JP2004161784A - Fuel oil c property controller and fuel oil c preparing system - Google Patents

Fuel oil c property controller and fuel oil c preparing system Download PDF

Info

Publication number
JP2004161784A
JP2004161784A JP2002325698A JP2002325698A JP2004161784A JP 2004161784 A JP2004161784 A JP 2004161784A JP 2002325698 A JP2002325698 A JP 2002325698A JP 2002325698 A JP2002325698 A JP 2002325698A JP 2004161784 A JP2004161784 A JP 2004161784A
Authority
JP
Japan
Prior art keywords
kinematic viscosity
sulfur concentration
base materials
fuel oil
property
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002325698A
Other languages
Japanese (ja)
Other versions
JP4096092B2 (en
Inventor
Kazuhiro Ishida
和宏 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP2002325698A priority Critical patent/JP4096092B2/en
Publication of JP2004161784A publication Critical patent/JP2004161784A/en
Application granted granted Critical
Publication of JP4096092B2 publication Critical patent/JP4096092B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Liquid Carbonaceous Fuels (AREA)
  • Control Of Non-Electrical Variables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel oil C property controller responsive to a prescribed measuring temperature with a high preparing accuracy of various kinds of base materials and to provide a fuel oil C preparing system. <P>SOLUTION: There are provided a property detecting part 111 provided on a unified line LM in which lines L1, L2... are unified and detecting sulfur concentration and kinematic viscosity of the fuel oil C flowing through the unified line and a property controlling part 112 controlling the flow rate of at least two kinds of base materials having different sulfur concentrations so as to provide the sulfur concentration of the fuel oil C with a prescribed value and controlling the flow rates of at least the two kinds of base materials having different kinematic viscosities so as to provide the kinematic viscosity of the fuel oil C with a prescribed value in each of base materials K1, K2.... The property controlling part 111 performs PI control of the sulfur concentration without providing a dead zone thereto and further PI control by providing the kinematic viscosity with a dead zone. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、LABO(試験研究室)による性状検出と同等の精度をオンラインで得ることができる性状検出部を備え、各種基材を自動調合することができるC重油性状制御装置およびC重油調合システムに関し、特に、各種基材の調合精度が高く、かつ所定の測定温度に対応することができる前記性状制御装置およびC重油調合システムに関する。
【0002】
【従来の技術】
C重油は、種々の基材を調合して製造される。その種類は多数に及び、その調合に際しては、硫黄濃度、動粘度、密度等の正確な測定(検出)が必要となる。
【0003】
図8は、オフラインで硫黄濃度、動粘度を検出する、C重油調合システムを示す図である。図8に示すように、複数の基材槽(図8では3つの基材槽81,82,83を示す)からの基材は、C重油の種類に応じて調合し、複数の製品槽(図8では3つの製品槽91,92,93を示す)に収容される。この場合、製品(C重油)を所望の目標値に適合させるため、製品槽91,92,93に収容されたC重油をサンプルして、その性状(硫黄濃度、動粘度等)をLABOにおいて検出しなければならない。
【0004】
図8に示した調合システムでは、硫黄濃度、動粘度をオフラインで(すなわちLABOで)検出しているので、正確な値を得ることができるが、製品槽を多数用意しておかねばならない。
【0005】
【発明が解決しようとする課題】
従来、製品槽を少数化するために、予め硫黄分、動粘度(Vis)をオンラインで検出し、所望性状の製品(C重油)を製造することも行なわれる。
【0006】
上述したようにC重油の製造に用いる基材の種類は多数に及ぶ。このため、オンラインで製品(C重油)の性状を検出して、所望の性状を得ようとする場合、特に硫黄濃度の目標値と動粘度の目標値とを同時に適合させることは容易ではない。すなわち、ある性状が所定目標値となるC重油を製造するべく、複数の基材を調合する場合、たとえば、動粘度の目標値には適合させることができても、硫黄濃度の目標値には適合させることができないといった問題が生じる。
【0007】
また、動粘度の測定に関しては、次に述べるような温度誤差に関する問題がある。すなわち、動粘度規格は50℃である場合がほとんどであるため、オンライン上の粘度計指示値とLABOにおける粘度測定値とを一致させるためには、オンライン上の粘度計による測定を50℃で行なうことが好ましいが、高粘度油、高流動点油については、その特性上、50℃で測定することができない。このため、オンライン上の粘度計による測定を、たとえば50℃よりも高い温度(たとえば、80℃)で行ない、実測した動粘度を50℃における動粘度に換算しなければならない。しかし、図9に示すように、たとえば2種の基材R1,R2の動粘度が80℃で同じ値を有していても、50℃では異なる値である。このため、80℃での動粘度の測定値を50℃の測定値に換算するためには、各基材ごとの換算が必要となる。しかし、各基材ごとに図9に示すような換算曲線を用意しておくことは、基材が多種に及ぶこと等の理由から、実際的でない。
【0008】
本発明は、各種基材の調合精度が高く、かつ所定の測定温度に対応することができるC重油性状制御装置およびC重油調合システムを提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明のC重油性状制御装置は、少なくとも2種以上の基材を流すラインが統合されてなる統合ライン上に設けられ、当該ラインを流れるC重油の硫黄濃度および動粘度を検出する性状検出部と、前記各基材中、硫黄濃度が異なる少なくとも2種の基材の流量を、前記C重油の硫黄濃度が所定値となるように制御するとともに、前記各基材中、動粘度が異なる少なくとも2種の基材の流量を前記C重油の動粘度が所定値となるように制御する性状制御部とを備えたもので、前記性状制御部は、前記硫黄濃度を不感帯を持たすことなくPI制御するとともに、前記動粘度を不感帯を持たせてPI制御する、ことを特徴とする。
【0010】
本発明のC重油性状制御装置では、前記動粘度検出部は、細管に流したC重油の入口および出口の差圧を測定することで動粘度を検出する動粘度検出計と、前記動粘度検出部を駆動しないときに前記細管に洗浄油を流通させる洗浄手段とを備えることができる。
【0011】
また、本発明のC重油性状制御装置では、前記硫黄濃度検出部は、複数に分割された硫黄濃度の測定レンジの、各分割された領域それぞれについて硫黄濃度指示値校正のための検量線を有する硫黄濃度検量計を備え、前記性状制御部は、前記各基材の調合に際し、前記硫黄濃度の目標値が属する濃度範囲に対応する検量線を適用することができる。
【0012】
また、本発明のC重油調合システムは、少なくとも2種以上の基材を収容する複数の基材槽と、前記各基材槽から引き出されたラインが統合されてなる統合ライン上に設けられたC重油の硫黄濃度および動粘度を検出する性状検出部と、前記各基材中、硫黄濃度が異なる少なくとも2種の基材の流量を、前記C重油の硫黄濃度が所定値となるように制御するとともに、前記各基材中、動粘度が異なる少なくとも2種の基材の流量を前記C重油の動粘度が所定値となるように制御する性状制御部とを備えたもので、前記性状制御部は、前記硫黄濃度を不感帯を持たすことなくPI制御するとともに、前記動粘度を不感帯を持たせてPI制御することを特徴とする。
【0013】
本発明のC重油調合システムでは、前記動粘度検出部は、細管に流したC重油の入口および出口の差圧を測定することで動粘度を検出する動粘度検出計と、前記動粘度検出部を駆動しないときに前記細管に洗浄油を流通させる洗浄手段とを備えたることができる。
【0014】
また、本発明のC重油調合システムでは、前記硫黄濃度検出部は、複数に分割された硫黄濃度の測定レンジの、各分割された領域それぞれについて硫黄濃度指示値校正のための検量線を有する硫黄濃度検量計を備え、前記性状制御部は、前記各基材の調合に際し、前記硫黄濃度の目標値が属する濃度範囲に対応する検量線を適用することができる。
【0015】
【発明の実施の形態】
図1は、本発明のC重油のオンライン調合システムを示す説明図である。
図1のシステムでは、図示しない石油精製プラントから溜出した基材K1,K2,K3,・・・がそれぞれ基材槽T1,T2,T3,・・・に収容されている。
基材槽T1,T2,・・・からは、ラインL1,L2,・・・が引き出されており、各ラインにはバルブB11,B12,B13,・・・、ポンプP1,P2,P3,・・・、流量計F11,F12,F13,・・・がそれぞれ設けられ、各ラインL1,L2,・・・は、ラインLMに統合されている。
【0016】
なお、あるバルブの流入側と他のバルブの流出側との間には、他のバルブを介してパスが形成されている。図1では、バルブB11の流出側とバルブB12の流入側とはバルブ42を介して、バルブB13の流入側とバルブB12の流出側とはバルブ43を介してそれぞれパスが形成されている状態が示されている。
【0017】
統合ラインLM上には、本発明の性状制御装置11が設置されている。この性状制御装置11は、性状検出部111と、性状制御部112とからなり、性状検出部111は、密度検出部1111,硫黄濃度検出部1112,動粘度検出部1113とを備えている。また、性状制御部112は、調合パラメータ決定部1121,基材調合部1122とを備えている。
【0018】
本実施形態では、硫黄濃度検出部1112,動粘度検出部1113における検出結果は、調合パラメータ決定部1121に送られ、調合パラメータ決定部1121ではこれら2つの性状に合致する各基材K1,K2,K3,・・・の流量を算出し、この算出結果を基材調合部1122に送出する。基材調合部1122は、次工程(出荷工程等)にある流量計F21からの出荷流量情報から、バルブ制御量を決定し、この決定値に基づきバルブB21,B22,B23,・・・を制御する。
【0019】
さらに、ラインLM上には、LABOにおいて平均的なサンプル採取を行なうためのオートサンプラ12が設置されている。LABO用オートサンプラ12により採取されたサンプルは、適時、人の手により取り出され図示しないLABOに送られ、当該LABOではサンプルの成分の検出を行なうことができる。調合中に、オートサンプラ12により採取されたサンプルは、LABOで成分の検出がなされる。この成分検出結果は、密度検出部1111,硫黄濃度検出部1112,動粘度検出部1113の誤差補正に用いられる。
【0020】
ラインLMは複数のラインL51,L52,L53,・・・に分岐されて、調合されたC重油は、これらラインを介して次工程(出荷工程等)に送られる。図1では、ラインL51は、海上出荷するためのラインであり、当該ラインL51には流量計F21およびバルブ41が設けられており、バルブ41の下流側からは、基材槽T1にパージラインが設けられている。このパージラインは、C重油の油種を変更するときに配管内の調合C重油を、新たに調合したC重油で置換するために使用される。
【0021】
図2(A),(B)は、図1の性状制御装置11の内部を詳細に示す図であり、(A)は性状制御による基材K1,K2,K3,・・・の混合を行なっているときの様子を、(B)は性状制御による基材K1,K2,K3・・・の混合を行なっていないときの様子をそれぞれ示している。
【0022】
図2(A),(B)において、動粘度検出部1113は、三方バルブ3Vと、定量ポンプP4と、細管D1と、感圧素子q1,q2と、差圧センサD2と、動粘度算出部D3とを備えている。
【0023】
性状制御による基材K1,K2,K3,・・・の混合を行なっているときは、図2(A)に示すように、ラインLMから取り出されたC重油は、密度検出部1111,硫黄濃度検出部1112を介して、一部は動粘度検出部1113に送られ、残りはラインLMに戻される。図2(A)において符号mで示すように、三方バルブ3Vは、C重油を動粘度検出部1113に送るようにセットされており、定量ポンプP4は、C重油の一定量を細管D1を通して流す。差圧センサD2は、細管D1内にC重油が満たされたときの入口と出口における差圧信号を動粘度算出部D3に送り、動粘度算出部D3はC重油の動粘度を計算する。
【0024】
一方、性状制御による基材K1,K2,K3,・・・の混合を行なっていないときには、図2(B)において符号nで示すように、三方バルブ3Vは、C重油が軽質油(たとえばA重油)を動粘度検出部1113に送る。定量ポンプP4は、細管D1に軽質油を送ることで、当該細管D1の閉塞を防ぐことができる。
【0025】
JIS等では、ほとんどのC重油の動粘度の測定温度は50℃とされている。動粘度計の検出値とLABO値の差を縮小するためには、基材の測定温度を50℃とすることが最良である。本実施形態では、動粘度を50℃で測定することで、80℃で測定したときの誤差を解消することができる。本実施形態では、ほとんどのC重油において、700mm/sまで50℃測定を行なうことが可能である。
【0026】
以下、図1および図2(A),(B)に示した、オンライン調合システムの動作(あるいは、性状制御装置11の動作)を説明する。
【0027】
まず、性状制御装置11の初期設定を行なう。この初期設定に際しては、各基材槽T1〜T3内の基材K1,K2,K3,・・・のサンプルを採取し、LABOにおいて成分の検出が行なわれる。この検出結果により、基材調合部1122による制御流量の初期設定(各基材K1,K2,K3,・・・の調合割合の初期値)が決定される。
【0028】
つぎに、調合割合を初期値として、流量Qを一定の比率で立ち上げる(図3のT0〜T1の期間参照)。流量Qを出荷開始までの期間(図3のT1〜T2の期間参照)初期値に維持する。出荷中は、次に述べるように硫黄濃度制御・動粘度制御による調合を行い(図3のT2〜T3の期間参照)、出荷が終了したときは流量Qをゼロに至るまで一定の比率で立ち下げる(図3のT3〜T4の期間参照)。
【0029】
基材K1,K2,K3,・・・の調合に際しては、硫黄濃度制御と、動粘度制御とが並行して行なわれる。
【0030】
硫黄濃度制御は、K1,K2,K3,・・・の中から、硫黄濃度が低い基材と硫黄濃度が高い基材とを選択して、これらの流量を制御する。この場合、硫黄濃度が低い基材や硫黄濃度が高い基材を同時に複数制御するようにしてもよい。
【0031】
動粘度制御は、K1,K2,K3,・・・の中から、軽油等の動粘度が低い基材と、動粘度が高い基材とを選択して、これらの基材が収容された基材槽から引き出されたラインに設けられたバルブを制御する。この場合、動粘度が低い基材や動粘度が高い基材を同時に複数制御するようにしてもよい。
【0032】
本実施形態では、硫黄濃度は、図4に示すように5sec間隔で制御され、動粘度は図5に示すように10sec間隔で制御される。これらの制御に際しての硫黄濃度の値や動粘度の値として実際の測定値を採用することもできるが、本実施形態では、スムージングにより測定誤差を低減した値が採用される。図6は、硫黄濃度についての実測値とスムージングした値との関係を示す図である。本実施形態では、図5に示すように、符号Uで示す値(スムージングした値)は、当該測定時全の過去8回の実測値u0〜u8の平均値として決定される。なお、過去の測定回数は8回以外の任意に設定可能である。
【0033】
図4では、硫黄濃度をスムージングした値に基づきタイトモードによりPI制御し、図5では、動粘度をスムージングした値に基づきギャップモードによりPI制御している。硫黄濃度は幅が小さい範囲内で制御しなくてはならず、動粘度は硫黄濃度に比べて幅が広い範囲内であるため、本発明では、硫黄濃度をタイトモードで制御し、動粘度をギャップモードで制御している。
【0034】
ここで、タイトモードとは不感帯を設けない制御モードを意味し、5secごとに硫黄濃度のスムージングした値と硫黄濃度目標値Sとの偏差がゼロとなるようにPI制御される。
また、ギャップモードとは不感帯を設けた制御モードを意味し、10秒ごとに動粘度のスムージングした値が検出される。本実施形態では、動粘度目標値Visのほか、所定の下限値Min(<Vis)およびが上限値Max(>Vis)設定されており、不感帯(図5の斜線領域)は、Vis−0.8(Vis−Min)〜Vis+0.8(Max−Vis)の範囲として定められており、動粘度測定値Visが、
【0035】
Min<Vis≦Vis−0.8(Vis−Min)、
Vis+0.8(Max−Vis)≦Vis<Max
【0036】
のときに動粘度Visと目標値Visとの偏差がゼロとなるようにPI制御される。動粘度Visが、Min以下またはMax以上であるとき、すなわち、Vis≦Min、または、Vis≧Maxのときはゲインを大きくする制御を行なう。
【0037】
本実施形態では、硫黄濃度検出部1112を構成する硫黄分析計のレンジを大きくしたときの偏差の拡大を、図7に示すように2つの検量線A1,A2により補正補正している。従来の硫黄分析計では、1本の検量線によりバイアスとスパンとを校正しているが、本実施形態では、硫黄濃度が所定の目標値Skに達したときに検量線の切り換えを行なっている。この検量線は、最小二乗法を用い、補正式、
分析計指示値=〔生データ〕×〔スパン〕−〔バイアス値〕
で算出している。
【0038】
また、本実施形態では、動粘度検出部1113を構成する動粘度計を50℃で動作させている。
【0039】
【発明の効果】
本発明によれば、各種基材の調合精度が高く、かつ所定の測定温度に対応することができる。
【図面の簡単な説明】
【図1】本発明のC重油のオンライン調合システムを示す説明図である。
【図2】図1の性状制御装置の内部を詳細に示す図であり、(A)は性状制御による各種基材の混合を行なっているときの様子を示す図、(B)は性状制御による各種基材の混合を行なっていないときの様子をそれぞれ示す図である。
【図3】図1の性状制御装置による調合に際しての流量の時間変化の様子を示す図である。
【図4】図1の性状制御装置による硫黄濃度制御の様子を示す図である。
【図5】図1の性状制御装置による動粘度制御の様子を示す図である。
【図6】硫黄濃度についての実測値とスムージングした値との関係を示す図である。
【図7】図1において、硫黄濃度検出部を構成する硫黄分析計のレンジを大きくしたときの偏差の拡大を補正するための検量線を示す図である。
【図8】オフラインで硫黄濃度、動粘度を検出する従来のC重油調合システムを示す図である。
【図9】オンラインで動粘度を検出する場合の従来の問題を示す動粘度と温度との関係を示す図である。
【符号の説明】
11 性状制御装置
12 オートサンプラ
111性状検出部
112 性状制御部
1111 密度検出部
1112 硫黄濃度検出部
1113 動粘度検出部
1121 調合パラメータ決定部
1122 基材調合部
3V 三方バルブ
B11,B12,B13,・・・ バルブ
D1 細管
D2 差圧センサ
D3 動粘度算出部
F11,F12,F13,・・・ 流量計
K1,K2,K3,・・・ 基材
L1,L2,・・・ ライン
LM 統合ライン
P4 定量ポンプ
P1,P2,P3,・・・ ポンプ
q1,q2 感圧素子
T1,T2,T3,・・・ 基材槽
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a C-fuel oil property control device and a C-fuel oil mixing system that include a property detection unit capable of obtaining the same accuracy as property detection by LABO (test laboratory) on-line, and that can automatically mix various base materials. In particular, the present invention relates to the property control device and the C heavy oil blending system, which have high blending accuracy of various base materials and can cope with a predetermined measurement temperature.
[0002]
[Prior art]
Heavy oil C is produced by blending various base materials. There are many types thereof, and in the preparation thereof, accurate measurement (detection) of sulfur concentration, kinematic viscosity, density and the like is required.
[0003]
FIG. 8 is a diagram showing a C heavy oil blending system that detects the sulfur concentration and the kinematic viscosity offline. As shown in FIG. 8, base materials from a plurality of base tanks (three base tanks 81, 82, and 83 are shown in FIG. 8) are prepared according to the type of C heavy oil, and a plurality of product tanks ( In FIG. 8, three product tanks 91, 92, and 93 are shown. In this case, in order to conform the product (heavy oil C) to a desired target value, heavy fuel oil C stored in the product tanks 91, 92, and 93 is sampled and its properties (sulfur concentration, kinematic viscosity, etc.) are detected by LABO. Must.
[0004]
In the blending system shown in FIG. 8, since the sulfur concentration and the kinematic viscosity are detected off-line (that is, by LABO), accurate values can be obtained, but a large number of product tanks must be prepared.
[0005]
[Problems to be solved by the invention]
Conventionally, in order to reduce the number of product tanks, the sulfur content and the kinematic viscosity (Vis) are previously detected online to produce a product having desired properties (C heavy oil).
[0006]
As described above, there are many types of base materials used for the production of C heavy oil. For this reason, it is not easy to simultaneously adjust the target value of the sulfur concentration and the target value of the kinematic viscosity at the same time when trying to obtain desired properties by detecting the properties of the product (fuel oil C) online. That is, in the case where a plurality of base materials are blended in order to produce C heavy oil having a certain property at a predetermined target value, for example, even if the target value of the kinematic viscosity can be adapted, the target value of the sulfur concentration is A problem arises that it cannot be adapted.
[0007]
Further, the measurement of the kinematic viscosity has a problem relating to a temperature error as described below. That is, since the kinematic viscosity specification is almost always 50 ° C., in order to make the indicated value of the online viscometer and the measured value of LABO the same, the measurement by the online viscometer is performed at 50 ° C. However, high viscosity oils and high pour point oils cannot be measured at 50 ° C. due to their characteristics. Therefore, the on-line viscometer must be measured at a temperature higher than, for example, 50 ° C. (for example, 80 ° C.), and the actually measured kinematic viscosity must be converted to the kinematic viscosity at 50 ° C. However, as shown in FIG. 9, for example, even if the kinematic viscosities of the two types of substrates R1 and R2 have the same value at 80 ° C., they are different values at 50 ° C. For this reason, in order to convert the measured value of the kinematic viscosity at 80 ° C. to the measured value at 50 ° C., it is necessary to convert each base material. However, it is not practical to prepare a conversion curve as shown in FIG. 9 for each substrate, for example, because there are various types of substrates.
[0008]
An object of the present invention is to provide a C-heavy oil property control device and a C-heavy oil blending system, which have high blending accuracy of various base materials and can cope with a predetermined measurement temperature.
[0009]
[Means for Solving the Problems]
The C-fuel oil property control device of the present invention is provided on an integrated line in which lines for flowing at least two or more base materials are integrated, and detects a sulfur concentration and a kinematic viscosity of the C-fuel oil flowing in the line. And, in each of the base materials, while controlling the flow rate of at least two types of base materials having different sulfur concentrations so that the sulfur concentration of the C heavy oil becomes a predetermined value, and in each of the base materials, at least the kinematic viscosity is different. A property control unit for controlling the flow rates of the two types of base materials so that the kinematic viscosity of the C heavy oil becomes a predetermined value, wherein the property control unit controls the sulfur concentration by PI control without having a dead zone. In addition, PI control is performed by giving the kinematic viscosity a dead zone.
[0010]
In the C-fuel oil property control device of the present invention, the kinematic viscosity detector includes a kinematic viscosity detector that detects a kinematic viscosity by measuring a differential pressure between an inlet and an outlet of the C-heavy oil that has flowed through the thin tube; Cleaning means for flowing a cleaning oil through the thin tube when the section is not driven.
[0011]
Further, in the C-fuel oil property control device of the present invention, the sulfur concentration detection unit has a calibration curve for calibrating a sulfur concentration instruction value for each of the divided regions of the plurality of divided sulfur concentration measurement ranges. A sulfur concentration calibrator is provided, and the property control unit can apply a calibration curve corresponding to a concentration range to which the target value of the sulfur concentration belongs when preparing each of the base materials.
[0012]
Further, the C-heavy oil blending system of the present invention is provided on an integrated line in which a plurality of base tanks accommodating at least two or more bases and lines drawn from the base tanks are integrated. A property detector for detecting the sulfur concentration and kinematic viscosity of the C heavy oil, and controlling the flow rates of at least two kinds of base materials having different sulfur concentrations in the respective base materials so that the sulfur concentration of the C heavy oil becomes a predetermined value. And a property control unit for controlling the flow rate of at least two kinds of base materials having different kinematic viscosities in each of the base materials so that the kinematic viscosity of the C heavy oil becomes a predetermined value. The unit is characterized in that the sulfur concentration is PI-controlled without a dead zone and the kinematic viscosity is PI-controlled with a dead zone.
[0013]
In the C fuel oil blending system of the present invention, the kinematic viscosity detector includes a kinematic viscosity detector that detects a kinematic viscosity by measuring a differential pressure between an inlet and an outlet of the C fuel oil flowing through the thin tube, and the kinematic viscosity detector. Cleaning means for flowing a cleaning oil through the capillary tube when not being driven.
[0014]
Further, in the fuel oil C blending system of the present invention, the sulfur concentration detection unit may include a calibration curve for calibrating a sulfur concentration instruction value for each of the divided regions of the plurality of divided sulfur concentration measurement ranges. A concentration calibration meter is provided, and the property control unit can apply a calibration curve corresponding to a concentration range to which the target value of the sulfur concentration belongs when preparing each of the base materials.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is an explanatory view showing an on-line blending system for fuel oil C of the present invention.
In the system of FIG. 1, base materials K1, K2, K3,... Distilled from a petroleum refining plant (not shown) are stored in base material tanks T1, T2, T3,.
Lines L1, L2, ... are drawn out from the base material tanks T1, T2, ..., and valves B11, B12, B13, ..., pumps P1, P2, P3, ... .. are provided with flow meters F11, F12, F13,..., Respectively, and the lines L1, L2,.
[0016]
A path is formed between the inflow side of a certain valve and the outflow side of another valve via another valve. FIG. 1 shows a state in which a path is formed between the outflow side of the valve B11 and the inflow side of the valve B12 via the valve 42, and a path is formed between the inflow side of the valve B13 and the outflow side of the valve B12 via the valve 43. It is shown.
[0017]
The property control device 11 of the present invention is installed on the integrated line LM. The property control device 11 includes a property detection unit 111 and a property control unit 112. The property detection unit 111 includes a density detection unit 1111, a sulfur concentration detection unit 1112, and a kinematic viscosity detection unit 1113. Further, the property control unit 112 includes a preparation parameter determination unit 1121 and a base material preparation unit 1122.
[0018]
In the present embodiment, the detection results of the sulfur concentration detecting unit 1112 and the kinematic viscosity detecting unit 1113 are sent to the blending parameter determining unit 1121, and the blending parameter determining unit 1121 matches the base materials K1, K2, The flow rates of K3,... Are calculated, and the calculation results are sent to the base material mixing section 1122. The base material preparation unit 1122 determines the valve control amount from the shipping flow rate information from the flow meter F21 in the next process (shipping process, etc.), and controls the valves B21, B22, B23,. I do.
[0019]
Further, on the line LM, an autosampler 12 for performing average sampling in LABO is provided. The sample collected by the LABO autosampler 12 is taken out by a human hand at an appropriate time and sent to LABO (not shown), where the LABO can detect the components of the sample. During the dispensing, the components of the sample taken by the autosampler 12 are detected by LABO. This component detection result is used for error correction of the density detector 1111, the sulfur concentration detector 1112, and the kinematic viscosity detector 1113.
[0020]
The line LM is branched into a plurality of lines L51, L52, L53,..., And the prepared C heavy oil is sent to the next process (shipping process or the like) via these lines. In FIG. 1, a line L51 is a line for shipping at sea, and the line L51 is provided with a flow meter F21 and a valve 41. From the downstream side of the valve 41, a purge line is provided in the base material tank T1. Is provided. This purge line is used to replace the blended C heavy oil in the pipe with the newly blended C heavy oil when changing the oil type of the C heavy oil.
[0021]
2 (A) and 2 (B) are views showing in detail the inside of the property control device 11 of FIG. 1, and FIG. 2 (A) mixes the base materials K1, K2, K3,. (B) shows the state when the base materials K1, K2, K3,... Are not mixed by the property control.
[0022]
2A and 2B, the kinematic viscosity detector 1113 includes a three-way valve 3V, a metering pump P4, a thin tube D1, pressure-sensitive elements q1 and q2, a differential pressure sensor D2, and a kinematic viscosity calculator. D3.
[0023]
When the base materials K1, K2, K3,... Are mixed by the property control, as shown in FIG. 2A, the heavy fuel oil C taken out from the line LM is supplied to the density detector 1111 and the sulfur concentration. A part is sent to the kinematic viscosity detecting unit 1113 via the detecting unit 1112, and the rest is returned to the line LM. As shown by a symbol m in FIG. 2A, the three-way valve 3V is set so as to send the C heavy oil to the kinematic viscosity detector 1113, and the metering pump P4 flows a certain amount of the C heavy oil through the thin tube D1. . The differential pressure sensor D2 sends a differential pressure signal at the inlet and the outlet when the narrow pipe D1 is filled with the C heavy oil to the kinematic viscosity calculating unit D3, and the kinematic viscosity calculating unit D3 calculates the kinematic viscosity of the C heavy oil.
[0024]
On the other hand, when the mixing of the base materials K1, K2, K3,... By the property control is not performed, the three-way valve 3V is configured such that the C heavy oil is composed of light oil (for example, A (Heavy oil) to the kinematic viscosity detector 1113. The metering pump P4 can prevent blockage of the thin tube D1 by sending light oil to the thin tube D1.
[0025]
According to JIS and the like, the measurement temperature of the kinematic viscosity of most C heavy oil is 50 ° C. In order to reduce the difference between the detected value of the kinematic viscometer and the LABO value, it is best to set the measurement temperature of the base material to 50 ° C. In the present embodiment, by measuring the kinematic viscosity at 50 ° C., it is possible to eliminate an error when measured at 80 ° C. In the present embodiment, it is possible to measure 50 ° C. up to 700 mm 2 / s for most of heavy fuel oil C.
[0026]
Hereinafter, the operation of the online blending system (or the operation of the property control device 11) shown in FIG. 1 and FIGS. 2A and 2B will be described.
[0027]
First, the property control device 11 is initialized. In this initial setting, samples of the base materials K1, K2, K3,... In each of the base material tanks T1 to T3 are collected, and the components are detected in LABO. Based on this detection result, the initial setting of the control flow rate by the base material mixing unit 1122 (the initial value of the mixing ratio of each of the base materials K1, K2, K3,...) Is determined.
[0028]
Next, the flow rate Q is started at a fixed ratio with the blending ratio as an initial value (see the period from T0 to T1 in FIG. 3). The flow rate Q is maintained at the initial value during the period before the shipment starts (see the period between T1 and T2 in FIG. 3). During shipment, the mixture is controlled by sulfur concentration control and kinematic viscosity control as described below (refer to the period from T2 to T3 in FIG. 3). When the shipment is completed, the flow rate Q rises at a constant rate until it reaches zero. (See the period between T3 and T4 in FIG. 3).
[0029]
When the base materials K1, K2, K3,... Are prepared, the sulfur concentration control and the kinematic viscosity control are performed in parallel.
[0030]
In the sulfur concentration control, a base material having a low sulfur concentration and a base material having a high sulfur concentration are selected from K1, K2, K3,... And the flow rates thereof are controlled. In this case, a plurality of base materials having a low sulfur concentration and a base material having a high sulfur concentration may be simultaneously controlled.
[0031]
The kinematic viscosity control is performed by selecting a base material having a low kinematic viscosity such as light oil and a base material having a high kinematic viscosity from K1, K2, K3,. A valve provided on a line drawn from the material tank is controlled. In this case, a plurality of base materials having a low kinematic viscosity and a base material having a high kinematic viscosity may be simultaneously controlled.
[0032]
In this embodiment, the sulfur concentration is controlled at intervals of 5 seconds as shown in FIG. 4, and the kinematic viscosity is controlled at intervals of 10 seconds as shown in FIG. Actual measurement values may be used as the sulfur concentration value and the kinematic viscosity value for these controls, but in the present embodiment, a value in which a measurement error is reduced by smoothing is used. FIG. 6 is a diagram showing the relationship between the measured value and the smoothed value of the sulfur concentration. In the present embodiment, as shown in FIG. 5, the value indicated by the reference symbol U (smoothed value) is determined as the average value of the past eight actually measured values u0 to u8 at the time of the measurement. The number of past measurements can be set arbitrarily other than eight.
[0033]
In FIG. 4, PI control is performed in the tight mode based on the value obtained by smoothing the sulfur concentration, and in FIG. 5, PI control is performed in the gap mode based on the value obtained by smoothing the kinematic viscosity. Since the sulfur concentration must be controlled within a small range and the kinematic viscosity is within a wide range as compared with the sulfur concentration, in the present invention, the sulfur concentration is controlled in a tight mode and the kinematic viscosity is controlled. Controlled in gap mode.
[0034]
Here, the tight mode refers to a control mode in which a dead zone is not provided, and PI control is performed such that the deviation between the smoothed value of the sulfur concentration and the sulfur concentration target value S * becomes zero every 5 seconds.
The gap mode means a control mode having a dead zone, and a smoothed value of kinematic viscosity is detected every 10 seconds. In the present embodiment, a predetermined lower limit value Min (<Vis * ) and an upper limit value Max (> Vis * ) are set in addition to the kinematic viscosity target value Vis * , and the dead zone (the hatched area in FIG. 5) is Vis. * -0.8 (Vis * -Min) ~Vis * +0.8 (Max-Vis *) are determined in a range of kinematic viscosity measurements Vis is,
[0035]
Min <Vis ≦ Vis * −0.8 (Vis * −Min),
Vis * + 0.8 (Max−Vis * ) ≦ Vis <Max
[0036]
At this time, PI control is performed so that the deviation between the kinematic viscosity Vis and the target value Vis * becomes zero. When the kinematic viscosity Vis is equal to or less than Min or equal to or more than Max, that is, when Vis ≦ Min or Vis ≧ Max, control for increasing the gain is performed.
[0037]
In the present embodiment, the enlargement of the deviation when the range of the sulfur analyzer constituting the sulfur concentration detection unit 1112 is increased is corrected and corrected by two calibration curves A1 and A2 as shown in FIG. In the conventional sulfur analyzer, the bias and the span are calibrated by one calibration curve. In the present embodiment, the calibration curve is switched when the sulfur concentration reaches a predetermined target value Sk. . This calibration curve uses a least squares method,
Analyzer indicated value = [Raw data] x [Span]-[Bias value]
Is calculated by
[0038]
In the present embodiment, the kinematic viscometer constituting the kinematic viscosity detector 1113 is operated at 50 ° C.
[0039]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the compounding precision of various base materials is high and can respond to a predetermined measurement temperature.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an on-line blending system for heavy fuel oil C of the present invention.
FIGS. 2A and 2B are diagrams showing in detail the inside of the property control device of FIG. 1; FIG. 2A is a view showing a state in which various base materials are mixed by property control; FIG. It is a figure which shows a mode when mixing of various base materials is not performed, respectively.
FIG. 3 is a diagram showing a state of a time change of a flow rate at the time of mixing by the property control device of FIG. 1;
FIG. 4 is a view showing a state of sulfur concentration control by the property control device of FIG. 1;
FIG. 5 is a diagram showing a state of kinematic viscosity control by the property control device of FIG. 1;
FIG. 6 is a diagram showing a relationship between an actually measured value of the sulfur concentration and a smoothed value.
FIG. 7 is a diagram showing a calibration curve for correcting the expansion of the deviation when the range of the sulfur analyzer constituting the sulfur concentration detection unit in FIG. 1 is increased.
FIG. 8 is a view showing a conventional fuel oil C blending system for detecting sulfur concentration and kinematic viscosity off-line.
FIG. 9 is a diagram showing a relationship between kinematic viscosity and temperature showing a conventional problem when kinematic viscosity is detected online.
[Explanation of symbols]
11 Property control device 12 Autosampler 111 Property detection unit 112 Property control unit 1111 Density detection unit 1112 Sulfur concentration detection unit 1113 Kinematic viscosity detection unit 1121 Formulation parameter determination unit 1122 Base material preparation unit 3V Three-way valve B11, B12, B13,. -Valve D1 Thin tube D2 Differential pressure sensor D3 Kinematic viscosity calculation unit F11, F12, F13, ... Flow meters K1, K2, K3, ... Base materials L1, L2, ... Line LM Integrated line P4 Metering pump P1 , P2, P3,... Pump q1, q2 Pressure-sensitive element T1, T2, T3,.

Claims (6)

少なくとも2種以上の基材を流すラインが統合されてなる統合ライン上に設けられ、当該ラインを流れるC重油の硫黄濃度および動粘度を検出する性状検出部と、
前記各基材中、硫黄濃度が異なる少なくとも2種の基材の流量を、前記C重油の硫黄濃度が所定値となるように制御するとともに、前記各基材中、動粘度が異なる少なくとも2種の基材の流量を前記C重油の動粘度が所定値となるように制御する性状制御部と、
を備えたC重油性状制御装置において、
前記性状制御部は、前記硫黄濃度を不感帯を持たすことなくPI制御するとともに、前記動粘度を不感帯を持たせてPI制御する、ことを特徴とするC重油性状制御装置。
A property detection unit that is provided on an integrated line in which a line for flowing at least two or more base materials is integrated, and detects a sulfur concentration and a kinematic viscosity of heavy fuel oil C flowing in the line;
In each of the base materials, the flow rates of at least two types of base materials having different sulfur concentrations are controlled such that the sulfur concentration of the heavy fuel oil C has a predetermined value, and at least two types of kinematic viscosities different from each other in the base materials. A property control unit for controlling the flow rate of the base material such that the kinematic viscosity of the C heavy oil becomes a predetermined value;
In the C heavy oil property control device provided with
The C-heavy oil property control device, wherein the property control unit performs PI control of the sulfur concentration without a dead zone, and performs PI control of the kinematic viscosity with a dead zone.
前記動粘度検出部は、
細管に流したC重油の入口および出口の差圧を測定することで動粘度を検出する動粘度検出計と、
前記動粘度検出部を駆動しないときに前記細管に洗浄油を流通させる洗浄手段と、
を備えたことを特徴とする請求項1に記載のC重油性状制御装置。
The kinematic viscosity detector,
A kinematic viscosity detector that detects the kinematic viscosity by measuring the differential pressure between the inlet and outlet of C heavy oil flowing through the thin tube;
Cleaning means for flowing cleaning oil through the capillary when not driving the kinematic viscosity detection unit,
The fuel oil C property control device according to claim 1, further comprising:
前記硫黄濃度検出部は、
複数に分割された硫黄濃度の測定レンジの、各分割された領域それぞれについて硫黄濃度指示値校正のための検量線を有する硫黄濃度検量計を備え、
前記性状制御部は、前記各基材の調合に際し、前記硫黄濃度の目標値が属する濃度範囲に対応する検量線を適用することを特徴とする請求項1または2に記載のC重油調合システム。
The sulfur concentration detector,
A sulfur concentration calibration meter having a calibration curve for sulfur concentration indication value calibration for each of the divided regions of the measurement range of the sulfur concentration divided into a plurality,
3. The C heavy oil blending system according to claim 1, wherein the property control unit applies a calibration curve corresponding to a concentration range to which the target value of the sulfur concentration belongs when blending the base materials. 4.
少なくとも2種以上の基材を収容する複数の基材槽と、
前記各基材槽から引き出されたラインが統合されてなる統合ライン上に設けられたC重油の硫黄濃度および動粘度を検出する性状検出部と、
前記各基材中、硫黄濃度が異なる少なくとも2種の基材の流量を、前記C重油の硫黄濃度が所定値となるように制御するとともに、前記各基材中、動粘度が異なる少なくとも2種の基材の流量を前記C重油の動粘度が所定値となるように制御する性状制御部と、
を備えたC重油調合システムにおいて、
前記性状制御部は、前記硫黄濃度を不感帯を持たすことなくPI制御するとともに、前記動粘度を不感帯を持たせてPI制御する、
ことを特徴とするC重油調合システム。
A plurality of substrate tanks containing at least two or more substrates,
A property detection unit that detects the sulfur concentration and kinematic viscosity of C heavy oil provided on an integrated line in which the lines drawn from the respective base tanks are integrated,
In each of the base materials, the flow rates of at least two types of base materials having different sulfur concentrations are controlled such that the sulfur concentration of the heavy fuel oil C has a predetermined value, and at least two types of kinematic viscosities different from each other in the base materials. A property control unit for controlling the flow rate of the base material such that the kinematic viscosity of the C heavy oil becomes a predetermined value;
In the fuel oil blending system with C,
The property control unit performs PI control without giving a dead zone to the sulfur concentration, and performs PI control by giving the kinematic viscosity a dead zone.
C fuel oil blending system characterized by the above-mentioned.
前記動粘度検出部は、
細管に流したC重油の入口および出口の差圧を測定することで動粘度を検出する動粘度検出計と、
前記動粘度検出部を駆動しないときに前記細管に洗浄油を流通させる洗浄手段と、
を備えたことを特徴とする請求項4に記載のC重油調合システム。
The kinematic viscosity detector,
A kinematic viscosity detector that detects the kinematic viscosity by measuring the differential pressure between the inlet and outlet of C heavy oil flowing through the thin tube;
Cleaning means for flowing cleaning oil through the capillary when not driving the kinematic viscosity detection unit,
The fuel oil mixing system according to claim 4, further comprising:
前記硫黄濃度検出部は、
複数に分割された硫黄濃度の測定レンジの、各分割された領域それぞれについて硫黄濃度指示値校正のための検量線を有する硫黄濃度検量計を備え、
前記性状制御部は、前記各基材の調合に際し、前記硫黄濃度の目標値が属する濃度範囲に対応する検量線を適用することを特徴とする請求項4または5に記載のC重油調合システム。
The sulfur concentration detector,
A sulfur concentration calibration meter having a calibration curve for sulfur concentration indication value calibration for each of the divided regions of the measurement range of the sulfur concentration divided into a plurality,
The C-fuel oil blending system according to claim 4, wherein the property control unit applies a calibration curve corresponding to a concentration range to which the target value of the sulfur concentration belongs when blending each of the base materials.
JP2002325698A 2002-11-08 2002-11-08 C heavy oil property control device and C heavy oil blending system Expired - Lifetime JP4096092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002325698A JP4096092B2 (en) 2002-11-08 2002-11-08 C heavy oil property control device and C heavy oil blending system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002325698A JP4096092B2 (en) 2002-11-08 2002-11-08 C heavy oil property control device and C heavy oil blending system

Publications (2)

Publication Number Publication Date
JP2004161784A true JP2004161784A (en) 2004-06-10
JP4096092B2 JP4096092B2 (en) 2008-06-04

Family

ID=32804840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002325698A Expired - Lifetime JP4096092B2 (en) 2002-11-08 2002-11-08 C heavy oil property control device and C heavy oil blending system

Country Status (1)

Country Link
JP (1) JP4096092B2 (en)

Also Published As

Publication number Publication date
JP4096092B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
US7201071B2 (en) Wide range continuous diluter
KR101213108B1 (en) Etching solution preparation apparatus and etching solution concentration measurement apparatus
US8104323B2 (en) Flow controller, flow measuring device testing method, flow controller testing system, and semiconductor manufacturing apparatus
CN103175589A (en) Measuring meter calibration device and method
KR20030021998A (en) Method for measuring fluid component concentrations and apparatus therefor
JP2013506128A (en) Method and system for preparing a liquid mixture
JP7204747B2 (en) Real-time quality monitoring of beverage batch production using density measurement
US9229456B2 (en) Method of and system for calibrating gas flow dilutors
CN104156009A (en) Liquid small-flow precision measurement and control method
US20220034697A1 (en) Wet gas flow rate metering method based on a coriolis mass flowmeter and device thereof
CN101819194A (en) Standard sample dilution deviation tracking and correcting system calibrated by gas analyzer on line and method thereof
US7530278B2 (en) Fluid flow blender and methods
CN110726444A (en) Wet gas flow metering method and device based on Coriolis mass flowmeter
CN112964834B (en) Calibration method of dynamic calibrator for fixed pollution source
JP4096092B2 (en) C heavy oil property control device and C heavy oil blending system
US6691561B2 (en) Rheological measurement process
US7025870B2 (en) Method for analyzing the oxygen concentration of a gas
Ogheard et al. Development and validation of a dynamic primary standard for unsteady liquid flow calibration
US20060116835A1 (en) Measurement of batch properties
CN110673661A (en) High-precision gas distribution method and device
Marshall et al. Advances in Flow Measurement Using a Frictional Pressure Drop
CN109253780A (en) Fuel consumption meter calibrating installation
US20050109792A1 (en) Method and device for detecting and checking the quality or properties of a mixture of fluids, in particular a food or domestic mixture
JP2001009257A (en) Mixing device
CN116382180A (en) Method for controlling mixed heat value of coal gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050304

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20060411

AA91 Notification that invitation to amend document was cancelled

Free format text: JAPANESE INTERMEDIATE CODE: A971091

Effective date: 20060523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080221

R150 Certificate of patent or registration of utility model

Ref document number: 4096092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term