JP2004161082A - Light distribution controller - Google Patents

Light distribution controller Download PDF

Info

Publication number
JP2004161082A
JP2004161082A JP2002327672A JP2002327672A JP2004161082A JP 2004161082 A JP2004161082 A JP 2004161082A JP 2002327672 A JP2002327672 A JP 2002327672A JP 2002327672 A JP2002327672 A JP 2002327672A JP 2004161082 A JP2004161082 A JP 2004161082A
Authority
JP
Japan
Prior art keywords
vehicle
light distribution
detecting
headlight
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002327672A
Other languages
Japanese (ja)
Inventor
Isao Furusawa
勲 古沢
Original Assignee
Hitachi Ltd
株式会社日立製作所
Honda Motor Co Ltd
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, 株式会社日立製作所, Honda Motor Co Ltd, 本田技研工業株式会社 filed Critical Hitachi Ltd
Priority to JP2002327672A priority Critical patent/JP2004161082A/en
Publication of JP2004161082A publication Critical patent/JP2004161082A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light distribution controller capable of suitably adjusting an irradiation range of a headlight, without generating glare to a driver of a preceding vehicle and an oncoming vehicle. <P>SOLUTION: The light distribution controller comprises a vehicular detecting means for detecting the preceding vehicle and the oncoming vehicle, and a light distribution amount calculating means for calculating the light distribution amount of the headlight independently in right and left sides on the basis of information from the vehicular detecting means, so that the strength of a high beam and a low beam of the right and left headlights can be controlled independently in the right and left sides. Headlight control can be carried out at low cost, because an optical axis changing means is not used. In addition to the structure, a road information detecting means for detecting road information in front of an own vehicle, and a headlight optical axis changing means capable of changing the optical axis of the headlight are provided, so that in addition to strength control of the high beam and the low beam of the headlight, the optical axis of the headlight can be controlled in a lateral and vertical directions. Consequently, suitable light distribution control can be carried out. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ヘッドライトの配光制御装置に係わり、特に、先行車または対向車の状態と道路情報より左右独立にヘッドライトの制御を行う配光制御装置に関する。
【0002】
【従来の技術】
車両についているヘッドライトはハイビームとロービームの2段階の切り替えが可能になっている。夜間走行時、先行車または対向車がいないときはハイビームにし、先行車または対向車がいる場合は、相手方のドライバに対しグレアが発生しないようロービームにするのが一般的である。しかし、この2段階の切り替えだけでは、最適な視界を確保できているとは言えない。そこで、特開平6−
295601号公報では、ヘッドライトの光が先行車に照射されている部分と照射されていない部分の境界を所定高さ以下にする手法が提案されている。
【0003】
【特許文献1】
特開平6−295601号公報
【0004】
【発明が解決しようとする課題】
しかしながら上記の制御では、自車両より遠方の車両に対しては境界線が検出しづらいため、制御が不安定になってしまう恐れがある。更に、左右のヘッドライトを同一方向に動かしているため、先行車が片側によって走行している場合、先行車と逆側の照射範囲が最適になっていない。また、横方向の光軸については制御していないため、カーブに対応して光軸を制御することはできない。また、ハイビームとロービームの強度制御のみでよい場合、ヘッドライトの光軸を調整する機構が必要となるためコストが高くなる。本発明は上記の課題に鑑みてなされたものであり、先行車,対向車のドライバに対しグレアを発生させること無く、最適にヘッドライトの照射範囲を調整することができる配光制御装置および方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明の配光制御装置は、先行車または対向車を検知する車両検知手段と、車両検知手段の情報を基にヘッドライトの配光量を左右独立に算出する配光量算出手段を備えることを特徴としている。この構成により左右のヘッドライトのハイビームとロービームの強度を左右独立に制御でき、更に、ヘッドライトの光軸変更手段を用いていないことから低コストでヘッドライトの制御を行うことができる。
【0006】
更に、上記構成のほかに自車両前方の道路情報を検知する道路情報検知手段と、ヘッドライトの光軸を変更することができるヘッドライト光軸変更手段を設けることで、ヘッドライトのハイビームとロービームの強度制御の他に、ヘッドライトの光軸を左右上下に制御でき、最適な配光制御を行うことができる。
【0007】
また、上記目的は、車両に設置された複数のライトの配光を制御する配光制御方法であって、ある方向の物体を検出し、前記検出した情報に基づいて前記複数のライトの配光を個々に制御することによって達成される。
【0008】
【発明の実施の形態】
[第一実施例]
以下、図面に基づき本発明であるヘッドライトのハイビームとロービームの強度を左右独立に制御する配光制御装置の実施形態について詳細に説明する。
【0009】
図1は本実施形態の配光制御装置の基本構成を示す制御ブロック図である。本装置は、先行車または対向車を検知する車両検知手段1と、車両検知手段の情報を基にヘッドライトの配光量を左右独立に算出する配光量算出手段4,左右ヘッドライト5,6,車速等検出手段7を備えている。車両検知手段1は、撮像装置2から得た情報を基に車両位置算出手段3により先行車または対向車の車両幅を求め、先行車または対向車の自車両に対する相対角度や相対距離を算出するものである。配光量算出手段4では、車両検知手段1で求めた情報と車速等検出手段7からの情報である自車速,ステアリング位置を基に、左右ヘッドライト5,6のハイビームとロービームの強度を計算し、左右ヘッドライト5,6に対しそれぞれ電圧制御やPWM制御によりライト制御を行うものである。
【0010】
図2は車両検知手段1により、先行車の車両幅を求め、そして自車両に対する相対角度,相対距離の算出の仕方について説明したものである。まず初めに、認識対象シーン8の映像を撮像装置2で取り込み、次に車両位置算出手段3により認識対象シーン8を横方向エッジ画像9に変換する。すると、横方向エッジの固まりを車両領域11として抽出することができる。自車両中心線と先行車方向線を求めることができるので、そのなす角度である先行車の相対角度θを算出できる。更に車両領域11より画像中の車両幅Wを求めることができるので、レンズの焦点距離をf,実際の車両幅をL,先行車との相対距離をXとすると、
f:W=X:L …式1
の関係式が成り立ち、焦点距離fは既知であり、実際の車両幅Lを固定値(例:1.8m )とした場合、相対距離Xを算出することができる。また、先行車のテールランプ,対向車のヘッドライトの明るさは道路等の明るさより明るいという特徴があることを利用し、道路等が画像中に映らないようにシャッタを絞り込むとテールランプとヘッドライトのみの画像になる。よって、シャッタを絞り込んで認識対象シーン8を取り込むとシャッタ絞り込み画像10が生成される。一対のテールランプ12より先行車両方向線,車両幅Wを求めることができ、横方向エッジ画像9のときと同様に相対角度θ,相対距離Xを求めることができる。先行車が遠方の場合、エッジが出にくくなる恐れがあるため、横方向エッジ画像9の車両領域11が抽出できなくなる恐れがある。よって、先行車が遠方の場合は、シャッタ絞り込み画像10を使用し、先行車が近傍の場合は、横方向エッジ画像9もしくはシャッタ絞り込み画像10を使用することで、近傍から遠方まで精度良く先行車を抽出することが可能になる。
【0011】
図3は車両検知手段1で求めた相対角度θ,相対距離Xより右ハイビームの目標電圧値を求めるためのグラフである。ライトの電圧値が低いときは暗く、高いときは明るいものとし、また、相対角度θは自車両中心線より時計回りを正とする。図3のグラフは相対距離が0m,100m,200m,300mの時を描画したものであるが、それ以外の相対距離のときは滑らかにつながっている。ヘッドライトは遠くの方に行くほど暗くなり、広い範囲を照射する特性があることから、相対距離が遠くなるにつれ、右ハイビーム目標電圧を高くし、更に、低電圧範囲を広くしている。また、左右のヘッドライトの配光範囲の違いから相対角度0を中心として左右対称にはしていなく、相対角度θが負の場合の方が正の場合より早く電圧を高くしている。左ハイビームや左右ロービームも同様に目標電圧値を決めることが可能である。
【0012】
本装置の制御状態を、図4に示すフローチャートに基づいて説明する。まず初めにステップ101においてエッジ画像やシャッタ絞り込み画像より先行車または対向車が存在するかどうかを検出する。先行車または対向車が存在した場合ステップ102へ進み、先行車または対向車の相対距離,相対角度の算出を行う。そして、ステップ103において相対距離と相対角度と目標電圧は、図3に示す関係があることから、左右ヘッドライトのハイビーム,ロービームの目標電圧を決める。ここでステップ101において先行車または対向車が検出されなかったとき、ステップ104において左右ヘッドライトの目標電圧を、ハイビームを最大にし、ロービームを最小に設定する。そして、ステップ105において目標電圧を左右のヘッドライトそれぞれに出力を行う。
【0013】
本第一の実施例によれば、撮像装置2から得られた映像情報より、先行車または対向車の相対距離,相対角度を精度良く算出でき、この算出結果を基に配光量算出手段4により目標電圧を左右のヘッドライトにそれぞれ設定することにより、左右のヘッドライトのハイビームとロービームの強度を左右独立に制御できる。更に、ヘッドライトの光軸変更手段を用いていないことから低コストでヘッドライトの制御を行うことができる。
【0014】
[第二実施例]
次にヘッドライトのハイビームとロービームの光軸を左右上下に制御する配光制御装置の実施形態について説明する。
【0015】
図5は本実施形態の配光制御装置の基本構成を示す制御ブロック図である。本装置は第一実施例の制御ブロック図(図1参照)に加え、自車両が走行する位置を求める道路情報検知手段13と、自車両が走行する位置情報またはステアリング情報より左右ヘッドライトの光軸の変更を行うことができる左右ヘッドライト光軸変更手段14,15を備えている。次に、上下方向の光軸移動について説明する。車両検知手段1では、第一実施例と同様に先行車または対向車の自車両に対する相対距離と相対角度を算出し、配光量算出手段4では、車両検知手段1で求めた相対距離と相対角度の情報を基に、左右ヘッドライトの光軸の上下方向の移動量を図3の右ハイビーム目標電圧値を右ヘッドライト上下光軸移動量としたグラフより算出することができる。この上下光軸移動量を基に左右ヘッドライトの光軸変更手段14,15によりライトの軸制御を行う。次に左右方向の光軸移動について説明する。道路情報検知手段13にて撮像装置2から入力した道路映像に対しハフ変換等を施すと、図6に示す自車両走行車線を検出することができる。この車線の検出結果を基に50m先の走行点16と現在の走行位置の差である自車両移動量17を算出する。次に配光量算出手段4では、ステアリングの移動量が一定値以上の場合、図7の下のグラフより左右方向の光軸移動量を、ステアリングを右に回したときを正とし、右に光軸を傾けるときを正として算出する。ステアリングの移動量が一定値以下の場合、図7の上のグラフより左右方向の光軸の移動量を、自車両を中心とし、50m先で右に移動するときを正として算出する。この左右方向の光軸の移動量を基に左右ヘッドライトの光軸変更手段
14,15によりライトの軸制御を行う。
【0016】
次に、本装置の制御状態を、図8に示すフローチャートに基づいて説明する。まず初めにステップ201において、撮像装置2から入力した道路映像に対しハフ変換等を用いて自車両が走行している車線を検出し、図6に示す50m先の走行点を算出して、現在の自車両の位置からの移動量Mを算出する。次に、ステップ202,203,204,205において、第一実施例と同様に先行車または対向車の相対距離,相対角度より左右ヘッドライトの上下方向の光軸移動量を算出する。次に、ステップ206において車速等検出手段7より検出されたステアリング移動量が一定値以下の場合、ステップ207へ進む。ステップ207において自車両移動量Mの算出に成功していた場合、ステップ208へ進み、ヘッドライト光軸の左右方向の移動量を図7の上のグラフを基に設定する。ステップ
207において自車両移動量Mの算出に成功していなかった場合、ステップ209においてヘッドライト光軸の左右方向の移動を中心に設定する。また、ステップ206においてステアリングの移動量が一定値以上の場合、ヘッドライト光軸の左右方向の移動量を図7の下のグラフを基に設定する。そして、ステップ211では、左右ヘッドライト光軸変更手段14,15によりヘッドライトの上下左右方向の制御を行う。
【0017】
本第二の実施例によれば、撮像装置2から得られた映像情報より、先行車または対向車の相対距離,相対角度を精度良く算出でき、更に自車両が今後走行する50m先の位置と現在の走行位置の差である自車両移動量Mを算出できる。この情報とステアリング情報を基に左右ヘッドライトの上下左右の光軸を最適に制御することができる。
【0018】
本実施形態において自車両移動量Mを算出する距離を50mとしたが、これは一例であり他の距離に変更することは可能であり、数種類の距離から自車両移動量Mを算出しても良い。
【0019】
【発明の効果】
以上の説明から理解されるように、本発明の配光制御装置は、自車両に設置した撮像装置等の検出装置によって検出した先行車または対向車の自車両に対する相対距離,相対角度を精度良く算出でき、この算出結果を基に左右ヘッドライトのハイビームとロービームの強度を左右独立に制御ができ、対向車または先行車のドライバに対しグレアを発生させること無く、最適な配光制御を行うことができる。更に、光軸を変更する際に必要なアクチュエータ等を必要としないことから低コストな装置を提供することができる。更にまた、自車両前方の道路情報を検知する道路情報検知手段とヘッドライトの光軸変更手段を追加することで、左右ヘッドライトの上下左右の光軸を独立に制御できるようになり、対向車または先行車のドライバに対しグレアを発生させること無く、最適な配光制御を行うことができる。
【図面の簡単な説明】
【図1】本発明の配光制御装置の第一実施例の一実施形態の基本的な制御ブロック図。
【図2】先行車の相対角度と相対距離を算出するための一例を示す図。
【図3】右側のハイビームの目標電圧値を求めるための一例を示すグラフ。
【図4】第一実施例の先行車または対向車情報から左右ヘッドライトのハイビームとロービームの電圧を決める制御フローチャート。
【図5】本発明の配光制御装置の第二実施例の一実施形態の基本的な制御ブロック図。
【図6】自車両移動量の把握のための一例を示す図。
【図7】左右方向の光軸の移動量を算出するための一例を示すグラフ。
【図8】第二実施例の自車両移動量と先行車または対向車情報,ステアリング移動量から左右ヘッドライトの上下左右制御量を決める制御フローチャート。
【符号の説明】
1…車両検知手段、2…撮像装置、3…車両位置算出手段、4…配光量算出手段、5…左ヘッドライト、6…右ヘッドライト、7…車速等検出手段、8…認識対象シーン、9…横方向エッジ画像、10…シャッタ絞り込み画像、11…車両領域、12…一対のテールランプ、13…道路情報検知手段、14…左ヘッドライト光軸変更手段、15…右ヘッドライト光軸変更手段、16…50m先の走行点、17…自車両移動量。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light distribution control device for headlights, and more particularly, to a light distribution control device that controls headlights independently from left and right based on the state of a preceding vehicle or an oncoming vehicle and road information.
[0002]
[Prior art]
The headlights on the vehicle can be switched between a high beam and a low beam in two stages. During traveling at night, it is common to use a high beam when there is no preceding vehicle or oncoming vehicle, and to use a low beam when there is a preceding vehicle or oncoming vehicle so that glare does not occur to the driver of the other party. However, it cannot be said that an optimum field of view can be secured only by these two-stage switching. Therefore, Japanese Patent Application Laid-Open
Japanese Patent Application Laid-Open No. 295601 proposes a method of setting a boundary between a portion where a headlight is irradiated to a preceding vehicle and a portion where the light is not irradiated to a preceding vehicle at a predetermined height or less.
[0003]
[Patent Document 1]
JP-A-6-295601
[Problems to be solved by the invention]
However, in the above-described control, it is difficult to detect a boundary line for a vehicle that is farther than the host vehicle, and thus the control may be unstable. Furthermore, since the left and right headlights are moved in the same direction, when the preceding vehicle is traveling on one side, the irradiation range on the opposite side of the preceding vehicle is not optimal. Further, since the optical axis in the horizontal direction is not controlled, it is not possible to control the optical axis corresponding to the curve. In addition, when only the intensity control of the high beam and the low beam is sufficient, a mechanism for adjusting the optical axis of the headlight is required, so that the cost increases. The present invention has been made in view of the above problems, and has a light distribution control apparatus and method capable of optimally adjusting the irradiation range of a headlight without causing glare to a driver of a preceding vehicle or an oncoming vehicle. The purpose is to provide.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, a light distribution control device according to the present invention includes a vehicle detection means for detecting a preceding vehicle or an oncoming vehicle, and a light distribution control device for independently calculating left and right light distribution amounts of headlights based on information from the vehicle detection means. It is characterized by having a light amount calculating means. With this configuration, the intensity of the high beam and the low beam of the left and right headlights can be controlled independently of the left and right, and the headlight can be controlled at low cost because the optical axis changing means of the headlight is not used.
[0006]
Furthermore, in addition to the above-described configuration, a road information detecting unit that detects road information ahead of the vehicle and a headlight optical axis changing unit that can change the optical axis of the headlight are provided, so that a high beam and a low beam of the headlight are provided. In addition to the intensity control described above, the optical axis of the headlight can be controlled left, right, up and down, and optimal light distribution control can be performed.
[0007]
Further, the above object is a light distribution control method for controlling light distribution of a plurality of lights installed in a vehicle, wherein the light distribution control method detects an object in a certain direction, and performs light distribution of the plurality of lights based on the detected information. Is individually controlled.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
[First embodiment]
Hereinafter, an embodiment of a light distribution control device that controls the intensities of a high beam and a low beam of a headlight independently of left and right according to the present invention will be described in detail with reference to the drawings.
[0009]
FIG. 1 is a control block diagram showing a basic configuration of the light distribution control device of the present embodiment. This apparatus comprises a vehicle detecting means 1 for detecting a preceding vehicle or an oncoming vehicle, and a light distribution calculating means 4 for calculating left and right headlight distribution amounts independently based on information from the vehicle detection means. A vehicle speed etc. detecting means 7 is provided. The vehicle detecting means 1 obtains the vehicle width of the preceding vehicle or the oncoming vehicle by the vehicle position calculating means 3 based on the information obtained from the imaging device 2, and calculates the relative angle or relative distance of the preceding vehicle or the oncoming vehicle with respect to the own vehicle. Things. The light distribution calculating means 4 calculates the high beam and low beam intensities of the left and right headlights 5, 6 based on the information obtained by the vehicle detecting means 1 and the own vehicle speed and the steering position which are information from the vehicle speed etc. detecting means 7. The right and left headlights 5 and 6 are respectively controlled by voltage control or PWM control.
[0010]
FIG. 2 illustrates how the vehicle detecting means 1 calculates the vehicle width of the preceding vehicle and calculates the relative angle and relative distance to the own vehicle. First, the image of the recognition target scene 8 is captured by the imaging device 2, and then the recognition target scene 8 is converted into the lateral edge image 9 by the vehicle position calculation means 3. Then, a lump of lateral edges can be extracted as the vehicle region 11. Since the center line of the host vehicle and the direction line of the preceding vehicle can be obtained, the relative angle θ of the preceding vehicle, which is the angle formed by the center line and the preceding vehicle direction line, can be calculated. Further, since the vehicle width W in the image can be obtained from the vehicle area 11, if the focal length of the lens is f, the actual vehicle width is L, and the relative distance from the preceding vehicle is X,
f: W = X: L Equation 1
Holds, the focal length f is known, and the relative distance X can be calculated when the actual vehicle width L is a fixed value (eg, 1.8 m 2). Also, taking advantage of the feature that the brightness of the tail lamp of the preceding vehicle and the headlight of the oncoming vehicle is brighter than the brightness of the road, etc. Image. Therefore, when the shutter is stopped down to capture the recognition target scene 8, a shutter-down image 10 is generated. The preceding vehicle direction line and the vehicle width W can be obtained from the pair of tail lamps 12, and the relative angle θ and the relative distance X can be obtained as in the case of the lateral edge image 9. When the preceding vehicle is distant, there is a possibility that the edge may not easily appear, so that the vehicle region 11 of the lateral edge image 9 may not be extracted. Therefore, when the preceding vehicle is distant, the shutter narrowed image 10 is used, and when the preceding vehicle is near, the lateral edge image 9 or the shutter narrowed image 10 is used, so that the leading vehicle can be accurately moved from near to far. Can be extracted.
[0011]
FIG. 3 is a graph for obtaining the target voltage value of the right high beam from the relative angle θ and the relative distance X obtained by the vehicle detecting means 1. When the voltage value of the light is low, it is dark, and when it is high, it is bright. The relative angle θ is positive in the clockwise direction from the vehicle center line. The graph of FIG. 3 is drawn when the relative distance is 0 m, 100 m, 200 m, and 300 m, but is smoothly connected at other relative distances. The headlight becomes darker as it goes farther and has a characteristic of irradiating a wider range. Therefore, as the relative distance becomes longer, the right high beam target voltage is increased and the low voltage range is further increased. Also, due to the difference in the light distribution range of the left and right headlights, the left and right headlights are not symmetrical about the relative angle 0, and the voltage is increased faster when the relative angle θ is negative than when it is positive. The target voltage value can be similarly determined for the left high beam and the left and right low beams.
[0012]
The control state of the present apparatus will be described based on the flowchart shown in FIG. First, in step 101, it is detected whether a preceding vehicle or an oncoming vehicle exists based on the edge image or the shutter-down image. If there is a preceding vehicle or an oncoming vehicle, the process proceeds to step 102, where the relative distance and relative angle of the preceding vehicle or oncoming vehicle are calculated. Then, in step 103, since the relative distance, the relative angle, and the target voltage have the relationship shown in FIG. 3, the target voltages of the high beam and low beam of the left and right headlights are determined. If no preceding or oncoming vehicle is detected in step 101, the target voltage of the left and right headlights is set to the maximum for the high beam and to the minimum for the low beam in step 104. Then, in step 105, the target voltage is output to each of the left and right headlights.
[0013]
According to the first embodiment, the relative distance and the relative angle of the preceding vehicle or the oncoming vehicle can be calculated with high accuracy from the video information obtained from the imaging device 2. By setting the target voltage for each of the left and right headlights, the intensity of the high beam and low beam of the left and right headlights can be controlled independently for the left and right. Furthermore, since the optical axis changing means of the headlight is not used, the headlight can be controlled at low cost.
[0014]
[Second embodiment]
Next, an embodiment of a light distribution control device that controls the optical axes of a high beam and a low beam of a headlight in right, left, up, and down directions will be described.
[0015]
FIG. 5 is a control block diagram showing a basic configuration of the light distribution control device of the present embodiment. In addition to the control block diagram of the first embodiment (see FIG. 1), the present device further includes a road information detecting means 13 for determining the position where the host vehicle travels, and the left and right headlights based on the position information or steering information where the host vehicle travels. Left and right headlight optical axis changing means 14 and 15 capable of changing the axis are provided. Next, the vertical movement of the optical axis will be described. The vehicle detecting means 1 calculates the relative distance and the relative angle of the preceding vehicle or the oncoming vehicle with respect to the own vehicle as in the first embodiment, and the light distribution calculating means 4 calculates the relative distance and the relative angle obtained by the vehicle detecting means 1. Based on this information, the vertical movement amount of the optical axis of the left and right headlights can be calculated from the graph in FIG. 3 in which the right high beam target voltage value is the right headlight vertical optical axis movement amount. Based on the vertical optical axis movement amount, the optical axis changing means 14 and 15 of the left and right headlights control the axis of the light. Next, the movement of the optical axis in the left-right direction will be described. When the road information detecting means 13 performs Hough transform or the like on the road image input from the imaging device 2, the own vehicle traveling lane shown in FIG. 6 can be detected. Based on the detection result of the lane, the travel distance 17 of the host vehicle, which is the difference between the travel point 16 50 m ahead and the current travel position, is calculated. Next, when the amount of movement of the steering is equal to or more than a predetermined value, the light distribution amount calculation means 4 determines that the amount of movement of the optical axis in the left-right direction is positive when the steering wheel is turned right, and Calculate as positive when the axis is tilted. When the amount of movement of the steering is equal to or less than a certain value, the amount of movement of the optical axis in the left-right direction is calculated as a positive value when moving right 50 m ahead of the own vehicle from the upper graph of FIG. The optical axis control of the right and left headlights is performed by the optical axis changing means 14 and 15 based on the moving amount of the optical axis in the left and right direction.
[0016]
Next, a control state of the present apparatus will be described based on a flowchart shown in FIG. First, in step 201, a lane in which the host vehicle is traveling is detected using Hough transform or the like with respect to a road image input from the imaging device 2, and a traveling point 50 m ahead shown in FIG. Is calculated from the position of the own vehicle. Next, in steps 202, 203, 204, and 205, the amount of vertical optical axis movement of the left and right headlights is calculated from the relative distance and relative angle of the preceding vehicle or oncoming vehicle, as in the first embodiment. Next, when the amount of steering movement detected by the vehicle speed etc. detecting means 7 in step 206 is equal to or smaller than a predetermined value, the process proceeds to step 207. If the calculation of the moving amount M of the host vehicle is successful in step 207, the process proceeds to step 208, and the moving amount of the headlight optical axis in the left-right direction is set based on the upper graph in FIG. If the calculation of the movement amount M of the host vehicle has not been successful in step 207, the movement of the headlight optical axis in the left-right direction is set as the center in step 209. If the amount of movement of the steering is equal to or more than the predetermined value in step 206, the amount of movement of the headlight optical axis in the left-right direction is set based on the lower graph of FIG. In step 211, the left and right headlight optical axis changing means 14 and 15 control the headlights in the vertical and horizontal directions.
[0017]
According to the second embodiment, the relative distance and the relative angle of the preceding vehicle or the oncoming vehicle can be calculated with high accuracy from the video information obtained from the imaging device 2, and the position of the own vehicle in the future 50m ahead can be calculated. The own vehicle movement amount M, which is the difference between the current traveling positions, can be calculated. The upper, lower, left and right optical axes of the left and right headlights can be optimally controlled based on this information and the steering information.
[0018]
In the present embodiment, the distance for calculating the own vehicle movement amount M is set to 50 m. However, this is merely an example, and it is possible to change the distance to another distance. good.
[0019]
【The invention's effect】
As can be understood from the above description, the light distribution control device of the present invention can accurately determine the relative distance and the relative angle of the preceding vehicle or the oncoming vehicle detected by the detection device such as the imaging device installed in the own vehicle. It can calculate the intensity of the high beam and low beam of the left and right headlights independently on the left and right based on this calculation result, and perform optimal light distribution control without causing glare to the driver of the oncoming vehicle or the preceding vehicle Can be. Further, a low-cost apparatus can be provided because an actuator or the like required for changing the optical axis is not required. Furthermore, by adding road information detecting means for detecting road information ahead of the vehicle and optical axis changing means for headlights, it becomes possible to independently control the upper, lower, left and right optical axes of the left and right headlights. Alternatively, optimal light distribution control can be performed without causing glare to the driver of the preceding vehicle.
[Brief description of the drawings]
FIG. 1 is a basic control block diagram of an embodiment of a first embodiment of a light distribution control device of the present invention.
FIG. 2 is a diagram showing an example for calculating a relative angle and a relative distance of a preceding vehicle.
FIG. 3 is a graph showing an example for obtaining a target voltage value of a right high beam.
FIG. 4 is a control flowchart for determining high-beam and low-beam voltages of left and right headlights from information on a preceding vehicle or an oncoming vehicle according to the first embodiment.
FIG. 5 is a basic control block diagram of an embodiment of a second embodiment of the light distribution control device of the present invention.
FIG. 6 is a diagram showing an example for grasping the moving amount of the own vehicle.
FIG. 7 is a graph showing an example for calculating the amount of movement of the optical axis in the left-right direction.
FIG. 8 is a control flowchart for determining the up / down / left / right control amounts of the left and right headlights from the own vehicle movement amount, the preceding vehicle or oncoming vehicle information, and the steering movement amount in the second embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Vehicle detection means, 2 ... Imaging device, 3 ... Vehicle position calculation means, 4 ... Light distribution amount calculation means, 5 ... Left headlight, 6 ... Right headlight, 7 ... Vehicle speed etc. detection means, 8 ... Scene to be recognized, 9: lateral edge image, 10: shutter aperture image, 11: vehicle area, 12: pair of tail lamps, 13: road information detecting means, 14: left headlight optical axis changing means, 15: right headlight optical axis changing means , 16... A traveling point 50 m ahead, 17...

Claims (10)

  1. 先行車または対向車を検知する車両検知手段と、前記車両検知手段の情報を基に車両のヘッドライトの配光量を左右独立に算出する配光量算出手段とを備えることを特徴とする配光制御装置。Light distribution control comprising: vehicle detection means for detecting a preceding vehicle or an oncoming vehicle; and light distribution calculation means for calculating the left and right light distribution of headlights of the vehicle independently based on information from the vehicle detection means. apparatus.
  2. 請求項1において、前記配光量算出手段は、左右ヘッドライトのハイビームとロービームの強度を算出することを特徴とする配光制御装置。2. The light distribution control device according to claim 1, wherein the light distribution amount calculation means calculates the intensities of the high beam and the low beam of the left and right headlights.
  3. 先行車または対向車を検知する車両検知手段と、自車両前方の道路情報を検知する道路情報検知手段と、前記車両検知手段と前記道路情報検知手段の情報を基にヘッドライトの配光量を左右独立に算出する配光量算出手段と、ヘッドライトの光軸を変更するヘッドライト光軸変更手段とを備えることを特徴とする配光制御装置。A vehicle detecting means for detecting a preceding vehicle or an oncoming vehicle; a road information detecting means for detecting road information ahead of the own vehicle; and a light distribution amount of a headlight based on information of the vehicle detecting means and the road information detecting means. A light distribution control device comprising: a light distribution amount calculation means for independently calculating; and a headlight optical axis changing means for changing an optical axis of a headlight.
  4. 請求項3において、前記配光量算出手段は、左右ヘッドライトのハイビームとロービームの強度,左右ヘッドライトの光軸方向を算出することを特徴とする配光制御装置。4. The light distribution control device according to claim 3, wherein the light distribution calculation unit calculates the intensities of the high beam and the low beam of the left and right headlights and the optical axis direction of the left and right headlights.
  5. 請求項1〜4のいずれかにおいて、前記車両検知手段の車両検出装置は、撮像装置であることを特徴とする配光制御装置。The light distribution control device according to any one of claims 1 to 4, wherein the vehicle detection device of the vehicle detection unit is an imaging device.
  6. 請求項3または4において、前記道路情報検知手段の道路情報検出装置は、撮像装置であることを特徴とする配光制御装置。5. The light distribution control device according to claim 3, wherein the road information detecting device of the road information detecting means is an image pickup device.
  7. 請求項1〜6のいずれかにおいて、前記車両検知手段で求める情報は、先行車または対向車の既知の大きさ情報より自車両に対する相対位置を算出することを特徴とする配光制御装置。7. The light distribution control device according to claim 1, wherein the information obtained by the vehicle detection means calculates a relative position of the preceding vehicle or the oncoming vehicle with respect to the own vehicle from known size information of the oncoming vehicle.
  8. 請求項1〜6のいずれかにおいて、前記車両検知手段で求める情報は、先行車または対向車の車両幅や左右ライト幅やナンバプレート幅より自車両に対する相対位置を算出することを特徴とする配光制御装置。7. The system according to claim 1, wherein the information obtained by the vehicle detection means calculates a relative position with respect to the own vehicle from a vehicle width, a left and right light width, and a number plate width of a preceding vehicle or an oncoming vehicle. Light control device.
  9. 車両に設置された複数のライトの配光を制御する配光制御方法であって、
    ある方向の物体を検出し、
    前記検出した情報に基づいて前記複数のライトの配光を個々に制御する配光制御方法。
    A light distribution control method for controlling light distribution of a plurality of lights installed in a vehicle,
    Detect an object in a certain direction,
    A light distribution control method for individually controlling the light distribution of the plurality of lights based on the detected information.
  10. 請求項8において、
    撮影した画像を分析することにより前記物体を検出することを特徴とする配光制御方法。
    In claim 8,
    A light distribution control method, wherein the object is detected by analyzing a captured image.
JP2002327672A 2002-11-12 2002-11-12 Light distribution controller Pending JP2004161082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002327672A JP2004161082A (en) 2002-11-12 2002-11-12 Light distribution controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002327672A JP2004161082A (en) 2002-11-12 2002-11-12 Light distribution controller

Publications (1)

Publication Number Publication Date
JP2004161082A true JP2004161082A (en) 2004-06-10

Family

ID=32806188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002327672A Pending JP2004161082A (en) 2002-11-12 2002-11-12 Light distribution controller

Country Status (1)

Country Link
JP (1) JP2004161082A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008137494A (en) * 2006-12-01 2008-06-19 Denso Corp Vehicular visual field assistance device
EP2036770A2 (en) 2007-09-14 2009-03-18 Koito Manufacturing Co., Ltd Vehicle lamp
EP2100771A2 (en) 2008-03-13 2009-09-16 Koito Manufacturing Co., Ltd. Vehicle headlight apparatus and method for controlling same
DE102009015824A1 (en) 2008-04-02 2009-10-29 DENSO CORPORATION, Kariya-shi Non-glare card product and this system used to determine if a person is blinded
JP2010023677A (en) * 2008-07-18 2010-02-04 Denso Corp Light control device and light control program
JP2010030522A (en) * 2008-07-30 2010-02-12 Denso Corp Dazzling detector, dazzling detection program, and headlight control device
US8567372B2 (en) 2006-05-18 2013-10-29 North-West University Ignition system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8567372B2 (en) 2006-05-18 2013-10-29 North-West University Ignition system
JP2008137494A (en) * 2006-12-01 2008-06-19 Denso Corp Vehicular visual field assistance device
EP2036770A2 (en) 2007-09-14 2009-03-18 Koito Manufacturing Co., Ltd Vehicle lamp
US8007146B2 (en) 2007-09-14 2011-08-30 Koito Manufacturing Co., Ltd. Vehicle lamp
EP2100771A2 (en) 2008-03-13 2009-09-16 Koito Manufacturing Co., Ltd. Vehicle headlight apparatus and method for controlling same
US8768576B2 (en) 2008-04-02 2014-07-01 Denso Corporation Undazzled-area map product, and system for determining whether to dazzle person using the same
DE102009015824A1 (en) 2008-04-02 2009-10-29 DENSO CORPORATION, Kariya-shi Non-glare card product and this system used to determine if a person is blinded
JP4715878B2 (en) * 2008-07-18 2011-07-06 株式会社デンソー LIGHT CONTROL DEVICE AND LIGHT CONTROL PROGRAM
US8215809B2 (en) 2008-07-18 2012-07-10 Denso Corporation Light control apparatus and recording medium
JP2010023677A (en) * 2008-07-18 2010-02-04 Denso Corp Light control device and light control program
JP2010030522A (en) * 2008-07-30 2010-02-12 Denso Corp Dazzling detector, dazzling detection program, and headlight control device

Similar Documents

Publication Publication Date Title
JP5500265B2 (en) Vehicle light distribution control system and vehicle light distribution control method
CN102635823B (en) Vehicle headlamp light distribution controller
WO2013080363A1 (en) Light distribution control system for vehicle
CN104411541A (en) Headlamp light distribution control device for vehicle
JP2004161082A (en) Light distribution controller
JP5557608B2 (en) Vehicle lamp system
JP4007578B2 (en) Headlamp irradiation range control method and headlamp apparatus
JP5372616B2 (en) Light distribution control system for vehicle headlamps
JP5546326B2 (en) Control device, vehicle lamp system, vehicle lamp
JP2011037342A (en) Vehicular headlight system
JP2011031808A (en) Light distribution control system of vehicular headlamp
JP2864977B2 (en) Headlight device for vehicles
JP2012183874A (en) Light distribution control device of vehicle headlamp
JP5375880B2 (en) Vehicle headlamp device
US9193297B2 (en) Vehicle light distribution control device and vehicle light distribution control method
JP2009040227A (en) Vehicular headlight control device
JP6214290B2 (en) Headlight control device
JP2005041293A (en) Lighting control device of headlight for vehicle
JP4798182B2 (en) Dazzle detection device, dazzle detection program, and headlamp control device
JP2014101069A (en) Lighting control unit of vehicular headlamps, and vehicular headlamp system
JP2015033954A (en) Lighting control device of vehicle headlight, vehicle headlight system
JP2013163417A (en) Lighting control apparatus for vehicle headlight, and vehicle headlight system
JP5557611B2 (en) VEHICLE LIGHT SYSTEM, CONTROL DEVICE, AND VEHICLE LIGHT
JP2861767B2 (en) Light distribution control device for headlamp
JP2012020663A (en) Vehicle detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080226