JP2004162533A - Seal structure of turbo-molecular pump - Google Patents

Seal structure of turbo-molecular pump Download PDF

Info

Publication number
JP2004162533A
JP2004162533A JP2002326226A JP2002326226A JP2004162533A JP 2004162533 A JP2004162533 A JP 2004162533A JP 2002326226 A JP2002326226 A JP 2002326226A JP 2002326226 A JP2002326226 A JP 2002326226A JP 2004162533 A JP2004162533 A JP 2004162533A
Authority
JP
Japan
Prior art keywords
seal
turbo
molecular pump
peripheral portion
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002326226A
Other languages
Japanese (ja)
Inventor
Masashi Iguchi
昌司 井口
Tetsuo Obayashi
哲郎 大林
Takahiro Uehara
孝浩 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Vacuum Ltd
Original Assignee
Osaka Vacuum Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Vacuum Ltd filed Critical Osaka Vacuum Ltd
Priority to JP2002326226A priority Critical patent/JP2004162533A/en
Publication of JP2004162533A publication Critical patent/JP2004162533A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a seal structure of a turbo-molecular pump superior in seal performance by juxtaposing a fixing clearance seal part adjacently to a dynamic pressure screw seal part, and preventing the occurrence of liquefaction or solidification of process gas in the fixing clearance sealing part in the seal structure of the turbo-molecular pump. <P>SOLUTION: The dynamic pressure screw sealing part S is formed of a bush 6 swingably fitted in the engaging direction in a stationary member 5 of a housing, a journal shaft part 1a rotatably inserted into an inner peripheral part of the bush 6 with a little clearance, a herringbone-shaped groove 1b and a screw groove 1ct recessed in an outer peripheral part of the journal shaft part 1a. The fixing clearance seal part composed of a fixing clearance seal 7 and a handle part 2a of a rotor 2 is arranged adjacently to the dynamic pressure screw seal part S, and the fixing clearance seal 7 is fitted to the stationary member 5 via heat insulating packing 7a. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、腐食性を有するガスや凝縮し易いガス等を含んだプロセスガスの排気に好適なターボ分子ポンプのシール構造に関する。
【0002】
【従来の技術】
この種のターボ分子ポンプのシール構造として、出願人は先に図2の如くころがり軸受aを介して回転軸bを支承しているターボ分子ポンプcにおいて、該ターボ分子ポンプのハウジングの静止部材dに径方向の搖動可能に嵌入された円筒状のブッシュeと、該ブッシュeの内周部に僅少の間隙を有して回動自在に該内周部を挿通した前記回転軸bの一部のジャーナル軸部fとからなり、該ジャーナル軸部fの外周部にヘリングボーン形溝gを回転方向に向かってヘの字状に開いた形状に多数等間隔に凹設し、更に前記ジャーナル軸部fの外周部に前記ヘリングボーン形溝gに隣接して斜め方向のねじ溝hを多数等間隔に凹設して動圧ねじシール部iを形成したターボ分子ポンプのシール構造を提案した(例えば特許文献1参照。)。
【0003】
尚、kは多数の翼を有するターボ分子ポンプのロータを示す。
【0004】
図3は前記動圧ねじシール部iの詳細図を示し、前記静止部材dの端面部に前記回転軸bと同心に係着した孔明き円板状の蓋板mによって前記ブッシュeの軸方向の位置決めが行なわれている。
【0005】
尚、p及びqはそれぞれ弾性を有するOリングで、前記ブッシュeを揺動可能に支承している。
【0006】
【特許文献1】
特願2000−340086号
【0007】
【発明が解決しようとする課題】
しかしながら、前記構造のターボ分子ポンプの静止部材dは一般に低温に保たれており、このため、蓋板mや静止部材dの低温部の外周でプロセスガスが凝縮して液化、固化し、こうして生じた液や粉が前記動圧ねじシール部iの隙間に侵入して、固着や損傷等を引き起こすことがあるという問題があった。
【0008】
本発明はこれらの問題点を解消し、従来の動圧ねじシール部にプロセスガスの液化又は固化した液や粉が浸入しないようなシール性能の優れたターボ分子ポンプのシール構造を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は上記の目的を達成すべく、ターボ分子ポンプのハウジングの静止部材に回転軸を回動自在に軸支すると共に該回転軸の軸端部をターボ分子ポンプのロータの柄部に嵌着して固定した構造のターボ分子ポンプにおいて、前記ハウジングの静止部材に径方向の揺動可能に嵌入した円筒状のブッシュと、該ブッシュの内周部に僅少の間隙を有して回動自在に該内周部を挿通する前記回転軸のジャーナル軸部とを有して、該ジャーナル軸部の外周部又は該ブッシュの内周部にヘリングボーン形の溝とシール用のねじ溝とを凹設して動圧ねじシール部を形成すると共に該動圧ねじシール部に隣接して孔明き円板状体からなる固定クリアランスシール部を併設し、更に該孔明き円板状体は前記ハウジングの静止部材に断熱材を介して係着する構造としたことを特徴とする。
【0010】
【発明の実施の形態】
本発明のターボ分子ポンプのシール構造の1実施の形態を図1により説明する。
【0011】
図1は本実施の形態のターボ分子ポンプの一部縦断面図であり、1は回転軸、2はターボ分子ポンプのロータを示す。尚、図1ではロータ2の翼部分は省略されている。
【0012】
回転軸1は、その軸端部をロータ2の一端面の中央部の突状部即ち柄部2aに嵌着して、取付けボルト3によって両者を締結している。
【0013】
1aは前記回転軸1の一部、ジャーナル軸部を示し、該ジャーナル軸部1aは前記回転軸1の一部を少許大径に膨出して形成され、その1例端面部に前記ロータ2の柄部2aの側端面を当接させている。
【0014】
該ジャーナル軸部2の外周部には、ヘリングボーン形溝1bが回転方向に向かってヘの字状に開いた形状に多数等間隔に凹設されており、又、該ヘリングボーン形溝1bに隣接して該ジャーナル軸部2の外周部の前記ロータ2寄りの位置に、ねじ溝1cが多数等間隔に凹設されている。
【0015】
尚、該ねじ溝1cは、ジャーナル軸部2aの回転に伴って前記ロータ2側から前記ヘリングボーン形溝1bに向かって気体を移動させるようなねじの傾斜方向を有している。
【0016】
4はターボ分子ポンプのハウジングの一部の第1静止部材を示し、前記回転軸1はころがり軸受4aを介して回動自在に該第1静止部材4に軸支されている。
【0017】
5は第2静止部材で、該第2静止部材5は円筒状部5aとその下端部から突設した鍔部5bとからなり、前記回転軸1と同心に、該鍔部5bにおいて前記第1静止部材に係着されている。
【0018】
6は円筒状のスリーブで、該スリーブ6は前記第2静止部材5の円筒状部5aに径方向の微小な搖動可能に嵌入している。そして該スリーブ6の内部を、該スリーブ6の内周部に僅少の間隙を有して前記ロータ2のジャーナル軸部2aが挿通して、動圧ねじシール部Sを形成している。
【0019】
該動圧ねじシール部Sに隣接して、固定クリアランスシール部が設けられている。即ち、ドーナツ状の孔明き円板状体からなる固定クリアランスシール7が断熱性を有するパッキン7aを介して前記第2静止部材5の他端部即ち前記円筒状部5aの上端部に断熱的に係着されており、又、該固定のクリアランスシール7の内周部を前記ロータ2の柄部2aの外周部が該内周部に僅少の間隔を有して挿通する構造となっている。
【0020】
又、固定クリアランスシール7に設けられたボルト孔7bは、該固定クリアランスシールを第2静止部材5の円筒状部5aに締着するボルト7cの軸径よりも少許大に形成されており、このため該固定クリアランスシール7の内周部と前記ロータ2の柄部2aの外周部とが同心となるように、該固定クリアランスシール7の取付け位置を少許移動させて微調整をすることが可能となっている。
【0021】
尚、8aはOリングであり、該Oリング8aは弾力性を有する材料からなる。
【0022】
次に本実施の形態の作用及び効果について説明する。
【0023】
図1に示すターボ分子ポンプのシール構造は、上部のロータ2のある真空側と、下方のころがり軸受4aのある大気圧側との間を軸封する目的で設けられている。
【0024】
先ず、動圧ねじシール部Sの作用について説明する。
【0025】
回転軸1が高速回転すると、該回転軸1の一部をなすジャーナル軸部1aにおいて、ヘリングボーン形溝1aにより発生する動圧がスリーブ6を該スリーブ6の内周部側から押圧して、該スリーブ6の内周部と前記ジャーナル軸部1aの外周部との間隙が所定値以内となるように作用する。
【0026】
又、前記ヘリングボーン形溝1aの隣りにはねじ溝1cがあって、ヘリングボーン形溝1aにある気体がロータ2の側へ漏洩しないようなねじシールとして作用する。
【0027】
更に前記動圧ねじシール部Sに隣接して設けられている固定クリアランスシール部は、固定クリアランスシール7の内周部とロータ2の柄部2aの外周部との間の狭い間隙によって軸封効果を有している。このため固定クリアランスシール7を越えて動圧ねじシール部Sに流入するプロセスガスの流量が減少する。
【0028】
尚、Oリング8aは、前記スリーブ6の外周部を通過したプロセスガス等が転がり軸受4a側へ漏洩したり、又はその逆コースを辿って転がり軸受4a側の気体が前記ロータ2側へ漏洩したりするのを防止する作用をする。
【0029】
又、前記固定クリアランスシール7は第2静止部材5に断熱的に係止されているので、低温の第2静止部材よりも高温のロータ2からのラジェーションや、該ロータ2の柄部2aとの間の気体の摩擦熱等によって高温に保たれている。
【0030】
このため前記固定クリアランスシール7の部分でプロセスガスが凝縮をして固化あるいは液化が発生することはなく、従って動圧ねじシール部Sの固着や損傷も防止される。
【0031】
【発明の効果】
このように本発明によれば、動圧ねじシール部に併設した固定クリアランスシール部におけるプロセスガスの固化あるいは液化を防止して、シール性能の優れたターボ分子ポンプのシール構造を提供できる効果を有する。
【図面の簡単な説明】
【図1】本発明のターボ分子ポンプのシール構造の一実施の形態の一部縦断面図である。
【図2】従来のシール構造を有するターボ分子ポンプの一例の縦断面図である。
【図3】前記従来のシール構造の一部縦断面図である。
【符号の説明】
1 回転軸
1a ジャーナル軸部
1b ヘリングボーン形溝
1c ねじ溝
2a ロータの柄部
4、5 静止部材
6 ブッシュ
7 固定クリアランスシール
7a 断熱材(パッキン)
S 動圧ねじシール部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a seal structure of a turbo-molecular pump suitable for exhausting a process gas containing a corrosive gas, a gas which easily condenses, and the like.
[0002]
[Prior art]
As a seal structure of a turbo molecular pump of this kind, the applicant has previously described a stationary member d of a housing of the turbo molecular pump in a turbo molecular pump c which supports a rotating shaft b via a rolling bearing a as shown in FIG. And a part of the rotary shaft b rotatably inserted through the inner peripheral portion of the bush e with a small gap in the inner peripheral portion of the bush e fitted so as to be able to swing in the radial direction. A plurality of herringbone-shaped grooves g are formed in the outer peripheral portion of the journal shaft portion f at regular intervals in a shape that is open in a shape of a letter "H" in the rotational direction. A seal structure of a turbo-molecular pump in which a plurality of diagonal thread grooves h are recessed at equal intervals adjacent to the herringbone groove g on the outer periphery of the portion f to form a dynamic pressure screw seal part i has been proposed ( For example, see Patent Document 1.)
[0003]
Here, k represents a rotor of a turbo molecular pump having a large number of blades.
[0004]
FIG. 3 shows a detailed view of the dynamic pressure screw seal part i. The axial direction of the bush e is defined by a perforated disk-shaped cover plate m which is concentrically attached to the end surface of the stationary member d and the rotary shaft b. Is performed.
[0005]
Here, p and q are O-rings having elasticity, respectively, which support the bush e so as to be swingable.
[0006]
[Patent Document 1]
Japanese Patent Application No. 2000-340086 [0007]
[Problems to be solved by the invention]
However, the stationary member d of the turbo molecular pump having the above structure is generally kept at a low temperature. Therefore, the process gas is condensed and liquefied and solidified around the lid plate m and the outer periphery of the low-temperature portion of the stationary member d. There is a problem that the liquid or powder may enter the gap of the dynamic pressure screw seal part i and cause sticking or damage.
[0008]
The present invention solves these problems, and provides a seal structure of a turbo-molecular pump having excellent sealing performance such that liquefied or solidified process gas liquid or powder does not enter the conventional dynamic pressure screw seal portion. Aim.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention supports a rotating shaft rotatably on a stationary member of a turbo molecular pump housing and fits the shaft end of the rotating shaft to a handle of a rotor of the turbo molecular pump. In the turbo-molecular pump having a fixed structure, a cylindrical bush fitted in the stationary member of the housing so as to be swingable in a radial direction, and a small gap is provided in an inner peripheral portion of the bush so as to be rotatable. A journal shaft portion of the rotating shaft inserted through the inner peripheral portion, and a herringbone-shaped groove and a screw groove for sealing are formed in the outer peripheral portion of the journal shaft portion or the inner peripheral portion of the bush. Forming a dynamic pressure screw seal portion, and a fixed clearance seal portion formed of a perforated disk-shaped member is provided adjacent to the dynamic pressure screw seal portion, and the perforated disk-shaped member is stationary with respect to the housing. Structure to be attached to members via heat insulating material Characterized in that it was.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
One embodiment of the seal structure of the turbo-molecular pump of the present invention will be described with reference to FIG.
[0011]
FIG. 1 is a partial vertical cross-sectional view of a turbo-molecular pump according to the present embodiment, wherein 1 is a rotating shaft, and 2 is a rotor of the turbo-molecular pump. In FIG. 1, the wing portion of the rotor 2 is omitted.
[0012]
The rotating shaft 1 has its shaft end fitted to a protruding portion at the center of one end surface of the rotor 2, that is, a handle portion 2 a, and the two are fastened by a mounting bolt 3.
[0013]
Reference numeral 1a denotes a part of the rotating shaft 1 and a journal shaft part. The journal shaft part 1a is formed by swelling a part of the rotating shaft 1 to a slightly larger diameter. The side end surfaces of the handle 2a are in contact with each other.
[0014]
A plurality of herringbone grooves 1b are formed in the outer peripheral portion of the journal shaft portion 2 at regular intervals so as to open in an inverted V shape in the rotational direction. Adjacent to the outer periphery of the journal shaft portion 2 at a position close to the rotor 2, a large number of thread grooves 1c are recessed at equal intervals.
[0015]
The thread groove 1c has an inclination direction of the screw which moves the gas from the rotor 2 side toward the herringbone groove 1b with the rotation of the journal shaft 2a.
[0016]
Reference numeral 4 denotes a first stationary member of a part of the housing of the turbo-molecular pump, and the rotary shaft 1 is rotatably supported by the first stationary member 4 via a rolling bearing 4a.
[0017]
Reference numeral 5 denotes a second stationary member. The second stationary member 5 includes a cylindrical portion 5a and a flange portion 5b protruding from a lower end portion thereof. It is attached to a stationary member.
[0018]
Reference numeral 6 denotes a cylindrical sleeve. The sleeve 6 is fitted into the cylindrical portion 5a of the second stationary member 5 so as to be able to swing slightly in the radial direction. The journal shaft portion 2a of the rotor 2 is inserted through the inside of the sleeve 6 with a small gap between the inner peripheral portion of the sleeve 6 to form a dynamic pressure screw seal portion S.
[0019]
A fixed clearance seal portion is provided adjacent to the dynamic pressure screw seal portion S. In other words, the fixed clearance seal 7 made of a donut-shaped perforated disc is heat-insulated on the other end of the second stationary member 5, that is, the upper end of the cylindrical portion 5 a via the heat-insulating packing 7 a. The rotor 2 has a structure in which an inner peripheral portion of the fixed clearance seal 7 is inserted through the inner peripheral portion of the rotor 2 at a small interval.
[0020]
Further, the bolt hole 7b provided in the fixed clearance seal 7 is formed to be slightly larger than the shaft diameter of the bolt 7c for fastening the fixed clearance seal to the cylindrical portion 5a of the second stationary member 5. Therefore, the mounting position of the fixed clearance seal 7 can be finely adjusted by slightly moving so that the inner peripheral portion of the fixed clearance seal 7 and the outer peripheral portion of the handle 2a of the rotor 2 are concentric. Has become.
[0021]
Reference numeral 8a denotes an O-ring, and the O-ring 8a is made of a material having elasticity.
[0022]
Next, the operation and effect of the present embodiment will be described.
[0023]
The seal structure of the turbo-molecular pump shown in FIG. 1 is provided for the purpose of sealing the shaft between the vacuum side where the upper rotor 2 is located and the atmospheric pressure side where the lower rolling bearing 4a is located.
[0024]
First, the operation of the dynamic pressure screw seal portion S will be described.
[0025]
When the rotating shaft 1 rotates at a high speed, the dynamic pressure generated by the herringbone-shaped groove 1a pushes the sleeve 6 from the inner peripheral side of the sleeve 6 in the journal shaft portion 1a forming a part of the rotating shaft 1, It acts so that the gap between the inner peripheral portion of the sleeve 6 and the outer peripheral portion of the journal shaft portion 1a is within a predetermined value.
[0026]
A screw groove 1c is provided adjacent to the herringbone groove 1a, and functions as a screw seal for preventing gas in the herringbone groove 1a from leaking to the rotor 2 side.
[0027]
Further, the fixed clearance seal portion provided adjacent to the dynamic pressure screw seal portion S has a shaft sealing effect due to a narrow gap between the inner peripheral portion of the fixed clearance seal 7 and the outer peripheral portion of the handle portion 2a of the rotor 2. have. Therefore, the flow rate of the process gas flowing into the dynamic pressure screw seal portion S beyond the fixed clearance seal 7 is reduced.
[0028]
In the O-ring 8a, the process gas or the like passing through the outer peripheral portion of the sleeve 6 leaks to the rolling bearing 4a side, or the gas on the rolling bearing 4a side leaks to the rotor 2 side following the reverse course. It acts to prevent or
[0029]
Further, since the fixed clearance seal 7 is adiabatically locked to the second stationary member 5, the radiation from the rotor 2 having a higher temperature than the second stationary member having a lower temperature and the handle portion 2 a of the rotor 2 are provided. The temperature is kept high by the frictional heat of the gas between them.
[0030]
For this reason, the process gas does not condense in the fixed clearance seal 7 portion, so that solidification or liquefaction does not occur. Therefore, fixation and damage of the dynamic pressure screw seal portion S are also prevented.
[0031]
【The invention's effect】
As described above, according to the present invention, it is possible to prevent solidification or liquefaction of the process gas in the fixed clearance seal portion provided adjacent to the dynamic pressure screw seal portion and to provide a seal structure of a turbo-molecular pump having excellent sealing performance. .
[Brief description of the drawings]
FIG. 1 is a partial longitudinal sectional view of one embodiment of a seal structure of a turbo-molecular pump of the present invention.
FIG. 2 is a longitudinal sectional view of an example of a turbo molecular pump having a conventional seal structure.
FIG. 3 is a partial longitudinal sectional view of the conventional sealing structure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rotation shaft 1a Journal shaft part 1b Herringbone type groove 1c Screw groove 2a Rotor handle part 4, 5 Stationary member 6 Bush 7 Fixed clearance seal 7a Heat insulation material (packing)
S Seal part for dynamic pressure screw

Claims (2)

ターボ分子ポンプのハウジングの静止部材に回転軸を回動自在に軸支すると共に該回転軸の軸端部をターボ分子ポンプのロータの柄部に嵌着して固定した構造のターボ分子ポンプにおいて、前記ハウジングの静止部材に径方向の揺動可能に嵌入した円筒状のブッシュと、該ブッシュの内周部に僅少の間隙を有して回動自在に該内周部を挿通する前記回転軸のジャーナル軸部とを有して、該ジャーナル軸部の外周部又は該ブッシュの内周部にヘリングボーン形の溝とシール用のねじ溝とを凹設して動圧ねじシール部を形成すると共に該動圧ねじシール部に隣接して孔明き円板状体からなる固定クリアランスシール部を併設し、更に該孔明き円板状体は前記ハウジングの静止部材に断熱材を介して係着する構造としたことを特徴とするターボ分子ポンプのシール構造。In a turbo molecular pump having a structure in which a rotating shaft is rotatably supported on a stationary member of a turbo molecular pump housing and a shaft end of the rotating shaft is fitted and fixed to a handle portion of a rotor of the turbo molecular pump, A cylindrical bush fitted in the stationary member of the housing so as to be capable of swinging in the radial direction, and the rotary shaft that rotatably passes through the inner peripheral portion with a small gap in the inner peripheral portion of the bush. A journal shaft portion, a herringbone-shaped groove and a sealing screw groove are recessed in an outer peripheral portion of the journal shaft portion or an inner peripheral portion of the bush to form a dynamic pressure screw seal portion. A structure in which a fixed clearance seal made of a perforated disc is provided adjacent to the dynamic pressure screw seal, and the perforated disc is attached to a stationary member of the housing via a heat insulating material. Turbo molecule characterized by the following: Seal structure of the amplifier. 前記固定クリアランスシール部は前記孔明き円板状体の内周部に僅少の間隙を有して前記ロータの柄部が該内周部を挿通する構造に形成した請求項1に記載のターボ分子ポンプのシール構造。2. The turbo-molecule according to claim 1, wherein the fixed clearance seal portion has a structure in which the handle portion of the rotor penetrates the inner peripheral portion with a small gap in the inner peripheral portion of the perforated disc-shaped body. Pump seal structure.
JP2002326226A 2002-11-11 2002-11-11 Seal structure of turbo-molecular pump Withdrawn JP2004162533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002326226A JP2004162533A (en) 2002-11-11 2002-11-11 Seal structure of turbo-molecular pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002326226A JP2004162533A (en) 2002-11-11 2002-11-11 Seal structure of turbo-molecular pump

Publications (1)

Publication Number Publication Date
JP2004162533A true JP2004162533A (en) 2004-06-10

Family

ID=32805184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002326226A Withdrawn JP2004162533A (en) 2002-11-11 2002-11-11 Seal structure of turbo-molecular pump

Country Status (1)

Country Link
JP (1) JP2004162533A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082864A1 (en) * 2005-02-04 2006-08-10 Osaka Vacuum, Ltd. Seal structure of turbo-molecular pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082864A1 (en) * 2005-02-04 2006-08-10 Osaka Vacuum, Ltd. Seal structure of turbo-molecular pump
JP2006214362A (en) * 2005-02-04 2006-08-17 Osaka Vacuum Ltd Seal structure for turbo-molecular pump

Similar Documents

Publication Publication Date Title
JP3384565B2 (en) Self-aligning floating turbine impeller
US6698669B2 (en) Pivot flow joint for high-pressure flow devices
JP4833222B2 (en) Leakage prevention device for gap and its use
US2917329A (en) Rotary seal
WO2019062037A1 (en) Cryopump with high occlusion limit
JP4761783B2 (en) Turbo molecular pump seal structure
JP2004162533A (en) Seal structure of turbo-molecular pump
JP5735542B2 (en) Motorized rotary valve
CN105402142A (en) Vacuum pump
JP2004248481A (en) Spindle motor and hard disk drive
WO2020032086A1 (en) Mechanical seal
JP2006226268A (en) Bearing structure of vacuum pump and vacuum pump using it
US20220235797A1 (en) Vacuum pump
JP4141178B2 (en) Turbo molecular pump seal structure
JP2000018248A (en) Bearing device and sealing mechanism for bearing device
JP2002070787A (en) Vacuum pump
JP4691242B2 (en) Turbo molecular pump seal structure
JP2013525700A (en) Mechanical seal with rotating ring precisely clamped and fixed
JP2003172288A (en) Bearing support mechanism for molecular pump
JP4141199B2 (en) Molecular pump seal structure
JPH09133221A (en) Mechanical seal
JPS6233073Y2 (en)
JPS63100293A (en) Swivel scroll supporting mechanism for scroll compressor
JP4175834B2 (en) Turbo molecular pump seal structure
JP4232247B2 (en) Non-contact end face seal structure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060207