JP2004160744A - Left-over type resin pass medium made of reinforcing fiber - Google Patents

Left-over type resin pass medium made of reinforcing fiber Download PDF

Info

Publication number
JP2004160744A
JP2004160744A JP2002327278A JP2002327278A JP2004160744A JP 2004160744 A JP2004160744 A JP 2004160744A JP 2002327278 A JP2002327278 A JP 2002327278A JP 2002327278 A JP2002327278 A JP 2002327278A JP 2004160744 A JP2004160744 A JP 2004160744A
Authority
JP
Japan
Prior art keywords
reinforcing fiber
resin
fiber
medium
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002327278A
Other languages
Japanese (ja)
Other versions
JP4104960B2 (en
Inventor
Takeshi Tanamura
武司 田那村
Masayasu Ishibashi
正康 石橋
Koichi Hashimoto
宏一 橋本
Hideki Sakonjiyou
秀樹 左近上
Tetsuro Hirokawa
哲朗 広川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikibo Ltd
Original Assignee
Shikibo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikibo Ltd filed Critical Shikibo Ltd
Priority to JP2002327278A priority Critical patent/JP4104960B2/en
Publication of JP2004160744A publication Critical patent/JP2004160744A/en
Application granted granted Critical
Publication of JP4104960B2 publication Critical patent/JP4104960B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a left-over type resin pass medium made of a reinforcing fiber which improves resin impregnation properties and need not be removed by releasing after resin impregnation, in a resin impregnation process using a liquid resin. <P>SOLUTION: The left-over type resin pass medium 10 made of a reinforcing fiber is used in a method for molding a composite material using the liquid resin by installing the medium 10 along the lower face of a reinforcing fiber laminate 11. In addition, the resin pass medium 10 is three-dimensionally retained in form and kept left over even after molding by setting reinforcing fiber stripes 10a such as a carbon fiber, a glass fiber, a ceramic fiber or the like in order in a specified direction. Using the resin pass process by the resin pass medium 10, the impregnation properties of the resin into the reinforcing fiber laminate 11 are improved and the resin pass medium 10 need not be removed by releasing from the reinforcing fiber laminate 11 after resin impregnation. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は航空・宇宙用構造体、建築用構造体、自動車用構造体、船舶構造体、その他強度が必要とされる各種構造体に用いる複合材料用繊維基材への液体樹脂含浸性を向上する、残置型の強化繊維製樹脂パス媒体に関するものである。
【0002】
【従来の技術】
一般に航空・宇宙用構造体、建築用構造体、自動車用構造体、船舶構造体、その他強度が必要とされる各種構造体などの成形方法としては、プリプレグを使用したオートクレーブによる成形法が知られているが、基材のロスがたいへん多く、高コストであり、複雑形状を得ることは困難である。最近では、ドライプリフォームに液体樹脂を含浸して成形するRTM法(Resin Transfer Molding)が普及しつつある。中でも、成型用バッグとモールドによって形成される密閉空間にドライプリフォームを設置し、真空圧でモールドに押し付けて成形するVaRTM法(Vacuum Assist Resin Transfer Molding)が安価な成形方法として注目されている。
【0003】
RTM法やVaRTM法によって複合材料用繊維基材を樹脂含浸、成形する場合、繊維構造体の強度を上げるために繊維密度を高くしたり、複雑な形状の基材にしたりすると、樹脂含浸工程で全面に樹脂が含浸できずにボイドが発生したり、樹脂含浸時間が非常に長くなるといったことが起こり、時には基材全体に樹脂が行き渡らないことさえある。このような現象は、低コスト化・高強度化のために、大型の複合材料用繊維基材に液体樹脂を含浸して成形する場合や、基材が厚い場合などに顕著であり、同時にその強度も著しく低下させる原因となっている。
【0004】
【発明が解決しようとする課題】
一般に、RTM法、VaRTM法といった成形方法を取る場合、液体樹脂を瞬時に真空圧下に有るプリフォーム全体に行き渡らせる手段として、樹脂流路を確保し、圧力がかかっても押しつぶされない、ポリエステル製、ポリプロピレン製などのネット状樹脂パス媒体が各社によって販売され、成形時に使用されている。しかし、この樹脂パス媒体は成形物を構成する強化繊維とは異なる材料であるため、成形後に本体から剥離して廃棄する必要がある。また、成形物の大型化によって、この剥離するという作業自体が非常に困難となっている。このような問題があるために、RTM法、VaRTM法などを用いた繊維構造体の成形は高コストになり、安定した強度を持たせることも難しくなっている。本発明によってなる樹脂パス媒体の上記と異なる点は、樹脂パス媒体を複合材料用繊維基材の強化繊維と同じ材料で構成したために、成形後も残置できる点である。しかし、一般に強化繊維として使用されている無機繊維は偏平糸状であり、そのまま用いて樹脂パス媒体とし、樹脂の流路を充分に確保するという点では問題があった。本発明では、強化繊維条を立体形状に保持することにより、樹脂流路の確保を可能とした。
【0005】
一方、複合材料用繊維基材自体の樹脂含浸性を高めるために、各種の方法も提案されている。例えば、繊維構造体を構成する繊維のサイズ剤を工夫したもの(特許文献1参照。)、あるいは樹脂含浸方法を工夫したもの(特許文献2参照。)、さらには複合材料用繊維基材の組織や繊維そのものを工夫したもの(特許文献3,4,5,6参照。)などが提案されている。
【0006】
【特許文献1】
特開2002−013069号公報
【特許文献2】
特開2002−234078号公報
【特許文献3】
特開2001−164441号公報
【特許文献4】
特開平10−217263号公報
【特許文献5】
特開平09−207236号公報
【特許文献6】
特開2001−073241号公報
【0007】
これらは、強化繊維自体の材料の性質や繊維組織、繊維構造に関しての発明であり、本発明によってなる樹脂パス媒体は複合材料用繊維基材の表面付近に添設して用いることによって、樹脂流路を確保しようとするものである。
【0008】
したがって、本発明では、強化繊維を立体形状に保持し、樹脂流路を確保して樹脂含浸性を向上させ、なおかつ、樹脂含浸後に剥離する必要が無く、複合材料のコストを低減させることのできる残置型の強化繊維製樹脂パス媒体を提供することを課題とする。
【0009】
【課題を解決するための手段】
本発明の残置型の強化繊維製樹脂パス媒体は、液体樹脂を用いる複合材料の成形方法に用いられる樹脂パス媒体であって、立体形状に形態保持された無機強化繊維条を所定の方向に引き揃えることによってなり、成形後も残置できることを特徴とする(請求項1)。
【0010】
また、本発明の残置型の強化繊維製樹脂パス媒体は、前記強化繊維製樹脂パス媒体を構成する無機強化繊維条において、第二の強化繊維条を螺旋状に巻き付けることによって、無機強化繊維条を立体的に形態保持したことを特徴とする(請求項2)。
【0011】
また、本発明の残置型の強化繊維製樹脂パス媒体は、前記第二の強化繊維条として、前記強化繊維製樹脂パス媒体を構成する無機強化繊維条と同様の無機強化繊維条を螺旋状に巻き付けることによって、強化繊維条を立体的に形態保持したことを特徴とする(請求項3)。
【0012】
ここで、上記の「第二の強化繊維条」なる用語は、強化繊維製樹脂パス媒体を構成する無機強化繊維条に、これとは別物の、あるいはこれと同様の強化繊維条を螺旋状に巻き付けることを意味するものであり、その材質が強化繊維製樹脂パス媒体を構成する無機強化繊維条と同一の場合は勿論、異なる強化繊維条の場合、あるいは樹脂含浸後に残置させても強度上問題がない強化繊維条をも含むことを意味する。第二の強化繊維条が、上記のような強化繊維条で構成されているので、樹脂含浸後に強化繊維製樹脂パス媒体を剥離する作業が不要になる。
【0013】
【発明の実施の形態】
以下、本発明に係る残置型の強化繊維製樹脂パス媒体の実施形態について、図面を参照して説明する。
【0014】
図1(A)は、本発明の第一実施形態に係る残置型の強化繊維製樹脂パス媒体10を用いた複合材料用繊維基材における斜視図を示す。図において、11は炭素繊維,ガラス繊維,アラミド繊維,セラミック繊維,その他の強化繊維条を一方向に引き揃えた一方向性強化繊維シート(UDシート)を、その強化繊維の引き揃え方向を、例えば、0°、90°、+45°、−45°のように異ならせて積層してなる強化繊維積層体である。この強化繊維積層体11の形状および大きさならびに厚さは、用途に応じて任意に設定することができる。
【0015】
10はこの強化繊維積層体11の下面に添設された、本発明の第一実施形態である、例えば、図1(B)に示すように、立体形状に形態保持された炭素繊維,ガラス繊維,セラミック繊維,その他の無機強化繊維条10aを所定の方向(図示例では長手方向)に引き揃えることによってなり、成形後も残置できる残置型の強化繊維製樹脂パス媒体である。なお、強化繊維製樹脂パス媒体10における無機強化繊維条10aの引き揃え方向は、任意の方向に、また複数層に引き揃えることができる。
【0016】
また、強化繊維製樹脂パス媒体10は、強化繊維積層体11が比較的薄い場合や繊維密度が低い場合は、その上面または下面のいずれか一面または両面に添設される。また、強化繊維積層体11が厚い場合や繊維密度が高い場合は、両面、および側面に添設されてもよい。また、強化繊維製樹脂パス媒体10は、強化繊維積層体11の製造工程途中で添設されてもよいし、強化繊維積層体11の製造工程終了後に添設されてもよい。
【0017】
上記の複合材料用繊維基材は、強化繊維製樹脂パス媒体10の立体形状に形態保持された無機強化繊維状10aによって、樹脂パスが確保され、VaRTM法またはRTM法により、前記強化繊維積層体11に液体樹脂を含浸し成形する際に、液体樹脂が強化繊維製樹脂パス媒体10を樹脂パスとして、強化繊維製樹脂パス媒体10と接する強化繊維積層体11の下面全面に瞬時に流動していき、次いで強化繊維積層体11の厚さ方向に流動していくので、強化繊維積層体11全体に均一に、しかも短時間で確実に樹脂を含浸することができる。
【0018】
このため、この強化繊維製樹脂パス媒体を用いて樹脂含浸した複合材料は、従来のような部分的に樹脂の未含浸部分(ボイド)が存在して部分的に強度が不足したり、樹脂含浸のスピードが遅いために樹脂の熱履歴が最適でなくなって、樹脂の強度が発揮できずに、全体の強度が所定の設計強度よりも不足したりするといった現象がなくなって、基材全体が均一、かつ確実に強化された複合材料が得られる。しかも、強化繊維製樹脂パス媒体10を複合材料と同様の強化繊維で構成しているため、一般に使用されているようなポリエステル製、ポリプロピレン製などの樹脂パス媒体を、樹脂含浸後に剥離するものに比較して、強化繊維製樹脂パス媒体10を樹脂含浸後に剥離除去しないでそのまま残置させることが可能であり、さらに複合材料のコストダウンが図れる。
【0019】
なお、図1は、本発明における使用例の模式図である。本発明による樹脂パス媒体の典型的な実施形態として図2を示す。図2は樹脂パス媒体10を構成する立体形状に形態保持された強化繊維条10aを一方向に引き揃えて1層10とし、立体形状に形態保持された強化繊維条10bを他方向に引き揃えてそれを前記1層10とは互いに異なる方向に重ね合わせて構成される他の1層10とした2層構造の樹脂パス媒体である。図2に示す樹脂パス媒体10は、ニッティングやステッチング、または製織などの手段によって形成される。
【0020】
図3は、本発明の第二実施形態に係る残置型の強化繊維製樹脂パス媒体20における要部拡大斜視図を示す。図において、前記同様に、基材となる無機強化繊維条21に対して、第二の強化繊維条22、例えば、炭素繊維,ガラス繊維,セラミック繊維などの無機強化繊維条、あるいはアラミド繊維やポリエステル繊維、高強度ポリアリレート繊維、その他、樹脂含浸後に残置させても強度上問題がない繊維条を螺旋状に巻き回して構成されている。
【0021】
したがって、前記強化繊維製樹脂パス媒体20は、基材となる無機強化繊維条21に対して、第二の強化繊維条22を螺旋状に巻き回して構成されているので、無機強化繊維条が立体形状に保持され、樹脂パス性が向上する。特に、第二の強化繊維条22を無機強化繊維、あるいは残置させても強度上問題がない繊維条で構成したので、この強化繊維製樹脂パス媒体20を樹脂含浸後に剥離除去しないでそのまま残置させることが可能であり、複合材料のコストダウンが図れる。
【0022】
図4は本発明の第三実施形態に係る残置型の強化繊維製樹脂パス媒体30における要部拡大斜視図を示す。図において、31は前記同様の基材からなる無機強化繊維条31と、第二の無機繊維条32とを互いに螺旋状に巻き回して構成されているので、前記同様に無機強化繊維条が立体形状に保持されるので、樹脂流路が確保される。特に、第二の強化繊維条32を無機強化繊維で構成したので、この強化繊維製樹脂パス媒体30を樹脂含浸後に剥離除去しないでそのまま残置させることが可能であり、複合材料のコストダウンが図れる。
【0023】
【発明の効果】
本発明の残置型の強化繊維製樹脂パス媒体によれば、液体樹脂を用いる複合材料の成形方法に用いられる樹脂パス媒体であって、立体形状に形態保持された強化繊維条を所定の方向に引き揃えることによってなり、成形後も残置できるものであるから、強化繊維製樹脂パス媒体によって樹脂パスが確保され、樹脂含浸性が優れた強化繊維製樹脂パス媒体が得られる。しかも、この強化繊維製樹脂パス媒体は強化繊維で構成されているので、樹脂含浸後に剥離除去する必要が無くそのまま残置させることができるので、剥離除去作業が不要で、生産性が向上して、複合材料の製造コストを低減することができる。
【0024】
また、本発明の残置型の強化繊維製樹脂パス媒体によれば、前記強化繊維製樹脂パス媒体を構成する無機強化繊維条において、第二の強化繊維条を螺旋状に巻き付けることによって、無機強化繊維条を立体的に形態保持したことを特徴とするものであるから、無機強化繊維条に第二の強化繊維条を螺旋状に巻き回した構成によって樹脂パス性を向上した残置型の強化繊維製樹脂パス媒体が得られる。
【0025】
また、本発明の残置型の強化繊維製樹脂パス媒体によれば、前記第二の強化繊維条として、前記強化繊維製樹脂パス媒体を構成する無機強化繊維条と同様の無機強化繊維条を螺旋状に巻き付けることによって、無機強化繊維条を立体的に形態保持したことを特徴とするものであるから、前記無機強化繊維条と第二の無機強化繊維条との螺旋構成によって樹脂パス性が向上した残置型の強化繊維製樹脂パス媒体が得られる。
【図面の簡単な説明】
【図1】(A)は本発明の第一実施形態に係る強化繊維製樹脂パス媒体を用いた複合材料用繊維基材の斜視図、
(B)は本発明の第一実施形態に係る残置型の強化繊維製樹脂パス媒体の斜視図である。
【図2】本発明の典型的な実施形態に係る残置型の強化繊維製樹脂パス媒体を示す拡大斜視図である。
【図3】本発明の第二実施形態に係る強化繊維製樹脂パス媒体における要部拡大斜視図である。
【図4】本発明の第三実施形態に係る強化繊維製樹脂パス媒体における基材となる無機強化繊維条と第二の無機繊維条とを互いに螺旋状に巻き付けた状態の要部拡大斜視図である。
【符号の説明】
10,20,30 残置型の強化繊維製樹脂パス媒体
10a,10b 無機強化繊維条
10,10 無機強化繊維条よりなる層
11 強化繊維積層体
21強化繊維製樹脂パス媒体を構成する無機強化繊維条
22 強化繊維製樹脂パス媒体を構成する無機強化繊維条に螺旋状に巻き付けられた第二の強化繊維条
31 強化繊維製樹脂パス媒体を構成する無機強化繊維条
32 強化繊維製樹脂パス媒体を構成する無機強化繊維条と互いに螺旋状に巻き付けられた第二の無機強化繊維条
[0001]
[Industrial applications]
INDUSTRIAL APPLICABILITY The present invention improves liquid resin impregnation into a fibrous base material for a composite material used for aerospace structures, architectural structures, automotive structures, marine structures, and other various structures requiring strength. And a resin path medium made of a residual type reinforcing fiber.
[0002]
[Prior art]
In general, as an aerospace / architecture structure, an architectural structure, an automobile structure, a ship structure, and various other structures requiring strength, a molding method using an autoclave using a prepreg is known. However, the loss of the base material is very large, the cost is high, and it is difficult to obtain a complicated shape. Recently, the RTM method (Resin Transfer Molding) in which a dry preform is impregnated with a liquid resin and molded is becoming popular. Above all, the VaRTM (Vacuum Assist Resin Transfer Molding) method, in which a dry preform is placed in a closed space formed by a molding bag and a mold and pressed against the mold with vacuum pressure, has been attracting attention as an inexpensive molding method.
[0003]
When impregnating and molding a fiber base material for a composite material with a resin by the RTM method or the VaRTM method, if the fiber density is increased in order to increase the strength of the fibrous structure, or if the base material has a complicated shape, the resin impregnation process is performed. Voids occur because the entire surface cannot be impregnated with the resin, or the resin impregnation time becomes extremely long, and sometimes the resin does not evenly spread over the entire substrate. Such a phenomenon is conspicuous when a large-sized fiber material for a composite material is impregnated with a liquid resin and molded to reduce the cost and strength, or when the base material is thick, etc. This also causes the strength to decrease significantly.
[0004]
[Problems to be solved by the invention]
Generally, when a molding method such as the RTM method or the VaRTM method is used, a resin flow path is secured as a means for instantaneously spreading the liquid resin over the entire preform under vacuum pressure, and the liquid resin is not crushed even when pressure is applied. A net-like resin pass medium made of polypropylene or the like is sold by various companies and used at the time of molding. However, since this resin path medium is made of a different material from the reinforcing fibers constituting the molded product, it is necessary to peel it off from the main body after molding and discard it. In addition, due to the increase in the size of the molded product, the operation itself of peeling is extremely difficult. Due to such a problem, molding of a fiber structure using the RTM method, the VaRTM method, or the like becomes expensive and it is difficult to provide stable strength. The difference of the resin pass medium according to the present invention from the above is that the resin pass medium is made of the same material as the reinforcing fibers of the fiber base material for a composite material, and thus can be left after molding. However, the inorganic fibers generally used as the reinforcing fibers are in the form of flat yarns, and have a problem in that they can be used as they are as a resin pass medium to ensure a sufficient resin flow path. In the present invention, it is possible to secure a resin flow path by holding the reinforcing fiber strip in a three-dimensional shape.
[0005]
On the other hand, various methods have been proposed in order to enhance the resin impregnation property of the fiber base material for a composite material itself. For example, a modified fiber sizing agent constituting a fiber structure (see Patent Document 1), a modified resin impregnation method (see Patent Document 2), and a structure of a fiber base material for a composite material. And those in which the fiber itself is devised (see Patent Documents 3, 4, 5, and 6) have been proposed.
[0006]
[Patent Document 1]
JP 2002-013069 A [Patent Document 2]
JP 2002-234078 A [Patent Document 3]
JP 2001-164441 A [Patent Document 4]
JP-A-10-217263 [Patent Document 5]
JP-A-09-207236 [Patent Document 6]
JP 2001-073241 A
These are inventions relating to the properties of the material of the reinforcing fiber itself, the fiber structure, and the fiber structure. It is trying to secure a road.
[0008]
Therefore, in the present invention, the reinforcing fiber is held in a three-dimensional shape, the resin flow path is secured, the resin impregnation property is improved, and further, there is no need to peel off after the resin impregnation, and the cost of the composite material can be reduced. An object of the present invention is to provide a residual type fiber-reinforced resin pass medium.
[0009]
[Means for Solving the Problems]
The residual type fiber-reinforced resin path medium of the present invention is a resin path medium used in a method of molding a composite material using a liquid resin, and pulls a three-dimensionally shaped inorganic reinforcing fiber strip in a predetermined direction. It is characterized by being aligned, and can be left after molding (claim 1).
[0010]
In addition, the residual-type reinforcing fiber resin path medium of the present invention is an inorganic reinforcing fiber sheet, in which the second reinforcing fiber sheet is spirally wound in the inorganic reinforcing fiber sheet constituting the reinforcing fiber resin path medium. Is three-dimensionally maintained (claim 2).
[0011]
In addition, the residual type reinforcing fiber resin path medium of the present invention is formed by spirally forming the same inorganic reinforcing fiber as the inorganic reinforcing fiber forming the reinforcing fiber resin path as the second reinforcing fiber. The reinforcing fiber strip is three-dimensionally maintained in shape by winding (claim 3).
[0012]
Here, the term "second reinforcing fiber strip" refers to an inorganic reinforcing fiber strip forming a resin path medium made of a reinforcing fiber, and a reinforcing fiber strip different from or similar to this is spirally formed. This means that the material is the same as that of the inorganic reinforcing fiber strip constituting the resin-passing medium made of the reinforcing fiber, as well as a different reinforcing fiber strip, or even if it is left after the resin impregnation, there is a problem in strength. Means that there are no reinforcing fiber strips. Since the second reinforcing fiber strip is constituted by the reinforcing fiber strip as described above, the operation of peeling off the reinforcing fiber resin pass medium after the resin impregnation becomes unnecessary.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a residual type fiber-reinforced resin pass medium according to the present invention will be described with reference to the drawings.
[0014]
FIG. 1A shows a perspective view of a fiber base material for a composite material using a residual type fiber-reinforced resin pass medium 10 according to the first embodiment of the present invention. In the figure, reference numeral 11 denotes a unidirectional reinforcing fiber sheet (UD sheet) in which carbon fibers, glass fibers, aramid fibers, ceramic fibers, and other reinforcing fiber strips are aligned in one direction, and the direction in which the reinforcing fibers are aligned. For example, it is a reinforcing fiber laminate obtained by stacking differently such as 0 °, 90 °, + 45 °, and −45 °. The shape, size, and thickness of the reinforcing fiber laminate 11 can be arbitrarily set according to the application.
[0015]
Reference numeral 10 denotes a first embodiment of the present invention attached to the lower surface of the reinforcing fiber laminate 11, for example, as shown in FIG. , Ceramic fibers, and other inorganic reinforcing fiber strips 10a are aligned in a predetermined direction (the longitudinal direction in the illustrated example), and is a residual type fiber-reinforced resin path medium that can be left after molding. In addition, the alignment direction of the inorganic reinforcing fiber strips 10a in the resin path medium 10 made of the reinforcing fiber can be aligned in any direction and in a plurality of layers.
[0016]
In addition, when the reinforcing fiber laminate 11 is relatively thin or the fiber density is low, the reinforcing fiber resin path medium 10 is provided on one or both of the upper surface and the lower surface thereof. When the reinforcing fiber laminate 11 is thick or has a high fiber density, it may be provided on both surfaces and side surfaces. Further, the reinforcing fiber resin pass medium 10 may be added during the manufacturing process of the reinforcing fiber laminate 11 or may be added after the manufacturing process of the reinforcing fiber laminate 11 is completed.
[0017]
The above-mentioned fiber base material for a composite material secures a resin path by the inorganic reinforcing fiber shape 10a held in a three-dimensional shape of the reinforcing fiber resin path medium 10, and the reinforcing fiber laminate is obtained by a VaRTM method or an RTM method. When the liquid resin 11 is impregnated with the liquid resin and molded, the liquid resin flows instantaneously over the entire lower surface of the reinforcing fiber laminate 11 in contact with the reinforcing fiber resin path medium 10 using the reinforcing fiber resin path medium 10 as a resin path. Since the resin flows continuously in the thickness direction of the reinforcing fiber laminate 11, the resin can be uniformly and uniformly impregnated into the entire reinforcing fiber laminate 11 in a short time.
[0018]
For this reason, the composite material impregnated with the resin using the resin pass medium made of the reinforcing fiber has a partially unimpregnated portion (void) of the resin as in the related art, and the strength is partially insufficient or the resin is impregnated. The heat history of the resin is not optimal due to the low speed of the resin, and the phenomenon that the strength of the resin cannot be exhibited and the overall strength is less than the specified design strength disappears, and the entire base material is uniform And a reinforced composite material is obtained. In addition, since the resin path medium 10 made of the reinforcing fiber is made of the same reinforcing fiber as the composite material, the resin path medium generally used such as polyester or polypropylene can be peeled off after resin impregnation. In comparison, the resin path medium 10 made of a reinforcing fiber can be left without being peeled off after impregnation with the resin, and the cost of the composite material can be further reduced.
[0019]
FIG. 1 is a schematic view of an example of use in the present invention. FIG. 2 shows an exemplary embodiment of a resin path medium according to the present invention. Figure 2 is a reinforcing fiber strip 10a of first layer 10 1 are aligned in one direction, which is the form held in a three-dimensional shape that constitutes the resin path medium 10, pulling the reinforcing fibers strip 10b which is form holding the three-dimensional shape in the other direction aligning with it and the first layer 10 1 of a resin path medium having a two-layer structure in which the other first layer 10 2 constituted by superposing in different directions. The resin path medium 10 shown in FIG. 2 is formed by means such as knitting, stitching, or weaving.
[0020]
FIG. 3 is an enlarged perspective view of a main part of the residual type fiber-reinforced resin path medium 20 according to the second embodiment of the present invention. In the figure, as described above, a second reinforcing fiber strip 22, for example, an inorganic reinforcing fiber strip such as carbon fiber, glass fiber or ceramic fiber, or an aramid fiber or polyester Fibers, high-strength polyarylate fibers, and other fiber strips that have no problem in strength even when left behind after resin impregnation are spirally wound.
[0021]
Therefore, the reinforcing fiber resin path medium 20 is configured by spirally winding the second reinforcing fiber strip 22 around the inorganic reinforcing fiber strip 21 serving as the base material. It is held in a three-dimensional shape, and the resin pathability is improved. In particular, since the second reinforcing fiber strip 22 is made of inorganic reinforcing fiber or a fiber strip having no problem in strength even if it is left, the resin path medium 20 made of the reinforcing fiber is left as it is without peeling and removing after resin impregnation. It is possible to reduce the cost of the composite material.
[0022]
FIG. 4 is an enlarged perspective view of a main part of a residual type fiber-reinforced resin path medium 30 according to a third embodiment of the present invention. In the figure, 31 is formed by spirally winding an inorganic reinforcing fiber strip 31 made of the same base material as described above and a second inorganic fiber strip 32, so that the inorganic reinforcing fiber strip is three-dimensional as described above. Since the shape is maintained, a resin flow path is secured. In particular, since the second reinforcing fiber strips 32 are made of inorganic reinforcing fibers, it is possible to leave the reinforcing fiber resin pass medium 30 as it is without peeling and removing it after resin impregnation, and to reduce the cost of the composite material. .
[0023]
【The invention's effect】
According to the residual type fiber-reinforced resin path medium of the present invention, a resin path medium used in a method of molding a composite material using a liquid resin, wherein the reinforcing fiber strip held in a three-dimensional shape is moved in a predetermined direction. The resin path is secured by the reinforcing fiber resin pass medium because the resin path medium can be retained even after the molding, and a resin path medium made of a reinforcing fiber excellent in resin impregnation can be obtained. In addition, since this reinforcing fiber resin pass medium is made of reinforcing fibers, it is not necessary to peel and remove the resin after impregnation, and it can be left as it is. The manufacturing cost of the composite material can be reduced.
[0024]
Further, according to the residual type reinforcing fiber resin path medium of the present invention, in the inorganic reinforcing fiber strips constituting the reinforcing fiber resin path medium, the second reinforcing fiber strip is spirally wound to form the inorganic reinforcing fiber. Since the fibers are characterized by having a three-dimensional shape, the second reinforcing fibers are spirally wound around the inorganic reinforcing fibers, so that the residual reinforcing fibers have improved resin pathability. A resin pass medium is obtained.
[0025]
Further, according to the residual type reinforcing fiber resin path medium of the present invention, the same inorganic reinforcing fiber as the inorganic reinforcing fiber forming the reinforcing fiber resin path medium is spirally formed as the second reinforcing fiber. By winding in a shape, the inorganic reinforcing fiber strips are characterized in that they have a three-dimensional shape, so that the resin composition is improved by the spiral configuration of the inorganic reinforcing fiber strips and the second inorganic reinforcing fiber strips. Thus, a residual type resin path medium made of a reinforcing fiber is obtained.
[Brief description of the drawings]
FIG. 1A is a perspective view of a fiber base material for a composite material using a reinforcing fiber resin pass medium according to a first embodiment of the present invention,
(B) is a perspective view of the residual type reinforcing fiber resin path medium according to the first embodiment of the present invention.
FIG. 2 is an enlarged perspective view showing a residual type fiber-reinforced resin pass medium according to a typical embodiment of the present invention.
FIG. 3 is an enlarged perspective view of a main part of a resin path medium made of a reinforcing fiber according to a second embodiment of the present invention.
FIG. 4 is an enlarged perspective view of a main part of a reinforcing fiber resin path medium according to a third embodiment of the present invention, in which an inorganic reinforcing fiber strip and a second inorganic fiber strip serving as base materials are spirally wound around each other. It is.
[Explanation of symbols]
10, 20, 30 Remaining type fiber-reinforced resin pass media 10a, 10b Layers composed of inorganic fiber reinforcements 10 1 , 10 2 Layer 11 composed of inorganic fiber reinforcements 11 Reinforcement fiber laminate 21 Reinforcement fiber-reinforced resin path medium Fiber strip 22 Second reinforcing fiber strip 31 spirally wound around the inorganic reinforcing fiber strip forming the reinforcing fiber resin path medium Inorganic reinforcing fiber strip 32 forming the reinforcing fiber resin path medium 32 Reinforcing fiber resin path medium And the second inorganic reinforcing fiber wound spirally with each other

Claims (3)

液体樹脂を用いる複合材料の成形方法に用いられる樹脂パス媒体であって、立体形状に形態保持された無機強化繊維条を所定の方向に引き揃えることによってなり、成形後も残置できる残置型の強化繊維製樹脂パス媒体。A resin path medium used in a method of molding a composite material using a liquid resin, which is obtained by aligning inorganic reinforcing fibers in a three-dimensional shape in a predetermined direction, so that the residual mold can be retained even after molding. Fiber resin path medium. 前記強化繊維製樹脂パス媒体を構成する無機強化繊維条において、第二の強化繊維条を螺旋状に巻き付けることによって、無機強化繊維条を立体的に形態保持したことを特徴とする請求項1に記載の強化繊維製樹脂パス媒体。The inorganic reinforcing fiber strip constituting the resin path medium made of the reinforcing fiber, wherein the inorganic reinforcing fiber strip is three-dimensionally maintained by spirally winding the second reinforcing fiber strip. The resin pass medium made of the reinforcing fiber described in the above. 前記第二の強化繊維条として、前記強化繊維製樹脂パス媒体を構成する無機強化繊維条と同様の無機強化繊維条を螺旋状に巻き付けることによって、無機強化繊維条を立体的に形態保持したことを特徴とする請求項2に記載の強化繊維製樹脂パス媒体。As the second reinforcing fiber, by spirally winding the same inorganic reinforcing fiber as the inorganic reinforcing fiber forming the resin path medium made of the reinforcing fiber, the inorganic reinforcing fiber is three-dimensionally retained. The resin path medium made of a reinforcing fiber according to claim 2, characterized in that:
JP2002327278A 2002-11-11 2002-11-11 Residual reinforced fiber resin pass media Expired - Fee Related JP4104960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002327278A JP4104960B2 (en) 2002-11-11 2002-11-11 Residual reinforced fiber resin pass media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002327278A JP4104960B2 (en) 2002-11-11 2002-11-11 Residual reinforced fiber resin pass media

Publications (2)

Publication Number Publication Date
JP2004160744A true JP2004160744A (en) 2004-06-10
JP4104960B2 JP4104960B2 (en) 2008-06-18

Family

ID=32805969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002327278A Expired - Fee Related JP4104960B2 (en) 2002-11-11 2002-11-11 Residual reinforced fiber resin pass media

Country Status (1)

Country Link
JP (1) JP4104960B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008273010A (en) * 2007-04-27 2008-11-13 Sekisui Chem Co Ltd Method for manufacturing fiber-reinforced plastic molded body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0858278A (en) * 1994-08-25 1996-03-05 Noguchi Kanji Holding stand of calender

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008273010A (en) * 2007-04-27 2008-11-13 Sekisui Chem Co Ltd Method for manufacturing fiber-reinforced plastic molded body

Also Published As

Publication number Publication date
JP4104960B2 (en) 2008-06-18

Similar Documents

Publication Publication Date Title
AU2008203840B2 (en) Method of RTM molding
EP1731282B1 (en) Preform, frp, and processes for producing these
JP4324649B2 (en) Fiber reinforced thermoplastic resin sheet, structural material using the same, and method for producing fiber reinforced thermoplastic resin sheet
EP1162058A1 (en) Frp structure body and production method therefor
KR20090091104A (en) Reinforced thermoplastic-resin multilayer sheet material, process for producing the same, and method of forming molded thermoplastic-resin composite material
JP4899692B2 (en) Reinforcing fiber fabric and method for producing the same
WO2007013204A1 (en) Reinforcing woven fabric and process for producing the same
JP4106826B2 (en) Fiber-reinforced resin structure and method for producing the same
US20100248573A1 (en) Flexible 3-d textile structure and method of producing thereof
JP2006192745A (en) Reinforcing fiber base material, preform, fiber reinforced resin molded product and its manufacturing method
JP2007126793A (en) Cutting method and preform substrate for laminate, and preform production method using the same
CN108712951B (en) Method for producing composite material
EP3904031A1 (en) Method for manufacturing preform, method for manufacturing composite material molded article, and mold
JP2002307463A (en) Method for producing fiber-reinforced resin
JP2004160744A (en) Left-over type resin pass medium made of reinforcing fiber
JP4631395B2 (en) Method for shaping reinforcing fiber base material for FRP molding
JP2000238139A (en) Manufacture of frp structure
US5391425A (en) Composite material with shrinkage barrier
JP2005262818A (en) Reinforcing fiber substrate, preform and reinforcing fiber substrate manufacturing method
JP2006027091A (en) Composite material having smooth surface
WO2015166479A1 (en) Combined thermoset and thermoplastic resin infusion apparatus and method
JP2004122527A (en) Method for producing frp molded product
JP2003136548A (en) Material for rtm molding and method for rtm molding by using the material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080313

A61 First payment of annual fees (during grant procedure)

Effective date: 20080326

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees