from the hardening material A rehabilitation structure of a pipeline in which a pressure-resistant material is filled and fixed is provided.
[0038]
With such a configuration, the rehabilitated self-standing pipe has a substantially circular cross section, so that the mechanical strength required for the rehabilitated self-standing pipe can be ensured even if the pipe is thinner than a flat ellipse. In addition, since the gap between the rehabilitated freestanding pipe and the underground pipe is filled with a pressure-resistant material, even if a load is applied to the rehabilitated freestanding pipe in the vertical direction, the load is transmitted through the rehabilitated freestanding pipe and dispersed. Further, since it is supported by the surrounding pressure-resistant material, the mechanical strength is further increased.
[0039]
In the above-described embodiment, the rehabilitating material E mainly impregnated with a thermosetting resin is used, but may be impregnated with a photocurable resin. Further, these curable resins are not limited to impregnation and may be applied.
[0040]
Further, a method of making the rehabilitating material E substantially round is also free. For example, when the diameter of the rehabilitation free-standing pipe 1 is small (for example, 250 mm or less), a liquid may be used instead of gas as a medium for making the rehabilitation material E a substantially perfect circle. If warm water is used, the thermosetting resin can be heated and cured while maintaining a substantially perfect circle.
[0041]
Further, in the above embodiment, the flat underground pipe is rehabilitated. However, as shown in FIG. 8, the rehabilitation self-standing pipe 1 is formed in the underground pipe having a rectangular cross section. You may.
[0042]
In the above description, the underground pipe has been rehabilitated. However, the rehabilitation structure and rehabilitation method of the pipeline according to the present invention include a repair structure, a reinforcement structure, a rehabilitation method, and a reinforcement method of an underground pipe. .
[0043]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a pipe rehabilitation structure and a rehabilitation method capable of rehabilitating pipes at low cost while maintaining predetermined mechanical strength.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a rehabilitation structure of an underground pipe according to the present invention.
FIG. 2 is a cross-sectional view illustrating a rehabilitation structure of an underground pipe according to the present invention.
FIG. 3 is a sectional view illustrating a rehabilitation structure of an underground pipe according to the present invention.
FIG. 4 is a cross-sectional view illustrating a rehabilitation structure of an underground pipe according to the present invention.
FIG. 5 is a partial cross-sectional view of a rehabilitating material used in the underground pipe rehabilitation method according to the present invention.
FIG. 6 is a partial sectional view of a rehabilitating material used in the method of rehabilitating an underground pipe according to the present invention.
FIG. 7 is a schematic diagram illustrating a section of a method of rehabilitating an underground pipe according to the present invention.
FIG. 8 is a schematic diagram illustrating a method of rehabilitating an underground pipe according to a conventional example and the present invention by using cross sections.
FIG. 9 is a cross-sectional view illustrating a rehabilitation structure of an underground pipe according to a conventional example.
FIG. 10 is a cross-sectional view illustrating a rehabilitation structure of an underground pipe according to a conventional example.
[Explanation of symbols]
A: Packer B: Cylindrical body C: Sleeve D: Air supply pipe E: Rehabilitation material F: Underground pipe 1: Rehabilitation self-standing pipe 1 ': (flat) rehabilitation self-supporting pipe 2: Inner wall 3: void (gap)
4: pressure-resistant material 5: fibrous base material 6: restricting member 7: road surface discharge portion 8: merging tube 9: tip 10: sealing plug 11: supply hose 12: discharge hose 13: staying portion

Claims (4)

既存の更生すべき地中管の内側に、該地中管の内壁の形状にかかわらず、硬化性更生材から形成された断面形状が略真円の更生自立管を形成し、該更生自立管と前記地中管との間の生じた隙間に耐圧材料を充填して固定したことを特徴とする管路の更生構造。Inside the existing underground pipe to be rehabilitated, irrespective of the shape of the inner wall of the underground pipe, a rehabilitation self-standing pipe formed of a hardening rehabilitating material and having a substantially circular cross section is formed. A pressure-resistant material is filled in and fixed to a gap formed between the pipe and the underground pipe. 既存の地中管の内側に、硬化性樹脂が含浸された可撓性の筒状の更生材を装填し、該更生材の内側から内圧を付与して前記地中管の内壁の形状にかかわらず略真円を維持した状態で前記内壁と前記更生材とは地中管の軸方向とは直交する方向の断面において、少なくとも一部では隙間を開けて更生自立管を形成した後に、該更生自立管の外周囲に生じた隙間に流動性の耐圧材料を充填して固定させることを特徴とする管路の更生方法。A flexible tubular rehabilitation material impregnated with a curable resin is loaded inside an existing underground pipe, and an internal pressure is applied from the inside of the rehabilitation material to affect the shape of the inner wall of the underground pipe. In a state in which the inner wall and the rehabilitating material are maintained in a substantially perfect circle, at least a part of the inner wall and the rehabilitating material are formed with a gap in a cross section perpendicular to the axial direction of the underground pipe to form a rehabilitating self-standing pipe. A method for rehabilitating a pipeline, characterized in that a gap formed around the outside of the self-standing pipe is filled with a fluid pressure-resistant material and fixed. 前記内圧を付与する媒体は気体であることを特徴とする請求項2記載の管路の更生方法。3. The method according to claim 2, wherein the medium for applying the internal pressure is a gas. 前記更生材は熱硬化性樹脂が含浸された繊維質材料であり、水蒸気により加熱されて硬化されることを特徴とする請求項3記載の管路の更生方法。The method of claim 3, wherein the rehabilitating material is a fibrous material impregnated with a thermosetting resin, and is cured by being heated by steam.
JP2002327203A 2002-11-11 2002-11-11 Regeneration structure and regeneration method for conduit Pending JP2004162752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002327203A JP2004162752A (en) 2002-11-11 2002-11-11 Regeneration structure and regeneration method for conduit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002327203A JP2004162752A (en) 2002-11-11 2002-11-11 Regeneration structure and regeneration method for conduit

Publications (1)

Publication Number Publication Date
JP2004162752A true JP2004162752A (en) 2004-06-10

Family

ID=32805916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002327203A Pending JP2004162752A (en) 2002-11-11 2002-11-11 Regeneration structure and regeneration method for conduit

Country Status (1)

Country Link
JP (1) JP2004162752A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050622A (en) * 2014-08-29 2016-04-11 株式会社サンフロイント Pipeline structure
JP2021025559A (en) * 2019-08-01 2021-02-22 積水化学工業株式会社 Method for rehabilitating tubular body, and pipe structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050622A (en) * 2014-08-29 2016-04-11 株式会社サンフロイント Pipeline structure
JP2021025559A (en) * 2019-08-01 2021-02-22 積水化学工業株式会社 Method for rehabilitating tubular body, and pipe structure
JP7344039B2 (en) 2019-08-01 2023-09-13 積水化学工業株式会社 Rehabilitation method of tubular body and pipe structure

Similar Documents

Publication Publication Date Title
US5034180A (en) Method for installing a substantially rigid thermoplastic pipe in an existing pipeline
US5368809A (en) Method of installing a new pipe inside an existing conduit by progressive rounding
CN103260855B (en) Pipe repairing method and repaired pipeline
US20130098535A1 (en) Method and apparatus for forming a coating on a lining of a conduit in situ
US20080075538A1 (en) Method and apparatus for repairing underground pipes
US20120199276A1 (en) Tubular Liner for Underground Pipes and Method of Installing Tubular Liner
JP2010502913A (en) Reusable reversing sleeve assembly for reversing in-situ cured liners
JP4632592B2 (en) Seismic rehabilitation method and seismic rehabilitation structure
JP2004162752A (en) Regeneration structure and regeneration method for conduit
KR20130063067A (en) Repairing apparatus being adaptable to sewer pipes of various inner diameter
JP2007303535A (en) Method for regenerating pipeline
JP4908246B2 (en) Pipeline rehabilitation method
JP4855323B2 (en) Pipeline rehabilitation method
JP4909795B2 (en) Pipeline rehabilitation method
JP2023023052A (en) Pipeline inner peripheral side intermediate and pipeline lining method
JP6986743B2 (en) Pipe rehabilitation method
JP4890312B2 (en) Pipe bridge rehabilitation method
JP2004278203A (en) Method of repairing liquid transportation facilities
JP4416096B2 (en) Repair method of existing pipeline and pipeline
JP4889615B2 (en) Existing line lining method
JP5600419B2 (en) Existing pipe repair method
KR20030011836A (en) Duct repairing material, repairing structure, and repairing method
JP5066288B2 (en) Line rehabilitation liner
JP6956017B2 (en) Existing pipe rehabilitation method
JP3865616B2 (en) Rehabilitation method of manhole

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081117

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081120

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090625

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090713

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090807