JP2004161617A - System for feeding oxygen to biological tissue (organ) - Google Patents

System for feeding oxygen to biological tissue (organ) Download PDF

Info

Publication number
JP2004161617A
JP2004161617A JP2002325987A JP2002325987A JP2004161617A JP 2004161617 A JP2004161617 A JP 2004161617A JP 2002325987 A JP2002325987 A JP 2002325987A JP 2002325987 A JP2002325987 A JP 2002325987A JP 2004161617 A JP2004161617 A JP 2004161617A
Authority
JP
Japan
Prior art keywords
oxygen
medium
living tissue
dissolved
supplying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002325987A
Other languages
Japanese (ja)
Inventor
Naoki Unno
直樹 海野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2002325987A priority Critical patent/JP2004161617A/en
Publication of JP2004161617A publication Critical patent/JP2004161617A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system for feeding a medium containing oxygen dissolved at a high concentration to a biological tissue (organ), the medium containing the oxygen dissolved at the high concentration and used for the system, and an apparatus for producing the medium containing the oxygen dissolved at the high concentration. <P>SOLUTION: The oxygen is dissolved at a high concentration in an oxygen feeding medium by dissolving the oxygen in the oxygen feeding medium for the biological tissue such as a hemoglobin solution, a perfluorochemical, a physiological saline or an organ preserving liquid. The oxygen metabolic state of the biological tissue is maintained normally and failure of functions of the biological tissue caused by ischemic disorder, or the like, of the biological tissue is effectively protected by administering the oxygen feeding medium for the biological tissue containing the oxygen dissolved at the high concentration. Thereby, organ protective actions are provided. The system for producing the oxygen feeding medium for the biological tissue containing the oxygen dissolved at the high concentration and feeding the medium containing the oxygen dissolved at the high concentration to the biological tissue and the medium containing the oxygen dissolved at the high concentration and used for the system are included. An apparatus for producing the medium containing the oxygen dissolved at the high concentration is further included. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、生体組織(臓器を含む)(本発明において、単に「生体組織」という)の酸素代謝状態を正常に維持するために、生体組織へ酸素を供給するシステム、該システムに用いる高酸素溶存媒体、及び該高酸素溶存媒体を製造する装置に関する。
【0002】
【従来の技術】
腸管管腔内の細菌が全身循環に侵入する現象は、Bacterial translocation(BT)といわれ腸管粘膜のバリアー機能の破綻によるものとされている。最近では細菌の産生する毒素、エンドトキシンも含めて、Microbial translocationと言われることもある。この腸管粘膜のバリアー機能の破綻は、出血性ショック、熱傷、炎症性腸疾患などの重症患者や、免疫抑制剤使用中の患者において認められ、多臓器不全進展の鍵を握ると考えられている(Ann. Surg. 207, 549−554, 1988、J. Infect. Dis. 152, 99−103,1985、J. Burn Care Rehab 18, 475−482, 1987、Ann. Surg. 205, 681−692, 1987)。したがって、この粘膜バリアー機能を維持するため、重度侵襲後の患者の腸管粘膜を如何にして保護するかという研究が続けられてきた。
【0003】
それらの研究の中で、人工血液として開発されたパーフルオロケミカル(perfluorochemical:PFC)を酸素化して、腸管内に満たしてやることにより、腸管の虚血−再還流による粘膜障害が抑制されるという研究が1980年代に報告された(J. Surg. 151, 468−472, 1981、Am. J. Surg. 84−90, 1985、Am. J. Surg.153, 291−294, 1987)。これは、PFCは酸素化により大量の酸素を運搬することができ、酸素分圧の圧格差による酸素の拡散作用により、大量の酸素を低酸素組織へと与えることができる。この効果により、酸素化PFCの腸管内投与における虚血再還流時の粘膜保護作用が奏されることを意味している。しかし、この方法は効果的には期待できるものの、実際には、重度侵襲後の患者の腸管内にPFC液を満たすことは手技的に困難を伴うため、実際の臨床で応用されることはなかった。
【0004】
本発明者らは、酸素化PFCを臨床で腸管粘膜保護作用に用いた報告がなく、その手段も考案されていないのは、上記のように、腸管内への投与は既に損傷のおそれのある腸管を拡張し、損傷を更に悪化させる可能性、及び腸管内を満遍なくPFCで満たすための技術的困難さが、臨床の妨げになっていると考え、酸素化PFCを腹腔内に投与する方法を考案し、報告した(Crit. Care Med. 29, 782−788, 2001)。そして、同報告で、この方法が、腸管の虚血再還流時に、腸管粘膜の組織障害を防ぎ、エンドトキシンや細菌の移行を防ぐいわゆるバリアー機能保持に有効であること、及びこの酸素化PFCの腹腔内還流の効果は、あくまでPFCが組織へと運搬する酸素によるものであることを証明した。
【0005】
近年、酸素化PFCを肺胞内に直接投与するliquid ventilationという方法が米国を中心に臨床応用されはじめている(Lancet 346, 1201−1202, 1995、N. Engl. J. Med. 335, 764−767, 1996)。この方法は、まだ臨床試験の段階にあるが、徐々にその効果が認められつつある。
このように、近年、生体組織の虚血性障害に対して、生体組織の酸素代謝状態を正常に維持するために、酸素化PFCのような酸素供給媒体(酸素運搬体)を用いて、生体にとって不可欠な酸素を供給し、生体組織の虚血性障害からの保護を行う試みがなされている。
【0006】
しかし、従来、この生体組織の虚血性障害に対する酸素供給媒体(酸素運搬体)による処理に際して、酸素供給媒体に酸素を溶存させる方法として、外科医療現場では、チャンバー内の酸素供給媒体に酸素をバブリングさせる方法が用いられてきたため、この方法では酸素供給媒体に溶存させる酸素量に限界があり、それによる生体組織保護作用も限られた酸素量に見合った効果しか得られなかった。
すなわち、従来は、PFCのような溶媒に酸素をバブリングしておくだけで十分な酸素を生体組織に供給できると考えたり、生体組織を高濃度の酸素溶存溶液に浸漬接触させることにより、逆に損傷を招くことを危惧し、生体組織を高濃度の酸素溶存溶液に浸漬接触させることの効果を予想しなかったのが実情であった。
【0007】
一方、臓器移植の際の臓器保存方法は、移植の成否を決定する重要な問題である。限られたドナー臓器を如何に損傷の少ない状態で保存して移植できるか様々な研究がなされてきた。
現在、Euro−Collins液や、University of Wisconsin(以下、UW)液などが、摘出臓器の保存液として使用されている。しかし、これらの溶液を用いた単純な低温保存では、その臓器保存時間に限界があり、十分とはいえない状況である。
また、移植医療の際には、離れた地域に臓器を運搬せねばならない。そのような場合に、ドナー臓器を損傷の少ない状態で保存しながら、コンパクトな形で持ち運びが可能な、臓器の保存、運搬手段が切に望まれているところである。
【0008】
【特許文献1】
特開2001−348341号公報
【特許文献2】
特開平8−266877号公報
【特許文献3】
特開平6−145001号公報
【非特許文献1】
Crit. Care Med. 29, 782−788, 2001
【非特許文献2】
Lancet 346, 1201−1202, 1995
【非特許文献3】
N. Engl. J. Med. 335, 764−767, 1996
【0009】
【発明が解決しようとする課題】
本発明の課題は、生体組織の酸素代謝状態を正常に維持するために、高濃度の酸素溶存媒体を生体組織へ供給するシステム、該システムに用いる高酸素溶存媒体、及び該高酸素溶存媒体を製造する装置を提供することにある。
【0010】
【課題を解決するための手段】
種々の要因で生起される生体組織(臓器)の虚血性障害等は、生体組織のバリアー機能に重大な破綻を引き起こす。このような障害に対する対処として、従来より酸素溶存媒体(酸素溶存溶液)を用いた酸素の投与の方法が知られている。本発明者は、このような生体組織(臓器)の虚血性障害等に対する酸素溶存媒体(酸素溶存溶液)による処理について鋭意研究する中で、例えば、手術中の予期し得ない事態で、大動脈を遮断する必要が生じた場合に起こる血流遮断、虚血障害、多臓器不全などの重篤な状況下でも、1気圧以上、好ましくは3〜6気圧、特に好ましくは、約5気圧のような加圧下で酸素を溶存させた酸素溶存媒体(酸素溶存溶液)は、高濃度の酸素を溶存することができ、この酸素溶存媒体を臓器周辺に輸送し、浸漬・接触させた場合には、開放系45分後の溶媒中の酸素濃度が高く(大気圧で溶存した場合の約3倍)、また、高酸素を溶存しない酸素溶存媒体の場合に比べて、高濃度の酸素を溶存させた媒体に接触させた場合の方が、例えば回腸上皮組織の損傷が顕著に抑制されることや、腸管の虚血性障害が抑制されること等、明らかに酸素欠乏による組織の虚血状態を抑制し、組織の酸素代謝維持による生存率の向上があることを見い出し本発明を完成させた。
【0011】
すなわち本発明は、加圧下に酸素を溶存させることにより、生体組織酸素供給媒体に高濃度の酸素を溶存させ、該高濃度の酸素を溶存させた生体組織酸素供給媒体を生体組織(臓器)に投与することにより、生体組織の酸素代謝状態を正常に維持し、生体組織の虚血性障害等に起因する生体組織の機能の破綻を効果的に防御することよりなるものである。
本発明は、該高濃度の酸素を溶存させた生体組織酸素供給媒体を製造し、該高濃度の酸素溶存媒体を生体組織へ供給するシステム、それによる生体組織を保存システム、該システムに用いる高酸素溶存媒体、及び該高酸素溶存媒体を製造する装置を含むものである。
本発明の装置は、移植医療等において、離れた地域に臓器を運搬するような場合に、本発明の酸素溶存媒体を納めた容器に臓器を保存しながら、運搬するようなシステムとしても用いることができるものである。
【0012】
具体的には本発明は、生体組織酸素供給媒体に高濃度の酸素を溶存させたことを特徴とする生体組織酸素供給用高酸素溶存媒体(請求項1)や、高濃度の酸素の溶存が、開放系45分後の媒体中の酸素分圧が、少なくても200mmHg以上であることを特徴とする請求項1記載の生体組織酸素供給用高酸素溶存媒体(請求項2)や、生体組織酸素供給媒体への高濃度の酸素の溶存が、加圧下に酸素を溶存させることにより行われたことを特徴とする請求項1又は2記載の生体組織酸素供給用高酸素溶存媒体(請求項3)や、生体組織酸素供給媒体への高濃度の酸素の溶存が、1気圧以上の加圧下に行われることを特徴とする請求項1〜3のいずれか記載の生体組織酸素供給用高酸素溶存媒体(請求項4)や、生体組織酸素供給媒体が、ヘモグロビン溶液、パーフルオロケミカル、生理的食塩水又は生体組織保存液であることを特徴とする請求項1〜4のいずれか記載の生体組織酸素供給用高酸素溶存媒体(請求項5)や、生体組織酸素供給媒体が、腹腔内投与用生体組織酸素供給媒体又は生体組織保存用媒体であることを特徴とする請求項1〜5のいずれか記載の生体組織酸素供給用高酸素溶存媒体(請求項6)からなる。
【0013】
また本発明は、生体組織酸素供給媒体(A)を供給し、該媒体の脱気と加圧下における酸素の溶存を行うための加圧容器(1)と、加圧容器(1)内に供給された生体組織酸素供給媒体からの脱気を行うために該加圧容器に設けられた空気排出手段(2)と、生体組織酸素供給媒体に加圧下、酸素を供給・溶存させるために加圧容器(1)に設けられた酸素供給手段(3)と、酸素を溶存させた生体組織酸素供給媒体を加圧容器(1)内から排出するための生体組織酸素供給用高酸素溶存媒体排出手段(4)とを備えたことを特徴とする生体組織酸素供給用高酸素溶存媒体の製造装置(請求項7)や、加圧容器(1)内の加圧が、酸素供給手段(3)に接続された酸素ボンベの圧力によってなされることを特徴とする請求項6記載の生体組織酸素供給用高酸素溶存媒体の製造装置(請求項8)からなる。
【0014】
さらには本発明は、請求項7又は8記載の生体組織酸素供給用高酸素溶存媒体の製造装置と、該製造装置の高酸素溶存媒体排出手段(4)を介して連結された、該高酸素溶存媒体を生体組織へ投与する手段とからなり、高酸素溶存媒体を製造し、該高酸素溶存媒体を生体組織へ投与するようにしたことを特徴とする生体組織酸素供給システム(請求項9)や、高酸素溶存媒体排出手段(4)と高酸素溶存媒体を生体組織へ投与する手段とが、圧力調整手段、温度調整手段を介して連結されることを特徴とする請求項9記載の生体組織酸素供給システム(請求項10)や、製造された生体組織酸素供給用高酸素溶存媒体が、請求項1〜6のいずれか記載の生体組織酸素供給用高酸素溶存媒体であることを特徴とする請求項9又は10記載の生体組織酸素供給システム(請求項11)や、生体組織への高酸素溶存媒体の投与が、生体腹腔内への投与であることを特徴とする請求項9〜11のいずれか記載の生体組織酸素供給システム(請求項12)や、高酸素溶存媒体を生体組織へ投与する手段が、生体組織の保存或いは運搬を可能としている高酸素溶存媒体を含む容器の形であることを特徴とする請求項9〜11のいずれか記載の生体組織酸素供給システム(請求項13)からなる。
【0015】
【発明の実施の形態】
本発明は、加圧下に酸素を溶存させることにより、生体組織酸素供給媒体に高濃度の酸素を溶存させ、該高濃度の酸素を溶存させた生体組織酸素供給媒体を生体組織(臓器)に投与することにより、生体組織の酸素代謝状態を正常に維持し、生体組織の虚血性障害等に起因する生体組織の機能の破綻を効果的に防御することよりなるものである。
本発明において、生体組織酸素供給媒体に高濃度の酸素を溶存させるための圧力は、酸素の溶存量や溶存に用いる装置の安全性等を考慮して、通常1気圧以上の加圧が用いられるが、特に好ましくは約5気圧の加圧下における酸素の溶存を行うことができる。約5気圧の加圧下における酸素の溶存で、大気圧におけるバブリングの場合に比較して、約3倍の酸素濃度を得ることができる。本発明の生体組織酸素供給媒体における酸素の溶存は、開放系45分後の生体組織酸素供給媒体中の酸素分圧が、少なくても200mmHg、好ましくは1200mmHg以上であることが好ましい。
【0016】
本発明において使用する生体組織酸素供給媒体としては、人工血液として開発されたパーフルオロケミカル(perfluorochemical:PFC)やヘモグロビン溶液、更には、生体損傷性の低い生理的食塩水、その他の臓器保存用溶液(St.Thomas液、Euro−Collins液、University of Wisconsin(UW)液など)を挙げることができる。
パーフルオロケミカルとしては、特に限定はされないが、ペルフルオロ−n−ブチルテトラヒドロフラン、ペルフルオロジクロロオクタン、ペルフルオロ−ビスクロロブチルエーテル、ペルフルオロデカリン、ペルフルオロメチルデカリン、ペルフルオロジメチルデカリン、ペルフルオロジメチルアダマンタン、臭化ペルフルオロオクチル、ペルフルオロ−4−メチル−オクタヒドロキノリジジン、ペルフルオロ−N−メチル−デカヒドロキノリン、F−メチル−1−オキサ−デカリン、ペルフルオロオクタヒドロキノリジジン、ペルフルオロ−5,6−ジヒドロ−5−デセン、及びペルフルオロ−4,5−ジヒドロ−4−オクテン、塩素化ペルフルオロカーボン類又はそれらの混合物であっても良い。
【0017】
ヘモグロビン溶液としては、動物やヒト等の赤血球を常法に従って、溶血させ、膜成分を除去したストローマーフリーヘモグロビンを用いることができ、また、該ヘモグロビンを化学的に修飾した架橋型ヘモグロビン又は重合ヘモグロビン等、人工血液として用いられている公知のヘモグロビン溶液を用いることができる。
本発明の生体組織酸素供給用高酸素溶存媒体を、例えば腹腔内のような生体組織(臓器)又は摘出された臓器に投与するには、医療上適用される適宜の投与手段を用いることができるが、後記のように、高酸素溶存媒体の製造装置と連結した本発明の生体組織酸素供給システムにより行うのが好ましい。
【0018】
本発明は、酸素溶存媒体(パーフルオロケミカル、ヘモグロビン、Euro−Collins液やUW液等)により多くの酸素を溶存させ、より大量の酸素を組織へ運搬させるために、酸素溶存媒体に酸素を溶存させるための装置を提供するものである。
本発明の装置は、以下にその構造を詳細に示すが、概略的には、耐圧性のステンレス製の容器に真空ポンプを接続し、まず、酸素溶存媒体にすでに溶存している空気を除去し、そこへ高圧酸素ボンベを接続して、高圧下でより大量の酸素を溶存させることができる構造としたものである。そして、該装置は容器を密封した状態でノズルから大量の酸素を溶存した酸素溶存媒体を取り出せるようにした構造を有する。
本発明の装置は、例えば、移植医療のような場合に、離れた地域に臓器を運搬する際には、本発明の装置の酸素溶存媒体を納めた容器を用いて、その内部に直接臓器を保存することによって、運搬することができる。そして、該容器による運搬は、長時間に渡る運搬に際しても、臓器を損傷させることなく、しかもコンパクトで持ち運び可能なことから、本発明の装置の構造は、臓器の保存、運搬に威力を発揮できる構造を有するものである。
【0019】
本発明の生体組織酸素供給用高酸素溶存媒体の製造装置は、具体的には図1〜3に示される。
高酸素溶存媒体の製造装置は、基本的構造として、生体組織酸素供給媒体(A)を供給し、該媒体の脱気と加圧下における酸素の溶存を行うための加圧容器(1)と、加圧容器(1)内に供給された生体組織酸素供給媒体からの脱気を行うために該加圧容器に設けられた空気排出手段(2)と、生体組織酸素供給媒体に加圧下、酸素を供給・溶存させるために加圧容器(1)に設けられた酸素供給手段(3)と、酸素を溶存させた生体組織酸素供給媒体を加圧容器(1)内から排出するための生体組織酸素供給用高酸素溶存媒体排出手段(4)とから構成される。
【0020】
加圧容器(1)は、通常、耐圧性のステンレス製であり、胴体部(11)と蓋体部(12)とから形成され、該胴体部と蓋体部は、胴体部頂部に設けたフランジ(111)及び蓋体部に設けたフランジ(113)をリング式クランプ(6)で把持して、固定し、加圧容器(1)を耐圧、密封可能としている。加圧容器(1)には、生体組織酸素供給媒体(A)を、胴体部と蓋体部を固定し、密封した状態で挿入するための供給口を適宜設けることができる。加圧容器(1)の蓋体部には、通常圧力計(5)が装備される。
加圧容器(1)の底部は、その容器の耐圧性を増すために、緩やかな円弧状の鏡板で形成される。
加圧容器(1)内に供給された生体組織酸素供給媒体からの脱気を行うために該加圧容器に設けられた空気排出手段(2)は、加圧容器(1)外において、真空ポンプ(第3図(7))に連結され、配管、逆止弁を介して、加圧容器(1)内の空気を排気可能としている。空気排出手段(2)の加圧容器(1)内からの排出口は、通常加圧容器(1)の蓋体部に設けられており、該排出口は分岐調節弁を設け、切り替え可能とすることにより、酸素供給手段(3)の入り口と共通して設けることができる。
【0021】
生体組織酸素供給媒体に加圧下、酸素を供給・溶存させるために加圧容器(1)に設けられた酸素供給手段(3)は、加圧容器(1)外において、酸素ボンベ(第3図(8))に連結され、配管、逆止弁を介して、加圧容器(1)内へ酸素を供給可能としている。加圧容器(1)内の圧力は、通常、酸素ボンベによる圧力で調整されるが、必要により適宜コンプレッサーのような装置を設けて、圧力を調整することができる。酸素供給手段(3)より、加圧容器(1)内の生体組織酸素供給媒体(A)に酸素を溶存するには、酸素供給手段(3)より加圧酸素を生体組織酸素供給媒体(A)と接触させる方法、加圧酸素を生体組織酸素供給媒体(A)内へ吹き込む方法或いは酸素供給手段(3)に、生体組織酸素供給媒体(A)内へ伸長させたパイプを設け、該パイプのノズルより加圧酸素を噴出させてバブルする方法等適宜の方法を用いることができる。
【0022】
酸素を溶存させた生体組織酸素供給媒体を加圧容器(1)内から排出するための生体組織酸素供給用高酸素溶存媒体排出手段(4)は、加圧容器(1)の底部に設けられ、逆止弁を介して加圧容器(1)の外部に連通する。
本発明の生体組織酸素供給用高酸素溶存媒体の製造装置を、生体組織酸素供給システムとして組み立てる場合は、該製造装置を、該装置の高酸素溶存媒体排出手段(4)を介して、高酸素溶存媒体の生体組織投与手段と連結する。高酸素溶存媒体排出手段(4)と高酸素溶存媒体を生体組織へ投与する手段との連結は、適宜、圧力調整手段、温度調整手段を介して連結することができ、該手段により生体組織へ投与する高酸素溶存媒体の圧力及び温度を調整することができる。高酸素溶存媒体の生体組織投与手段としては、医療の分野において通常用いられる投与手段を適用することができる。
【0023】
本発明の装置を用いて、本発明の生体組織酸素供給システムを実施する場合について、図1〜3を参照して説明する。まず、耐圧性のステンレス製である本発明の加圧容器(1)に、ヘモグロビン溶液、パーフルオロケミカル、又は生理的食塩水のような生体組織酸素供給媒体(A)を充填する。次に、胴体部(11)に蓋体(122)を設置し、胴体部(11)頂部に設けたフランジ(111)と蓋体部(12)に設けたフランジ(113)をリング式クランプ(6)で把持して、固定し、加圧容器(1)を密封する。次に、加圧容器(1)に設けた空気排出手段(2)を介して連結された真空ポンプにより、加圧容器(1)内に充填されている生体組織酸素供給媒体(A)に溶存している空気を除去する。
【0024】
空気排出手段(2)を閉止後、加圧容器(1)に設けられた酸素供給手段(3)を、高圧酸素ボンベに接続し、高圧下(例えば、5気圧)で、生体組織酸素供給媒体(A)に酸素を吹き込んで、大量の酸素を溶存させる。摘出された臓器の保存の場合には、ここでいったん蓋を開け、臓器を酸素供給媒体内へひたした後、再び蓋を閉め、今度は真空ポンプによる脱気は行わずに、そのまま高圧酸素ボンベから加圧する。そのまま目的の保存時間の間、容器内で臓器を保存する。氷などの手段で容器外側を冷やすことにより、適宜、低温保存も可能である。生体に用いる場合は、大量の酸素を溶存させた生体組織酸素供給用媒体を、加圧容器(1)に設けた生体組織酸素供給用高酸素溶存媒体排出手段(4)を介して、加圧容器(1)を密封した状態で取り出す。該排出手段(4)を介して取り出した生体組織酸素供給用高酸素溶存媒体を、必要により、圧力調整手段及び温度調整手段により、高酸素溶存媒体の圧力及び温度を調整して、生体組織投与手段に導入し、高酸素溶存媒体を生体組織(臓器)に投与する。
【0025】
【実施例】
以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。
実施例1.腹腔内投与パーフルオロケミカルの酸素分圧変化
ラットを用いて動物実験を行った。本発明の生体組織酸素供給システムを用いて、5気圧下でパーフルオロケミカル溶液(Perfluorodecalin:F2 Chemical LTD製)に酸素を溶存化し、ラットの腹腔内に投与した。その後、このパーフルオロケミカル溶液の酸素分圧がどのように変化するかを経時的に測定した。この実験例で使用した酸素分圧の測定法は、酸素電極法(複合ポーラログラフィー)により、測定には、CHIBA−CORNING 800(Chiba Corning Diagnostic Corp.製)の装置を使用した。対照として、従来の酸素バブリング法により酸素を溶存化したパーフルオロケミカル溶液の酸素分圧を測定し、両者を比較した(図4)。
【0026】
その結果、図4に示されるように、本発明のシステムを用いて5気圧条件下でパーフルオロケミカル溶液に酸素を溶存させたものと、1気圧下で酸素を溶存させたパーフルオロケミカル溶液を比較すると、5気圧条件下の0時間経過時では約3500mmHgであるのに対し、1気圧条件下のものは約700mmHgであって、5倍の酸素分圧濃度差があり、45分経過した後を比較すると、5気圧条件下のものは約1300mmHgであるのに対し、1気圧条件下のものでは400mmHgであって、酸素分圧濃度差として約3倍の差が生じていた。このことから、5気圧条件下で酸素化させたパーフルオロケミカルでは長時間に渡り高い濃度の酸素を溶存化させることが可能であることが解った。このように、本発明のシステムを用いて、加圧下で、生体組織酸素供給媒体を酸素化することにより、大量の酸素を溶存化させて、生体に投与することができる。
【0027】
実施例2.腸管組織の保護効果
Crit Care Med, 29, 4, 782−788, 2001の方法に準じ、腸管の虚血再還流障害とその後の遠隔臓器障害を併発することから、多臓器不全のモデルとして用いられており、上腸間膜動脈の遮断―遮断解除モデルであるラットを用いて、本発明の酸素化パーフルオロケミカル(Fluosol−DA:The Green Cross Corp.Osaka、JAPAN製)をラット腹腔内に投与した場合の腸管組織の保護効果について検討した。
ラットの上腸間膜動脈を遮断し(120分)、酸素化パーフルオロケミカルを腹腔内に投与して、腸管組織の保護効果を観察した。マクロ像(図5;参考写真1)とミクロ像(図6;参考写真2)の写真を添付する。酸素化パーフルオロケミカル投与を行い、酸素を供給したものは、血流遮断下であっても腸管組織は生存力を保ち、組織を虚血再還流障害から保護することができた。
【0028】
実施例3.多臓器不全モデルラットの生存率
上記ラットを用い、ラットの大動脈を遮断し、腹腔内の全臓器(肝臓、腎臓、膵臓、脾臓、腸管)の血管遮断(45分)を行い(図7;参考写真3)、多臓器不全モデルを作製した。このモデルを用いて本発明の装置を用いて5気圧条件下で酸素化を行ったパーフルオロケミカル溶液と、通常の1気圧条件下で酸素化を行ったパーフルオロケミカル溶液(Perfluorodecalin:F2 Chemical LTD製)をそれぞれ別々のラット腹腔内へ投与を行った。対照として何も投与しないコントロール群との間で生存率を比較した。なお、比較法としてはKaplan−Meier法を用いた。
【0029】
その結果、血流遮断12時間後の生存率は、5気圧条件下、1気圧条件下及びコントロール(Control)において、それぞれ90%、60%及び約30%であり、血流遮断48時間後の生存率にあっては、70%、40%及び0%であった(図8)。
このことから、多臓器不全モデルにおいても、5気圧条件下で酸素化させた大量酸素溶存化パーフルオロケミカル溶液を用いることにより、コントロール及び1気圧条件下で酸素化させたパーフルオロケミカル溶液と比較すると、その生存率を飛躍的に上昇させることが可能であることが判明した。
【0030】
実施例4.臓器保存試験
ラット小腸を摘出し、従来の臓器保存液であるUW液にひたして4℃で24時間保存したものと、酸素溶存媒体(PFC:Perfluorodecalin)を本発明の装置を用いて酸素化し、装置内に小腸を入れ、4℃で24時間保存した後、装置より取り出し、組織障害の程度について顕微鏡学的に検討を行った(図9;参考写真4)。その結果、従来の保存法であるUW液にひたして4℃で24時間保存したものでは小腸粘膜の微絨毛組織の広範な破壊と粘膜組織の脱落が著しいのに対し(図9−B)、本発明の装置内に保存した小腸では、正常組織に近い組織像が保たれており(図9−C)、本発明の臓器保護効果が明らかとなった。なお、図9中、Aは正常小腸組織像を、BはUW液4℃で24時間保存した場合の小腸組織像を、Cは本発明での酸素溶存媒体(PFC)を酸素化し、容器内で24時間保存した場合の小腸組織像を示す。
【0031】
【発明の効果】
生体にとって酸素は欠くことのできないものである。出血性ショック時や敗血症時などの重篤な状況下で、生体組織は低酸素を余儀なくされる。同様に、移植などで摘出された臓器も低酸素下では長時間の保存には耐えられない。このような時に、生体組織(臓器)に酸素を供給することにより、生体組織の機能を保護することができる。そのためには、酸素を運搬する物質(例えば、ヘモグロビン溶液やパーフルオロケミカルなどの生体組織酸素供給媒体)に如何に大量かつ効率よく酸素を運搬させることができるかにより、生体組織や臓器、ひいては生体そのものの生存期間を延ばすことができるか否かがかかってくる。本発明により、大量の酸素を溶存した生体組織酸素供給媒体(酸素運搬体)を取り出すことが可能であり、この酸素供給媒体を生体組織(臓器)に投与することが可能となる。また、本発明の装置内に直接摘出臓器を保存することにより、従来の方法より長時間にわたり、臓器が損傷なく保存することができる。したがって、本発明は、集中治療下にある重症患者の治療や摘出された移植臓器の保護等、救急医療を含めた医療現場の対処技術として重要な役割が期待されるものである。
【図面の簡単な説明】
【図1】本発明の生体組織酸素供給用高酸素溶存媒体の製造装置の全体像を示した図である。
【図2】本発明の生体組織酸素供給用高酸素溶存媒体の製造装置の加圧容器(1)を分解した場合の写真を示す。
【図3】本発明の生体組織酸素供給用高酸素溶存媒体の製造装置の全体と真空ポンプ、酸素ボンベとの連結した状態を示す写真である。
【図4】本発明の実施例において、ラット腹腔内投与パーフルオロケミカルの酸素分圧の変化を示す図である。
【図5】本発明の実施例において、酸素化パーフルオロケミカルの腸管組織の保護効果についての実験における保護効果のマクロ像を観察した図である。
【図6】本発明の実施例において、酸素化パーフルオロケミカルの腸管組織の保護効果についての実験における保護効果のミクロ像を観察した図である。
【図7】本発明の実施例において、パーフルオロケミカル溶液を投与した場合の多臓器不全モデルラットの生存率についての実験における腹腔内の全臓器(肝臓、腎臓、膵臓、脾臓、腸管)の血管遮断の状況を示す図である。
【図8】本発明の実施例において、パーフルオロケミカル溶液を投与した場合の多臓器不全モデルラットの生存率についての実験における結果を示した図である。
【図9】本発明の実施例において、ラットの摘出した小腸をパーフルオロケミカル液を5気圧で酸素化した後、容器内で24時間保存した際の効果について示した小腸の組織像である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a system for supplying oxygen to a living tissue in order to maintain a normal state of oxygen metabolism of a living tissue (including an organ) (in the present invention, simply referred to as “living tissue”), The present invention relates to a dissolved medium and an apparatus for producing the high oxygen dissolved medium.
[0002]
[Prior art]
The phenomenon that bacteria in the intestinal lumen invade the systemic circulation is referred to as Bacterial translocation (BT) and is attributed to the breakdown of the barrier function of the intestinal mucosa. Recently, it is sometimes referred to as Microbial translocation, including toxins and endotoxins produced by bacteria. This disruption of the barrier function of the intestinal mucosa has been observed in severe patients such as hemorrhagic shock, burns and inflammatory bowel disease, and in patients using immunosuppressive drugs, and is thought to be the key to the progression of multi-organ failure. (Ann. Surg. 207, 549-554, 1988, J. Infect. Dis. 152, 99-103, 1985, J. Burn Care Rehab 18, 475-482, 1987, Ann. Surg. 205, 681-692. 1987). Therefore, research has been continued on how to protect the intestinal mucosa of patients after severe invasion to maintain this mucosal barrier function.
[0003]
In those studies, oxygenation of perfluorochemical (PFC) developed as artificial blood to fill the intestinal tract suppresses mucosal damage due to intestinal ischemia-reperfusion. Was reported in the 1980's (J. Surg. 151, 468-472, 1981, Am. J. Surg. 84-90, 1985, Am. J. Surg. 153, 291-294, 1987). This is because PFC can carry a large amount of oxygen by oxygenation, and can provide a large amount of oxygen to hypoxic tissue by the oxygen diffusion effect due to the difference in partial pressure of oxygen. This effect means that the intestinal administration of oxygenated PFC exerts a mucosal protective action during ischemia reperfusion. However, although this method can be expected to be effective, it is practically difficult to fill the intestinal tract of a patient after severe invasion with a PFC solution, so that it is not practically applied in clinical practice. Was.
[0004]
The present inventors have not reported the use of oxygenated PFC for intestinal mucosal protection in clinical practice, and no means have been devised. As described above, administration into the intestinal tract may already cause damage. We believe that the possibility of dilating the intestinal tract and exacerbating the injury, and the technical difficulty of evenly filling the intestinal tract with PFC are hindering clinical practice. It was devised and reported (Crit. Care Med. 29, 782-788, 2001). According to the same report, this method is effective in preventing so-called barrier function of preventing intestinal mucosal tissue damage and transfer of endotoxin and bacteria during intestinal ischemia / reperfusion. It has been proved that the effect of internal reflux is due to oxygen carried by the PFC to the tissue.
[0005]
In recent years, a method called liquid ventilation in which oxygenated PFC is directly administered into the alveoli has begun to be clinically applied mainly in the United States (Lancet 346, 1201-1202, 1995, N. Engl. J. Med. 335, 765-767). , 1996). This method is still in clinical trials, but its effectiveness is gradually being recognized.
Thus, in recent years, in order to maintain the oxygen metabolic state of a living tissue normally against ischemic injury of the living tissue, an oxygen supply medium (oxygen carrier) such as oxygenated PFC is used for the living body. Attempts have been made to provide essential oxygen and protect living tissues from ischemic damage.
[0006]
However, conventionally, as a method of dissolving oxygen in the oxygen supply medium when the living tissue is treated with an oxygen supply medium (oxygen carrier) for ischemic injury, in a surgical practice, oxygen is bubbled into the oxygen supply medium in the chamber. However, this method has a limitation in the amount of oxygen dissolved in the oxygen supply medium, and the effect of protecting the living tissue by the method is only an effect corresponding to the limited amount of oxygen.
That is, conventionally, it is considered that sufficient oxygen can be supplied to living tissue only by bubbling oxygen in a solvent such as PFC, or by immersing living tissue in a high-concentration oxygen-dissolved solution, In fact, they did not anticipate the effect of immersing living tissue in a high-concentration oxygen-dissolved solution for fear of causing damage.
[0007]
On the other hand, the method of organ preservation at the time of organ transplantation is an important problem in determining the success or failure of transplantation. Various studies have been carried out on how limited donor organs can be preserved and transplanted with less damage.
At present, Euro-Collins solution, University of Wisconsin (hereinafter, UW) solution and the like are used as a preservation solution for an isolated organ. However, simple low-temperature preservation using these solutions has a limitation in the preservation time of the organs, and is not sufficient.
Also, organs must be transported to remote areas during transplantation. In such a case, there is a long-felt need for organ preservation and transportation means that can be carried in a compact form while preserving the donor organ with little damage.
[0008]
[Patent Document 1]
JP 2001-348341 A
[Patent Document 2]
JP-A-8-266877
[Patent Document 3]
JP-A-6-145001
[Non-patent document 1]
Crit. Care Med. 29, 782-788, 2001
[Non-patent document 2]
Lancet 346, 1201-1202, 1995
[Non-Patent Document 3]
N. Engl. J. Med. 335, 764-767, 1996
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide a system for supplying a high-concentration oxygen-dissolved medium to a living tissue, a high-oxygen-dissolved medium used in the system, and the high-oxygen-dissolved medium in order to maintain a normal oxygen metabolic state of the living tissue. It is to provide an apparatus for manufacturing.
[0010]
[Means for Solving the Problems]
An ischemic disorder of a living tissue (organ) caused by various factors causes a serious breakdown in a barrier function of the living tissue. As a countermeasure against such an obstacle, a method of administering oxygen using an oxygen-dissolved medium (oxygen-dissolved solution) is conventionally known. The present inventor has been studying the treatment of such a living tissue (organ) with an oxygen-dissolved medium (oxygen-dissolved solution) for ischemic injury and the like. Even in severe situations such as blood flow blockage, ischemic injury, and multiple organ failure that occur when it is necessary to block the pressure, the pressure is at least 1 atm, preferably 3 to 6 atm, particularly preferably about 5 atm. The oxygen-dissolved medium (oxygen-dissolved solution) in which oxygen is dissolved under pressure can dissolve high-concentration oxygen, and when the oxygen-dissolved medium is transported around the organ and immersed or contacted, it is released. A medium in which the oxygen concentration in the solvent after 45 minutes of the system is high (about three times as high as that when dissolved at atmospheric pressure), and in which a higher concentration of oxygen is dissolved as compared with an oxygen-dissolved medium in which high oxygen is not dissolved When contacted, for example, ileal epithelial tissue It is clear that there is a marked suppression of tissue ischemia due to oxygen deprivation, and that there is an improvement in survival rate by maintaining tissue oxygen metabolism, such as marked suppression of damage and suppression of intestinal ischemic damage. The present invention has been completed.
[0011]
That is, the present invention provides a method for dissolving oxygen under pressure, thereby dissolving high-concentration oxygen in a living-tissue oxygen supply medium, and applying the high-concentration oxygen-dissolved living-tissue oxygen supply medium to a living tissue (organ). By the administration, the oxygen metabolic state of the living tissue is normally maintained, and the failure of the function of the living tissue caused by the ischemic damage of the living tissue is effectively prevented.
The present invention provides a system for producing a living tissue oxygen supply medium in which the high-concentration oxygen is dissolved, and supplying the high-concentration oxygen-dissolving medium to the living tissue, a system for storing the living tissue thereby, It includes an oxygen-dissolved medium and an apparatus for producing the high-oxygen-dissolved medium.
The device of the present invention is also used as a system for transporting organs to a remote area in transplantation medical care, while preserving the organs in a container containing the oxygen-dissolved medium of the present invention. Can be done.
[0012]
Specifically, the present invention provides a high-oxygen dissolved medium for supplying oxygen to a living tissue characterized by dissolving a high concentration of oxygen in the oxygen-supplying medium for a living tissue (claim 1). 2. The high oxygen dissolved medium for supplying oxygen to a living tissue according to claim 1, wherein the oxygen partial pressure in the medium after 45 minutes of the open system is at least 200 mmHg or more. 3. The high oxygen dissolving medium for supplying oxygen to a living tissue according to claim 1 or 2, wherein the high concentration oxygen is dissolved in the oxygen supplying medium by dissolving the oxygen under pressure. 4.) The high oxygen dissolution for supplying oxygen to a living tissue according to any one of claims 1 to 3, wherein the dissolution of a high concentration of oxygen in the oxygen supplying medium for the living tissue is performed under a pressure of 1 atm or more. The medium (Claim 4) and the living tissue oxygen supply medium are A high oxygen dissolved medium for supplying oxygen to a living tissue (Claim 5) according to any one of claims 1 to 4, wherein the medium is a robin solution, a perfluorochemical, a physiological saline, or a living tissue preservation solution. The high oxygen dissolved medium for supplying oxygen to a living tissue according to any one of claims 1 to 5, wherein the tissue oxygen supplying medium is a living tissue oxygen supplying medium for intraperitoneal administration or a living tissue preserving medium. 6).
[0013]
The present invention also provides a pressurized vessel (1) for supplying a living tissue oxygen supply medium (A), and for degassing the medium and dissolving oxygen under pressure, and supplying the pressurized vessel (1). An air discharging means (2) provided in the pressurized container for degassing from the supplied living tissue oxygen supply medium, and a pressurizing method for supplying and dissolving oxygen under pressure to the living tissue oxygen supply medium. An oxygen supply means (3) provided in the container (1), and a high oxygen dissolved medium discharge means for supplying a biological tissue oxygen for discharging a biological tissue oxygen supply medium having oxygen dissolved therein from the pressurized container (1); (4) The apparatus for producing a high-oxygen-dissolved medium for supplying oxygen to living tissue (Claim 7), and the pressurization in the pressurized container (1) is applied to the oxygen supply means (3). 7. The living tissue according to claim 6, which is performed by the pressure of a connected oxygen cylinder. Apparatus for producing a high dissolved oxygen medium for containing feed consisting (claim 8).
[0014]
Further, the present invention provides a device for producing a high oxygen dissolved medium for supplying oxygen to a living tissue according to claim 7 or 8, wherein the high oxygen dissolved medium is connected via a high oxygen dissolved medium discharging means (4) of the device. Means for administering the dissolved medium to the living tissue, producing a high oxygen dissolved medium, and administering the high oxygen dissolved medium to the living tissue (claim 9). 10. The living body according to claim 9, wherein the high oxygen dissolved medium discharging means (4) and the means for administering the high oxygen dissolved medium to the living tissue are connected via pressure adjusting means and temperature adjusting means. A tissue oxygen supply system (Claim 10) or a manufactured high oxygen dissolved medium for supplying oxygen to a living tissue is the high oxygen dissolved medium for supplying oxygen to a living tissue according to any one of claims 1 to 6. The living body according to claim 9 or 10, The biological tissue oxygen supply according to any one of claims 9 to 11, wherein the woven oxygen supply system (Claim 11) or the administration of the high oxygen dissolved medium to the biological tissue is an administration into a living abdominal cavity. The system (Claim 12) and the means for administering the high oxygen-dissolved medium to the living tissue are in the form of a container containing the high oxygen-dissolved medium that enables the storage or transportation of the living tissue. A biological tissue oxygen supply system according to any one of (1) to (11).
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention dissolves oxygen under a high pressure, thereby dissolving high-concentration oxygen in a living tissue oxygen supply medium, and administering the high-concentration oxygen-dissolved living tissue oxygen supply medium to living tissues (organs). By doing so, the oxygen metabolism state of the living tissue is maintained normally, and the failure of the function of the living tissue caused by ischemic damage of the living tissue is effectively prevented.
In the present invention, the pressure for dissolving high-concentration oxygen in the living tissue oxygen supply medium is usually at least 1 atm in consideration of the dissolved amount of oxygen and the safety of the device used for dissolution. However, it is particularly preferred to carry out the dissolution of oxygen under a pressure of about 5 atm. With the dissolution of oxygen under a pressure of about 5 atm, it is possible to obtain about 3 times the oxygen concentration as compared with the case of bubbling at atmospheric pressure. Regarding the dissolution of oxygen in the biological tissue oxygen supply medium of the present invention, the oxygen partial pressure in the biological tissue oxygen supply medium after 45 minutes of the open system is preferably at least 200 mmHg, more preferably 1200 mmHg or more.
[0016]
Examples of the living tissue oxygen supply medium used in the present invention include perfluorochemical (PFC) and hemoglobin solutions developed as artificial blood, and physiological saline having low biological damage and other organ preservation solutions. (St. Thomas solution, Euro-Collins solution, University of Wisconsin (UW) solution, etc.).
The perfluorochemical is not particularly limited, but includes perfluoro-n-butyltetrahydrofuran, perfluorodichlorooctane, perfluoro-bischlorobutylether, perfluorodecalin, perfluoromethyldecalin, perfluorodimethyldecalin, perfluorodimethyladamantane, perfluorooctyl bromide, perfluoro -4-methyl-octahydroquinolizidine, perfluoro-N-methyl-decahydroquinoline, F-methyl-1-oxa-decalin, perfluorooctahydroquinolizidine, perfluoro-5,6-dihydro-5-decene, and perfluoro It may be -4,5-dihydro-4-octene, chlorinated perfluorocarbons or a mixture thereof.
[0017]
As the hemoglobin solution, stromal free hemoglobin obtained by hemolyzing erythrocytes of animals or humans according to a conventional method and removing membrane components can be used, and a cross-linked hemoglobin or a polymerized hemoglobin obtained by chemically modifying the hemoglobin can be used. For example, a known hemoglobin solution used as artificial blood can be used.
In order to administer the high-oxygen dissolved medium for supplying oxygen to a living tissue of the present invention to a living tissue (organ) such as the abdominal cavity or an isolated organ, an appropriate medically applicable administration means can be used. However, as described below, it is preferable to perform the treatment using the living tissue oxygen supply system of the present invention connected to the apparatus for producing a high oxygen dissolved medium.
[0018]
The present invention dissolves oxygen in an oxygen-dissolving medium in order to dissolve more oxygen in an oxygen-dissolving medium (perfluorochemical, hemoglobin, Euro-Collins solution, UW solution, etc.) and transport a larger amount of oxygen to tissues. The present invention provides an apparatus for causing the above.
The structure of the apparatus of the present invention will be described in detail below.Generally, a vacuum pump is connected to a pressure-resistant stainless steel container, and firstly, air already dissolved in the oxygen-dissolved medium is removed. A high-pressure oxygen cylinder is connected to the structure, so that a larger amount of oxygen can be dissolved under high pressure. The apparatus has a structure in which an oxygen-dissolved medium having a large amount of oxygen dissolved therein can be taken out from a nozzle while the container is sealed.
The device of the present invention, for example, when transporting an organ to a remote area, such as in transplantation medicine, uses a container containing the oxygen-dissolved medium of the device of the present invention to directly place the organ inside the container. By storing, it can be transported. The transport by the container can be carried out over a long period of time without damaging the organ, and since it is compact and portable, the structure of the device of the present invention can exert its power in storing and transporting the organ. It has a structure.
[0019]
The apparatus for producing a high-oxygen dissolved medium for supplying oxygen to living tissue according to the present invention is specifically shown in FIGS.
The apparatus for producing a high oxygen-dissolved medium has, as a basic structure, a pressurized container (1) for supplying a living tissue oxygen supply medium (A), and for degassing the medium and dissolving oxygen under pressure, An air discharging means (2) provided in the pressurized container for deaeration from the living tissue oxygen supply medium supplied into the pressurized container (1); Oxygen supply means (3) provided in a pressurized container (1) for supplying and dissolving oxygen, and a biological tissue for discharging a biological tissue oxygen supply medium having oxygen dissolved therein from the pressurized container (1) High oxygen dissolved medium discharging means (4) for supplying oxygen.
[0020]
The pressurized container (1) is usually made of pressure-resistant stainless steel, and is formed of a body (11) and a lid (12), and the body and the lid are provided on the top of the body. The flange (111) and the flange (113) provided on the lid are gripped and fixed by the ring-type clamp (6) so that the pressure vessel (1) can be pressure-resistant and hermetically sealed. In the pressurized container (1), a supply port for inserting the living tissue oxygen supply medium (A) in a state where the body and the lid are fixed and hermetically sealed can be appropriately provided. The lid of the pressurized container (1) is usually equipped with a pressure gauge (5).
The bottom of the pressurized container (1) is formed of a gentle arc-shaped end plate in order to increase the pressure resistance of the container.
The air discharging means (2) provided in the pressurized container for deaeration from the living tissue oxygen supply medium supplied in the pressurized container (1) has a vacuum outside the pressurized container (1). The air in the pressurized container (1) is connected to a pump (FIG. 3 (7)) and can be exhausted via piping and a check valve. The outlet of the air discharging means (2) from the inside of the pressurized container (1) is usually provided in the lid of the pressurized container (1), and the outlet is provided with a branching control valve and can be switched. By doing so, it can be provided in common with the entrance of the oxygen supply means (3).
[0021]
An oxygen supply means (3) provided in the pressurized container (1) for supplying and dissolving oxygen under pressure to the living tissue oxygen supply medium is provided outside the pressurized container (1) by an oxygen cylinder (FIG. 3). (8)), and oxygen can be supplied into the pressurized container (1) via a pipe and a check valve. The pressure in the pressurized container (1) is usually adjusted by the pressure of an oxygen cylinder. However, if necessary, a device such as a compressor may be appropriately provided to adjust the pressure. In order to dissolve oxygen in the living tissue oxygen supply medium (A) in the pressurized container (1) from the oxygen supply means (3), pressurized oxygen is supplied from the oxygen supply means (3) to the living tissue oxygen supply medium (A). ), A method in which pressurized oxygen is blown into the oxygen supply medium (A), or an oxygen supply means (3) is provided with a pipe extended into the oxygen supply medium (A). A suitable method such as a method in which pressurized oxygen is ejected from the nozzle and bubbled is used.
[0022]
A high-oxygen dissolved medium discharging means (4) for supplying a biological tissue oxygen supply for discharging the biological tissue oxygen supply medium in which oxygen is dissolved from the inside of the pressurized container (1) is provided at the bottom of the pressurized container (1). , And communicate with the outside of the pressurized container (1) via a check valve.
When the apparatus for producing a high oxygen-dissolved medium for supplying oxygen to a living tissue of the present invention is assembled as a living tissue oxygen supply system, the production apparatus is connected to the high oxygen-dissolving medium discharging means (4) of the apparatus. The dissolution medium is connected to a living tissue administration means. The connection between the high-oxygen-dissolved medium discharging means (4) and the means for administering the high-oxygen-dissolved medium to the living tissue can be appropriately connected via a pressure adjusting means and a temperature adjusting means. The pressure and temperature of the high oxygen dissolved medium to be administered can be adjusted. As a means for administering a living tissue to a high oxygen-dissolved medium, an administration means generally used in the medical field can be applied.
[0023]
A case where the living tissue oxygen supply system of the present invention is implemented using the apparatus of the present invention will be described with reference to FIGS. First, a pressurized container (1) of the present invention made of pressure-resistant stainless steel is filled with a living tissue oxygen supply medium (A) such as a hemoglobin solution, perfluorochemical, or physiological saline. Next, the lid (122) is set on the body (11), and the flange (111) provided on the top of the body (11) and the flange (113) provided on the cover (12) are clamped by a ring clamp ( Hold in 6), fix and seal the pressurized container (1). Next, by means of a vacuum pump connected via an air discharging means (2) provided in the pressurized container (1), it is dissolved in the living tissue oxygen supply medium (A) filled in the pressurized container (1). Remove any air that you have.
[0024]
After closing the air discharge means (2), the oxygen supply means (3) provided in the pressurized container (1) is connected to a high-pressure oxygen cylinder, and under high pressure (for example, 5 atm), the living tissue oxygen supply medium (A) is blown with oxygen to dissolve a large amount of oxygen. In the case of preservation of the removed organ, once the lid is opened, the organ is closed in the oxygen supply medium, and then the lid is closed again. And pressurize. Keep the organs in the container for the desired storage time. By cooling the outside of the container with a means such as ice, it is possible to appropriately store at low temperature. When used in a living body, a medium for supplying oxygen in a living tissue in which a large amount of oxygen is dissolved is pressurized through a high-oxygen-dissolving medium discharging means (4) for supplying oxygen to the living tissue provided in a pressurized container (1). Take out the container (1) in a sealed state. The high-oxygen-dissolved medium for supplying oxygen to the living tissue taken out through the discharging means (4) is adjusted by adjusting the pressure and temperature of the high-oxygen-dissolved medium by pressure adjusting means and temperature adjusting means as necessary. Introduced into the means, the high oxygen dissolved medium is administered to the living tissue (organ).
[0025]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples, but the technical scope of the present invention is not limited to these examples.
Embodiment 1 FIG. Changes in oxygen partial pressure of intraperitoneally administered perfluorochemical
Animal experiments were performed using rats. Using the living tissue oxygen supply system of the present invention, oxygen was dissolved in a perfluorochemical solution (Perfluorodecalin: manufactured by F2 Chemical LTD) at 5 atm and administered intraperitoneally to rats. Then, how the oxygen partial pressure of this perfluorochemical solution changes was measured over time. The measuring method of the oxygen partial pressure used in this experimental example was an oxygen electrode method (composite polarography), and an apparatus of CHIBA-CORNING 800 (manufactured by Chiba Corning Diagnostic Corp.) was used for the measurement. As a control, the oxygen partial pressure of a perfluorochemical solution in which oxygen was dissolved by a conventional oxygen bubbling method was measured, and the two were compared (FIG. 4).
[0026]
As a result, as shown in FIG. 4, the perfluorochemical solution obtained by dissolving oxygen in the perfluorochemical solution at 5 atm conditions using the system of the present invention and the perfluorochemical solution obtained by dissolving oxygen at 1 atm were used. In comparison, while the pressure is about 3500 mmHg after 0 hours under 5 atm conditions, it is about 700 mmHg under 1 atm conditions, and there is a 5-fold difference in oxygen partial pressure concentration. When the pressure was 5 atm, the pressure was about 1300 mmHg, while the pressure was 1 mm, the pressure was 400 mmHg, and the difference in oxygen partial pressure concentration was about 3 times. From this, it was found that a high concentration of oxygen can be dissolved over a long period of time with perfluorochemical oxygenated under 5 atm conditions. As described above, by using the system of the present invention to oxygenate a living tissue oxygen supply medium under pressure, a large amount of oxygen can be dissolved and administered to a living body.
[0027]
Embodiment 2. FIG. Intestinal tissue protective effect
According to the method of Crit Care Med, 29, 4, 782-788, 2001, intestinal ischemia-reperfusion injury and subsequent distant organ injury occur simultaneously, so it has been used as a model of multiple organ failure. Intestinal tissue when the oxygenated perfluorochemical of the present invention (Fluosol-DA: manufactured by The Green Cross Corp. Osaka, Japan) is intraperitoneally administered to a rat, which is a model of blocking and releasing the mesenteric artery, in a rat We examined the protective effect of the garbage.
The rat's superior mesenteric artery was blocked (120 minutes) and oxygenated perfluorochemical was administered intraperitoneally to observe the protective effect on intestinal tissue. A photograph of a macro image (FIG. 5; reference photograph 1) and a micro image (FIG. 6; reference photograph 2) are attached. Those administered with oxygenated perfluorochemical and supplied with oxygen could maintain intestinal tissue viability and protect the tissue from ischemia-reperfusion injury even under occlusion of blood flow.
[0028]
Embodiment 3 FIG. Survival rate of rats with multiple organ failure model
Using the above-mentioned rat, the aorta of the rat was blocked, and the blood vessels in the abdominal cavity (liver, kidney, pancreas, spleen, intestine) were blocked (45 minutes) (FIG. 7; Reference Photo 3), and a multiple organ failure model was obtained. Was prepared. Using this model, a perfluorochemical solution oxygenated under 5 atm conditions using the apparatus of the present invention and a perfluorochemical solution oxygenated under ordinary 1 atm conditions (Perfluorodecalin: F2 Chemical LTD) Was administered intraperitoneally to separate rats. As a control, the survival rate was compared with a control group to which nothing was administered. In addition, the Kaplan-Meier method was used as a comparison method.
[0029]
As a result, the survival rates at 12 hours after the blood flow interruption were 90%, 60% and about 30%, respectively, under the conditions of 5 atm, 1 atm and the control (Control). The survival rates were 70%, 40% and 0% (FIG. 8).
From this, even in the multiple organ failure model, by using a large amount of oxygen-dissolved perfluorochemical solution oxygenated under 5 atm conditions, it was compared with the control and perfluorochemical solution oxygenated under 1 atm condition. Then, it turned out that the survival rate can be drastically increased.
[0030]
Embodiment 4. FIG. Organ preservation test
The rat small intestine was excised, immersed in UW solution, a conventional organ preservation solution, stored at 4 ° C. for 24 hours, and oxygen-dissolved medium (PFC: Perfluorodecalin) was oxygenated using the apparatus of the present invention, and The small intestine was put therein, stored at 4 ° C. for 24 hours, taken out of the apparatus, and examined microscopically for the degree of tissue damage (FIG. 9; reference photograph 4). As a result, in contrast to the conventional method of preservation, which was immersed in UW solution and stored at 4 ° C. for 24 hours, extensive destruction and detachment of the microvillous tissue of the small intestinal mucosa were remarkable (FIG. 9B) In the small intestine stored in the device of the present invention, a tissue image close to a normal tissue was maintained (FIG. 9-C), and the organ protecting effect of the present invention became clear. In FIG. 9, A is a normal small intestine tissue image, B is a small intestine tissue image when stored at 4 ° C. in UW solution for 24 hours, C is oxygenated oxygen-dissolved medium (PFC) of the present invention, 2 shows a small intestine tissue image when stored for 24 hours.
[0031]
【The invention's effect】
Oxygen is indispensable for living organisms. Under severe conditions such as hemorrhagic shock and sepsis, living tissues are forced to be hypoxic. Similarly, organs removed by transplantation or the like cannot withstand long-term storage under hypoxia. In such a case, by supplying oxygen to the living tissue (organ), the function of the living tissue can be protected. For that purpose, depending on how much oxygen can be transported efficiently to a substance that transports oxygen (for example, a living tissue oxygen supply medium such as a hemoglobin solution or perfluorochemical), a living tissue or an organ, and furthermore, It depends on whether you can extend the life of the thing itself. According to the present invention, a living tissue oxygen supply medium (oxygen carrier) in which a large amount of oxygen is dissolved can be taken out, and the oxygen supply medium can be administered to a living tissue (organ). Further, by storing the removed organ directly in the apparatus of the present invention, the organ can be stored for a longer period of time than the conventional method without damage. Therefore, the present invention is expected to play an important role as a coping technique in medical sites including emergency medical care, such as treatment of critically ill patients under intensive care and protection of an isolated transplanted organ.
[Brief description of the drawings]
FIG. 1 is a diagram showing an overall image of an apparatus for producing a high-oxygen dissolved medium for supplying oxygen to a living tissue according to the present invention.
FIG. 2 is a photograph showing a disassembled pressurized container (1) of the apparatus for producing a high-oxygen dissolved medium for supplying oxygen to living tissue according to the present invention.
FIG. 3 is a photograph showing the whole apparatus for producing a high oxygen dissolved medium for supplying oxygen to a living tissue of the present invention, which is connected to a vacuum pump and an oxygen cylinder.
FIG. 4 is a graph showing changes in oxygen partial pressure of perfluorochemical administered intraperitoneally to rats in an example of the present invention.
FIG. 5 is a view showing a macro image of a protective effect in an experiment on a protective effect on intestinal tissue of oxygenated perfluorochemical in an example of the present invention.
FIG. 6 is a diagram showing a microscopic image of the protective effect in an experiment on the protective effect of oxygenated perfluorochemical on intestinal tissue in an example of the present invention.
FIG. 7 shows blood vessels of all organs in the abdominal cavity (liver, kidney, pancreas, spleen, intestinal tract) in an experiment on the survival rate of a multi-organ failure model rat when a perfluorochemical solution was administered in an example of the present invention. It is a figure showing the situation of interruption.
FIG. 8 is a diagram showing the results of an experiment on the survival rate of a multi-organ failure model rat when a perfluorochemical solution was administered in Examples of the present invention.
FIG. 9 is a histological image of the small intestine showing the effect when the isolated small intestine of the rat was oxygenated at 5 atm with a perfluorochemical solution and stored in a container for 24 hours in the example of the present invention.

Claims (13)

生体組織酸素供給媒体に高濃度の酸素を溶存させたことを特徴とする生体組織酸素供給用高酸素溶存媒体。A high oxygen dissolved medium for supplying oxygen to a living tissue, wherein a high concentration of oxygen is dissolved in the oxygen supplying medium for a living tissue. 高濃度の酸素の溶存が、開放系45分後の媒体中の酸素分圧が、少なくても200mmHg以上であることを特徴とする請求項1記載の生体組織酸素供給用高酸素溶存媒体。2. The oxygen-dissolving medium for supplying oxygen to a living tissue according to claim 1, wherein the dissolved oxygen at a high concentration has an oxygen partial pressure in the medium after 45 minutes of the open system of at least 200 mmHg or more. 生体組織酸素供給媒体への高濃度の酸素の溶存が、加圧下に酸素を溶存させることにより行われたことを特徴とする請求項1又は2記載の生体組織酸素供給用高酸素溶存媒体。3. The oxygen-dissolving medium for supplying oxygen to a living tissue according to claim 1, wherein the high-concentration oxygen is dissolved in the oxygen-supplying medium for the living tissue by dissolving the oxygen under pressure. 生体組織酸素供給媒体への高濃度の酸素の溶存が、1気圧以上の加圧下に行われることを特徴とする請求項1〜3のいずれか記載の生体組織酸素供給用高酸素溶存媒体。The high oxygen dissolved medium for supplying oxygen to a living tissue according to any one of claims 1 to 3, wherein the high-concentration oxygen is dissolved in the living tissue oxygen supplying medium under a pressure of 1 atm or more. 生体組織酸素供給媒体が、ヘモグロビン溶液、パーフルオロケミカル、生理的食塩水又は生体組織保存液であることを特徴とする請求項1〜4のいずれか記載の生体組織酸素供給用高酸素溶存媒体。The high oxygen dissolved medium for supplying oxygen to a living tissue according to any one of claims 1 to 4, wherein the living tissue oxygen supply medium is a hemoglobin solution, a perfluorochemical, a physiological saline, or a living tissue preservation solution. 生体組織酸素供給媒体が、腹腔内投与用生体組織酸素供給媒体又は生体組織保存用媒体であることを特徴とする請求項1〜5のいずれか記載の生体組織酸素供給用高酸素溶存媒体。The high oxygen dissolved medium for supplying oxygen to a living tissue according to any one of claims 1 to 5, wherein the living tissue oxygen supply medium is a living tissue oxygen supply medium for intraperitoneal administration or a living tissue storage medium. 生体組織酸素供給媒体(A)を供給し、該媒体の脱気と加圧下における酸素の溶存を行うための加圧容器(1)と、加圧容器(1)内に供給された生体組織酸素供給媒体からの脱気を行うために該加圧容器に設けられた空気排出手段(2)と、生体組織酸素供給媒体に加圧下、酸素を供給・溶存させるために加圧容器(1)に設けられた酸素供給手段(3)と、酸素を溶存させた生体組織酸素供給媒体を加圧容器(1)内から排出するための生体組織酸素供給用高酸素溶存媒体排出手段(4)とを備えたことを特徴とする生体組織酸素供給用高酸素溶存媒体の製造装置。A pressurized container (1) for supplying a biological tissue oxygen supply medium (A), and for degassing the medium and dissolving oxygen under pressure; and a biological tissue oxygen supplied to the pressurized container (1). An air discharging means (2) provided in the pressurized container for deaeration from the supply medium, and a pressurized container (1) for supplying and dissolving oxygen under pressure to the living tissue oxygen supply medium. The provided oxygen supply means (3) and the high-oxygen dissolved medium discharging means (4) for supplying the living tissue oxygen for discharging the living tissue oxygen supply medium having oxygen dissolved therein from the pressurized container (1). An apparatus for producing a high-oxygen dissolved medium for supplying oxygen to a living tissue, comprising: 加圧容器(1)内の加圧が、酸素供給手段(3)に接続された酸素ボンベの圧力によってなされることを特徴とする請求項6記載の生体組織酸素供給用高酸素溶存媒体の製造装置。7. The method according to claim 6, wherein the pressurization in the pressurized container (1) is performed by the pressure of an oxygen cylinder connected to the oxygen supply means (3). apparatus. 請求項7又は8記載の生体組織酸素供給用高酸素溶存媒体の製造装置と、該製造装置の高酸素溶存媒体排出手段(4)を介して連結された、該高酸素溶存媒体を生体組織へ投与する手段とからなり、高酸素溶存媒体を製造し、該高酸素溶存媒体を生体組織へ投与するようにしたことを特徴とする生体組織酸素供給システム。The apparatus for producing a high oxygen-dissolved medium for supplying oxygen to a living tissue according to claim 7 or 8, and the high-oxygen dissolved medium connected to the high-oxygen-dissolved medium discharging means (4) of the production apparatus is transferred to the living tissue. A biological tissue oxygen supply system comprising a means for administering, producing a high oxygen dissolved medium, and administering the high oxygen dissolved medium to a living tissue. 高酸素溶存媒体排出手段(4)と高酸素溶存媒体を生体組織へ投与する手段とが、圧力調整手段、温度調整手段を介して連結されることを特徴とする請求項9記載の生体組織酸素供給システム。The living tissue oxygen according to claim 9, wherein the high oxygen dissolved medium discharging means (4) and the means for administering the high oxygen dissolved medium to the living tissue are connected via a pressure adjusting means and a temperature adjusting means. Feeding system. 製造された生体組織酸素供給用高酸素溶存媒体が、請求項1〜6のいずれか記載の生体組織酸素供給用高酸素溶存媒体であることを特徴とする請求項9又は10記載の生体組織酸素供給システム。The living tissue oxygen according to claim 9 or 10, wherein the manufactured high oxygen dissolving medium for supplying living tissue oxygen is the high oxygen dissolving medium for supplying living tissue oxygen according to any one of claims 1 to 6. Feeding system. 生体組織への高酸素溶存媒体の投与が、生体腹腔内への投与であることを特徴とする請求項9〜11のいずれか記載の生体組織酸素供給システム。The living tissue oxygen supply system according to any one of claims 9 to 11, wherein the administration of the high oxygen dissolved medium to the living tissue is administration into a living abdominal cavity. 高酸素溶存媒体を生体組織へ投与する手段が、生体組織の保存或いは運搬を可能としている高酸素溶存媒体を含む容器の形であることを特徴とする請求項9〜11のいずれか記載の生体組織酸素供給システム。The living body according to any one of claims 9 to 11, wherein the means for administering the high-oxygen-dissolved medium to the living tissue is in the form of a container containing the high-oxygen-dissolved medium that enables storage or transportation of the living tissue. Tissue oxygen supply system.
JP2002325987A 2002-11-08 2002-11-08 System for feeding oxygen to biological tissue (organ) Pending JP2004161617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002325987A JP2004161617A (en) 2002-11-08 2002-11-08 System for feeding oxygen to biological tissue (organ)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002325987A JP2004161617A (en) 2002-11-08 2002-11-08 System for feeding oxygen to biological tissue (organ)

Publications (1)

Publication Number Publication Date
JP2004161617A true JP2004161617A (en) 2004-06-10

Family

ID=32805044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002325987A Pending JP2004161617A (en) 2002-11-08 2002-11-08 System for feeding oxygen to biological tissue (organ)

Country Status (1)

Country Link
JP (1) JP2004161617A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010535485A (en) * 2007-08-09 2010-11-25 ヘマリナ ソシエテ アノニム Use of globin, globin protomer or extracellular hemoglobin for the preservation of organs, tissues, organ cells, tissue cells and cell cultures
JP2019500195A (en) * 2015-12-21 2019-01-10 ハイバーニア メディカル エルエルシー Method and system for delivery of dissolved gas and degassing of medical fluid lines
JP2019048652A (en) * 2017-09-08 2019-03-28 株式会社ジェイ・エム・エス Transport device for organ and biological tissue

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010535485A (en) * 2007-08-09 2010-11-25 ヘマリナ ソシエテ アノニム Use of globin, globin protomer or extracellular hemoglobin for the preservation of organs, tissues, organ cells, tissue cells and cell cultures
JP2019500195A (en) * 2015-12-21 2019-01-10 ハイバーニア メディカル エルエルシー Method and system for delivery of dissolved gas and degassing of medical fluid lines
JP2019048652A (en) * 2017-09-08 2019-03-28 株式会社ジェイ・エム・エス Transport device for organ and biological tissue

Similar Documents

Publication Publication Date Title
US9357764B2 (en) System for fluid perfusion of biological matter comprising tissue
US20020177117A1 (en) Hyperbaric oxygen organ preservation system (hoops)
Veith et al. Lung transplantation 1983
JP2016053081A (en) Compositions, methods and devices for maintaining an organ
JP2007519763A (en) Apparatus and method for determining the effect of a substance on an organ
US20140228436A1 (en) Organ protection solution and its method of use
US9462801B2 (en) Method for preserving pancreatic islet, container for preserving pancreatic islet, and kit for transplanting pancreatic islet
RU2707532C1 (en) Method for improving safety and efficiency of storage and transportation of a transplanted organ under pressure of a preserving gas mixture and a device based thereon
US20210076668A1 (en) Organ container with oxygenation option
JP2004161617A (en) System for feeding oxygen to biological tissue (organ)
Todo et al. Animal research in liver transplantation with special reference to the dog
JP5650191B2 (en) Fluid perfusion system for biological material containing tissue
JPH02282301A (en) Device for storing organ
JP2022525874A (en) Oxygen supply device
CN105407716A (en) Formulations containing poly (0-2-hydroxyethyl) starch for increasing the oxygen-content, stability and shelf life of an organ and tissue preservation solution
Albes et al. Management of mycotic rupture of the ascending aorta after heart-lung transplantation
CN113677200B (en) Method and apparatus for repairing an organ
CN105472981A (en) Organ and tissue preservation solutions having increased oxygen-content, stability and shelf life
Baron et al. Retrospective clinical comparison of Celsior solution to modified blood Wallwork solution in lung transplantation for cystic fibrosis
Hachida et al. Lung function after prolonged lung preservation
Han et al. Comparison of 2 devices in pigs to induce hypothermia in laparoscopic orthotopic kidney transplant
CN113677201B (en) Methods and devices for repairing kidneys
US20220007638A1 (en) Organ transport container with antiviral therapy
US20230073834A1 (en) Subnormothermic machine perfusion of organs with carbon monoxide and oxygen
Terajima et al. Long‐duration xenogeneic extracorporeal pig liver perfusion with human blood

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090616