JP2004160406A - Ammonia concentration automatic control method in biogas conversion and treatment apparatus for organic waste using the same - Google Patents

Ammonia concentration automatic control method in biogas conversion and treatment apparatus for organic waste using the same Download PDF

Info

Publication number
JP2004160406A
JP2004160406A JP2002331191A JP2002331191A JP2004160406A JP 2004160406 A JP2004160406 A JP 2004160406A JP 2002331191 A JP2002331191 A JP 2002331191A JP 2002331191 A JP2002331191 A JP 2002331191A JP 2004160406 A JP2004160406 A JP 2004160406A
Authority
JP
Japan
Prior art keywords
ammonia
organic waste
tank
fermenter
filtrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002331191A
Other languages
Japanese (ja)
Other versions
JP4050976B2 (en
Inventor
Tsuneo Hayashi
恒生 林
Katsuteru Matsushita
勝輝 松下
Hiroshi Sunahara
広志 砂原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokoku Kogyo Co Ltd
Original Assignee
Hokoku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokoku Kogyo Co Ltd filed Critical Hokoku Kogyo Co Ltd
Priority to JP2002331191A priority Critical patent/JP4050976B2/en
Publication of JP2004160406A publication Critical patent/JP2004160406A/en
Application granted granted Critical
Publication of JP4050976B2 publication Critical patent/JP4050976B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

<P>PROBLEM TO BE SOLVED: To allow ammonia generated in a biodegradation process of organic waste by anaerobic microorganisms not to inhibit the stable generation of biogas. <P>SOLUTION: In a reaction, organic substances are biodegraded inside a fermenter 1 stirred in an airtight state by the anaerobic microorganisms, and converted into the biogas 11 containing methane and carbon dioxide gas. In the reaction, an anaerobic digestive inside the fermenter 1 is extracted and filtered by a precision membrane 3 for passing through ammonia molecules. When ammonia concentration in the filtrate is a prescribed threshold value or higher, the filtrate is fed to an ammonia emission tank 8 and ammonia is removed. When the ammonia concentration therein is the threshold value or lower, an anaerobic digestive not passing through the precision membrane 3 is also returned to the fermenter 1. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、バイオガス変換におけるアンモニア濃度自動管理方法および該方法を用いた有機系廃棄物の処理装置に関し、詳しくは、有機系廃棄物を嫌気性微生物で生分解してバイオガスに変換する際の反応を阻害するアンモニアの濃度を自動管理するものである。
【0002】
【従来の技術】
近年、有機系廃棄物の再資源化技術の分野において、特に、嫌気性微生物を用いて有機系廃棄物をメタン発酵させて生成されるバイオガス(メタンと二酸化炭素を含むガス)が、石油等の化石燃料に代替する再生資源として着目されている。
従来より、し尿の中温嫌気性消化処理、洗毛廃液、製薬廃液等の高濃度廃液の高温嫌気性消化処理が実用化されている。
【0003】
有機系廃棄物の処理方法は、家畜糞し尿の処分に関する法律、食料品リサイクル法等々の諸法律の施行に伴ない、3年程前から有機系廃棄物を嫌気性微生物により発酵させてバイオガスに変換させる再資源化の方向に発展している。
特に、養豚糞尿、酪農牛糞し尿、養鶏鶏糞、食品製造廃棄物、家庭生ゴミ等々の有機系廃棄物の嫌気性微生物によるバイオガスへの変換法の確立化はバイオガスのエネルギー利用のため強く要望されている。
【0004】
最近の学術論文、”有機系廃棄物の嫌気消化”−実際における反応因子と平衡(共著:M.Kranert,K.Hillebrecht。出典:国連、高級研究所(日本):http://www.ias.unu.edu/proceedings/icibs/ic〜mfa/hillebrecht/paper.html)によると、多種類のバイオガスの高濃度微生物による短時間の変換、高成分のバイオガス生産のための微生物反応に関する種々な因子、種々な反応物質の平衡状態について詳述されている。
【0005】
嫌気性微生物による有機物の分解過程は、初めに、腐敗菌により有機物質が分解され、種々な有機酸、水素、アルコール、アミノ酸、種々な窒素化合物に変化する第一段階の「酸生成相」と、多種類の酵素や微生物によりさらに分解され、最終的には酢酸、水素とメタン菌とによりメタンガスを含むバイオガスを生産する第二段階の「メタン生成相」とがあり、難分解物質(例えば鶏糞のような廃棄物)は「酸生成相」と「メタン生成相」を分離した二相式中温嫌気性消化法(あるいは二槽式中温嫌気性消化法)が採用されている。
【0006】
なお、種々の有機系廃棄物の嫌気性微生物によるバイオガスへの変換技術の区分として、難分解物質は「酸生成相」と「メタン生成相」より構成されている二相式中温嫌気性消化法が採用され、易分解物質は高温嫌気性消化法が採用されている。前者は、分解消化時間が20日から30日と長期間であり、後者は5日から10日の短期間である。さらにバイオガス排出速度は後者が前者よりも1.5倍くらい迅速であり、廃棄物の分解率は後者のほうが前者よりも多い。
【0007】
【非特許文献1】
“有機系廃棄物の嫌気消化”−実際における反応因子と平衡
(共著:M.Kranert,K.Hillebrecht。出典:国連、高級研究所(日本);http://www.ias.unu.edu/proceedings/icibs/ic〜mfa/hillebrecht/paper.html)
【0008】
【発明が解決しようとする課題】
しかしながら、高成分のバイオガスを安定して生産するためには、発酵槽内の酢酸濃度が一定以下であると、酢酸分子とメタン菌との微生物反応が安定していると判断されるが、有機系廃棄物を構成する窒素化合物が腐敗工程やメタン生成工程でアンモニア分子となり消化槽内のアンモニア濃度が5000ppm以上に増加すると、該アンモニア分子が酢酸分子と結合してしまい、消化液のpHが9くらいに上昇してバイオガス生成の障害となる本質的な問題が発生している。
この現象に対して、水による希釈やアルカリ液による中和などの対策が取られてきたが、何れも本質的な対策には至っておらず、従来法では、上記問題点を未解決のまま操業しているのが現状である。
【0009】
特に、豚糞尿、牛糞尿、鶏糞の中には多くの窒素化合物を含有しており、これらは嫌気性微生物の嫌気性消化反応において高濃度のアンモニアが発生し、バイオガスの生成を抑制することとなる。
図2は、鶏糞の実験室規模の中温嫌気性消化反応の研究で得られた結果のうち、アンモニア濃度とバイオガス発生率との関係を示すグラフであり、該グラフより明らかなように、時間経過により次第にアンモニア濃度が上昇すると共に、バイオガス発生率が減少していることが確認される。
【0010】
本発明は、上記問題に鑑みてなされたもので、嫌気性微生物による有機系廃棄物の生分解過程において発生するアンモニアがバイオガスの安定生成を阻害しないようにすることを課題としている。
【0011】
【課題を解決するための手段】
上記課題を解決するため、本発明は、有機系廃棄物が空気を遮断した状態で撹拌される発酵槽内で嫌気性微生物により生分解され、メタンと二酸化炭素ガスを含むバイオガスの変換において、上記有機系廃棄物の分解により発生するアンモニア濃度を自動管理する方法であって、
上記発酵槽内の嫌気性消化液を抽出しアンモニア分子を通過させる精密膜で濾過し、濾液中のアンモニア濃度が2000〜5500mg/lの範囲内の一定の閾値以上の場合はアンモニア発散槽に送液してアンモニアを除去する一方、該閾値より低い場合は上記濾液を上記発酵槽に戻すと共に、上記精密膜を通過しなかった嫌気性消化液も上記発酵槽に戻し、上記発酵槽内のアンモニア濃度を所定以下に管理することを特徴とするバイオガス変換におけるアンモニア濃度自動管理方法を提供している。
【0012】
上記方法によると、有機系物質を嫌気性微生物により生分解してバイオガスに変換する際に、その変換反応を阻害する嫌気性消化液に含有されるアンモニアが高濃度となった場合に適宜除去して、発酵槽内のアンモニア濃度が一定以上にならないように管理することができる。
しかも、嫌気性消化液を濾過槽の精密膜で濾過された濾液のアンモニア濃度が、バイオガス発生率を低下させない閾値より低い場合には、そのまま発酵槽へ戻しているので、嫌気性微生物の活動に必要なアンモニア窒素成分が確保できる。かつ、上記精密膜を通過しなかった嫌気性微生物を含む消化液も発酵槽へ戻しているので、発酵槽における嫌気性微生物の濃度低下も防止できる。
したがって、有機系物質と嫌気性微生物との反応を安定保持して、変動の少ないバイオガスの生産を確保することが可能になる。
【0013】
上記濾液を発酵槽へ戻すか、アンモニア発散槽に送液するかを判断するアンモニア濃度の閾値は、上記したように2000〜5500mg/lの範囲内の値としている。
上記閾値を5500mg/l以上とすると、バイオガス変換反応を阻害する程にアンモニア濃度が高いにも関わらず発酵槽へと上記濾液が戻されてしまうからである。一方、閾値を2000mg/l以下とすると、バイオガス変換反応を大幅には低下させないアンモニア濃度であるにも関わらずアンモニア発散槽に送液されて発酵槽に戻されないので、発酵槽において有機系物質のバイオガス変換に必要な窒素成分を減少させてしまうからである。
よって、上記2000〜5500mg/lの範囲内の値を閾値として用いることで、発酵槽におけるアンモニア濃度の上昇防止とバイオ変換に必要な因子の確保とを両立させた自動運転が可能になる。
【0014】
また、本発明は、有機系廃棄物が分解してメタンと二酸化炭素を含むバイオガスに変換する有機系廃棄物の処理装置において、上記アンモニア濃度管理方法を用いた装置を提供している。該処理装置は、
有機系廃棄物が空気を遮断した状態で嫌気性微生物と撹拌される発酵槽と、
上記発酵槽より抽出された嫌気性消化液が流入する精密膜を有する濾過槽と、
上記濾過槽で濾過された濾液が送液されるアンモニア濃度自動計測器と、
上記濾過槽で上記精密膜を通過しなかった嫌気牲消化液が上記発酵槽へ戻される第一返送管と、
上記アンモニア濃度自動計測器で測定される濾液のアンモニア濃度が所定の閾値以上であると送給されるアンモニア発散槽と、
上記アンモニア濃度自動計測器で測定される濾液のアンモニア濃度が上記閾値より低いと上記発酵槽へ濾液を還流する第二返送管を備えていることを特徴とする。
【0015】
上記アンモニア濃度自動計測器より濾液を導出する管を二股に分岐して、該分岐管の一方を上記アンモニア発散槽に接続する送液管とすると共に、分岐管の他方を発酵槽に接続する上記第二返送管とし、
上記分岐させた送液管に第1開閉弁を介設すると共に、上記第二返送管に第2開閉弁を介設し、上記アンモニア濃度自動計測器からの計測信号により上記第1、2開閉弁を開閉作動させ、上記アンモニア濃度が2000〜5500mg/lの範囲内の一定の閾値以上の場合は第1開閉弁を開、第2開閉弁は閉とする一方、アンモニア濃度が上記閾値より低い場合は第1開閉弁を閉、第2開閉弁は開としている。
【0016】
上記の構成とすると、嫌気性消化液を濾過槽で濾過した濾液のアンモニア濃度が、アンモニア濃度自動計測器により閾値より低いと判断された場合には、開閉信号により上記第1、第2開閉弁が作動して上記第二返送管で発酵槽へ戻し、かつ、上記精密膜を通過しなかった嫌気性微生物を含む嫌気性消化液も第一返送管により発酵槽へ戻しているので、発酵槽における嫌気性微生物の濃度低下の防止ができると共に、嫌気性微生物の活動に必要な窒素成分の低下が防止できる。
【0017】
また、上記アンモニア発散槽はアンモニア分解槽と接続し、アンモニア発散槽では濾液をpH10〜14と調整した後に充填材でアンモニアを気化させ、該アンモニア発散槽から上記アンモニア分解槽に送給されたアンモニアガスを触媒により窒素ガスまで分解して大気に放出する構成としている。
【0018】
上記のように、アンモニア濃度自動計測器により濾液のアンモニア濃度が閾値以上と判断された場合には、上記アンモニア発散槽へと送られ、pHを10〜14とし、充填材を通して濾液中のアンモニアがアンモニアガスに気化している。詳しくは、アンモニア分子は、濾液中では溶解して次のような化学式(1)でアンモニウムイオンとなっている。
(式1)

Figure 2004160406
濾液をアルカリ性にすると、既知の如く、化学平衡によりアンモニウムイオンNH がアンモニア分子NHとなり、飽和濃度以上になるとアンモニアガスとなって濾液より発散する。
上記アンモニア発散槽で気化されたアンモニアガスは、上記アンモニア分解槽に送風され、触媒により窒素ガスまで還元されて安全に大気に放出できる。
【0019】
上記濾過槽内の上記精密膜の孔径は0.1〜0.5μmとし、アンモニア分子を通すが、嫌気性微生物は通さない大きさとしている。
即ち、上記精密膜で濾過されなかった嫌気性微生物の濃縮された消化液を発酵槽へ戻すことで、発酵槽の嫌気性微生物濃度を維持し、安定、且つ、迅速な微生物反応を可能にする。
【0020】
また、上記嫌気性微生物により有機系廃棄物を生分解する発酵槽は、中温嫌気性微生物に適した35〜37℃または高温嫌気性微生物に適した53〜56℃の加熱雰囲気とし、嫌気性微生物の活性化を図り生分解作用を促進させている。
【0021】
【発明の実施の形態】
本発明の実施形態を図面を参照して説明する。
図1は、有機系廃薬物を安定してバイオガスに変換するためのアンモニア濃度自動管理装置の概略図を示す。
【0022】
上記装置は有機系廃棄物が排出される工場等に設置されるもので、該有機系廃棄物が供給される供給路12と、供給路12に接続され有機系廃棄物を空気を遮断した状態で嫌気性微生物と撹拌する発酵槽1と、発酵槽1の嫌気性消化液がポンプ14を介して抽出・送液されると共に内部に精密膜濾過筒3を収納している濾過槽2と、精密膜濾過筒3を通過しなかった消化液を発酵槽1へ戻す第一返送管16と、精密膜濾過筒3を通過した濾液がポンプ15を介して抽出・送液されるアンモニア濃度自動計測器4と、アンモニア濃度自動計測器4より流出された濾液を二方向に振り分ける弁別部18と、アンモニア濃度自動計測器4によりアンモニア濃度が一定の閾値を超えたかどうかを弁別部18に知らせる開閉信号5と、弁別部18によりアンモニア濃度が閾値以上の場合に送液されるアンモニア発散槽8と、弁別部18によりアンモニア濃度が閾値より低い場合に濾液を発酵槽1へ戻す第二返送管17と、アンモニア発散槽8で発散されたアンモニアガスを触媒により窒素ガス10まで分解して大気に放出するアンモニア分解槽9とを備えている。
【0023】
発酵槽1は、雰囲気温度を35℃〜37℃として中温嫌気性微生物と撹拌して有機系廃棄物をメタン発酵させているか、或いは、雰囲気温度を53℃〜66℃として高温嫌気性微生物と撹拌して有機系廃棄物をメタン発酵させている。
メタン発酵は、第一段階の「酸生成相」で、有機系廃棄物が嫌気性微生物により分解され、種々な有機酸、水素、アルコール、アミノ酸、種々な窒素化合物に変化され、第二段階の「メタン生成相」で、多種類の酵素や微生物により更に分解されて酢酸、水素とメタン菌とによりメタンガスを含むバイオガス11が生成される。この際、有機系廃棄物を構成する窒素化合物の一部はアンモニアとなり、嫌気性消化液の中にアンモニア分子とアンモニウムイオンになって溶解している。
【0024】
濾過槽2は、槽内に円筒形状の精密膜濾過筒3を配置した所謂クロスフロー濾過方式であり、精密膜濾過筒3は、濾液を容易に通過できる高分子系基材の表面にポリスルフォンのような有機物を塗布して形成されており、その有孔径は0.3〜0.6μmの細孔としてアンモニア分子を通し、かつ、嫌気性微生物を通さない大きさとしている。本実施形態では0.45μmの細孔を設けている。
【0025】
発酵槽1より濾過槽2に送られる嫌気性消化液は精密膜濾過筒3の外部に流入し、精密膜濾過筒3で濾過されて円筒内部に入った濾液はポンプ15でアンモ二ア濃度自動計測器4に送液される。また、精密膜濾過筒3を通過しなかった円筒外部の嫌気性消化液は第一返送管16で発酵槽1に戻される。
【0026】
アンモニア濃度自動計測器4は、濾液を少量採取計量し、そのpHを10〜14に調節し発生するアンモニアガスをガス透過膜を透過させて0.1モルの塩化アンモニウムに吸収させ、この吸収液のpHを、複合型ガラス電極と変換器でpHを測定し、学術的に既知であるpHとアンモニア濃度との間の関係式からアンモニア濃度を計測している。
【0027】
上記計測した濾液を発酵槽1へ戻すか、アンモニア発散槽8に送液するかを判断するアンモニア濃度の閾値は2000〜5500mg/lの範囲内の値とし、本実施形態では3000mg/lとしている。
【0028】
弁別部18の構成は、アンモニア濃度自動計測器4より濾液を導出する管20を二股に分岐して、一方の分岐管をアンモニア発散槽8に接続する送液管21とすると共に、分岐管の他方を発酵槽1に接続する第二返送管17としている。
上記送液管21に第1開閉弁7を介設すると共に、第二返送管17に第2開閉弁6を介設し、アンモニア濃度自動計測器4からの計測に基づく開閉信号5により第1、第2開閉弁7、6を開閉作動させている。
上記第1、第2開閉弁7、6は電磁弁とし、第2開閉弁6はノーマルオープンとし、第1開閉弁7はノーマルクローズとしている。
【0029】
アンモニア発散槽8では、空気送風部13と小型円筒型充填材(図示せず)と、pH調節部(図示せず)とを備え、pH調節部より濾液に水酸化ナトリウム10%水溶液が添加されてpHを10〜14に調整している。本実施形態では、pHを12に自動調整している。
そして、pHを12とすることにより濾液中のアンモニアがアンモニアガスに気化される。詳しくは、アンモニア分子は、濾液中では溶解して次のような化学式(1)でアンモニウムイオンとなっている。
(式1)
Figure 2004160406
この濾液をpHを12としてアルカリ性にすることで、化学平衡によりアンモニウムイオンNH がアンモニア分子NHとなり、飽和濃度以上になるとアンモニア分子NHが気化され、上記小型円筒型充填材を乱流通液することで益々アンモニア分子NHが気化されアンモニアガスが発散する。そのアンモニアガスは空気送風13と共にアンモニア分解槽9へと運ばれる構成としている。
【0030】
アンモニア分解槽9では、アンモニア発散槽8から送られたアンモニアガスを加熱し、第一段階として300〜450℃で触媒により窒素酸化物にして、第二段階として600〜700℃でチタン系触媒により窒素ガス10まで還元させて大気に放出している。
なお、本実施形態では、上記第一段階の温度は約380℃とし、上記第二段階の温度は約650℃としている。
【0031】
次に、上記装置の作用を説明する。
有機系廃棄物12を発酵槽1へ供給し、嫌気性微生物と共に空気を遮断した状態で撹拌してメタン発酵によりメタンと二酸化炭素を含むバイオガス11へと変換する。
この有機系廃棄物の嫌気性微生物による生分解過程で発生しバイオガス生成を阻害するアンモニアは嫌気性消化液の中に溶解しており、該嫌気性消化液を発酵槽1の底部からポンプ14により抽出して濾過槽2へと送液する。
【0032】
濾過槽2内に流入した嫌気性消化液は精密膜濾過筒3の外表面を流動し、該精密膜濾過筒3内が低減圧状態となることで、外表面から垂直方向に精密膜濾過筒3の内部へと嫌気性消化液が通過して濾液が得られる。この際、嫌気性消化液に存在する嫌気性微生物は既に凝集しており、精密膜濾過筒3の細孔より大きいので通過できなく、嫌気性微生物が除かれアンモニアを含む嫌気性消化液が通過して濾液となる。
なお、このクロスフロー濾過法は、嫌気性消化液の主流は精密膜濾過筒3の外表面を滑るように下から上へ流れるので、精密膜濾過筒3の目詰まりを起こし難い利点がある。
【0033】
上記精密膜濾過筒3を通過しなかった嫌気性微生物を含む嫌気性消化液は第一返送管16を通して発酵槽1へと戻される。一方、濾過された精密膜濾過筒3内部の濾液はポンプ15でアンモニア濃度自動計測器4へ送液され、アンモニア濃度が計測される。
【0034】
アンモニア濃度自動計測器4では、アンモニア濃度が閾値3000mg/lより低い時は、通常状態である第2開閉弁6が開状態で、第1開閉弁7が閉状態のままで、第二返送管17により発酵槽1へと濾液が戻される。一方、閾値3000mg/l以上の場合は、アンモニア濃度計からの開閉信号5が弁別部18に送信され、第2開閉弁6が閉状態とされると同時に第1開閉弁7が開状態とされ、アンモニア発散槽8へ濾液が送液される。
【0035】
アンモニア発散槽8では、濾液に水酸化ナトリウム10%水溶液が添加されてpHを12に自動的調節し、小型円筒型充填材を乱流通水するときに自然にアンモニアガスに気化される。アンモニア発散槽8で気化されたアンモニアガスは外部からの空気送風13に伴なってアンモニア分解槽9に導入される。
このアンモニアガスを含む混合ガスは約380℃に加熱され触媒により窒素酸化物に酸化され、次にチタン系触媒により約650℃の条件下で窒素ガス10にまで還元して安全な状態として大気に放出している。
【0036】
上記装置によると、従来法では発酵槽内からアンモニアを系外に取り出さないままの方法でバイオガスの生成が不安定であったが、本発明によれば発酵槽1内からアンモニアを取り出して適正なアンモニア濃度に自動管理することができるので、メタン発酵反応を安定化させて、バイオガスを安定的に生産することができる。
【0037】
【発明の効果】
以上の説明より明らかなように、本発明によれば、有機系廃棄物を嫌気性微生物により生分解してバイオガスに変換する際に、その変換反応を阻害するアンモニア濃度が一定以上にならないように自動管理することができる。
また、嫌気性消化液を濾過槽の精密膜で濾過した濾液のアンモニア濃度が、バイオガス発生率を低下させない閾値以下である場合には発酵槽へ戻し、かつ、精密膜を通過しなかった嫌気性微生物を含む嫌気性消化液も発酵槽へ戻しているので、発酵槽における嫌気性微生物の活動に必要な窒素成分および嫌気性微生物の濃度低下も防止することができる。
よって、有機系物質の嫌気性微生物による分解反応が安定化され、変動の少ないバイオガス生産を確保することが可能となる。
【図面の簡単な説明】
【図1】バイオガス変換におけるアンモニア濃度自動管理方法を用いた有機系廃棄物の処理装置の概略図である。
【図2】嫌気性発酵日数の経過におけるアンモニア濃度の変動およびバイオガス発生率の変動を示すグラフである。
【符号の説明】
1 嫌気性発酵槽
2 濾過槽
3 精密膜濾過筒
4 アンモニア濃度自動計測器
5 開閉信号
6 第2開閉弁
7 第1開閉弁
8 アンモニア発散槽
9 アンモニア分解槽
10 窒素ガス
11 バイオガス
12 有機系廃棄物
13 空気送風
14、15 ポンプ
16 第一返送管
17 第二返送管
18 弁別部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for automatically controlling the concentration of ammonia in biogas conversion and an apparatus for treating organic waste using the method. More specifically, the present invention relates to a method for biodegrading organic waste with anaerobic microorganisms to convert it into biogas. This automatically controls the concentration of ammonia that inhibits the reaction.
[0002]
[Prior art]
In recent years, in the field of organic waste recycling technology, in particular, biogas (gas containing methane and carbon dioxide) produced by methane fermentation of organic waste using anaerobic microorganisms has been used in petroleum and the like. Is attracting attention as a renewable resource to replace fossil fuels.
BACKGROUND ART Conventionally, medium-temperature anaerobic digestion treatment of night soil and high-temperature anaerobic digestion treatment of high-concentration waste liquid such as hair wash waste liquid and pharmaceutical waste liquid have been put to practical use.
[0003]
The organic waste treatment method is based on biogas by fermenting organic waste with anaerobic microorganisms about three years ago, following the enforcement of laws such as the disposal of livestock manure and human waste and the Food Recycling Law. It is developing in the direction of recycling.
In particular, the establishment of a method for converting organic wastes such as pig manure, dairy cattle manure, poultry manure, poultry manure, food production waste, household garbage, etc. into biogas by anaerobic microorganisms is strongly demanded for the use of biogas energy. Have been.
[0004]
Recent academic paper, "Anaerobic Digestion of Organic Wastes"-Reaction Factors and Equilibrium in Practice (Co-author: M. Kranert, K. Hillrecht. Source: United Nations, Advanced Research Institute (Japan): http: //www.ias. According to the method described in U.S. Nuu.edu/procedings/icibs/ic to mfa / hillrecht / paper.html, various types of biogas can be converted in a short time by high-concentration microorganisms, and various types of microbial reactions for producing high-component biogas can be performed. Various factors and the equilibrium state of various reactants are described in detail.
[0005]
The process of decomposing organic substances by anaerobic microorganisms is the first stage of the `` acid generation phase '' in which organic substances are decomposed by spoilage bacteria and converted into various organic acids, hydrogen, alcohols, amino acids, and various nitrogen compounds. There is a second stage "methane production phase" that is further decomposed by various enzymes and microorganisms and finally produces biogas containing methane gas by acetic acid, hydrogen and methane bacteria, For waste such as chicken manure), a two-phase mesophilic anaerobic digestion method (or a two-tank mesophilic anaerobic digestion method) in which an "acid-producing phase" and a "methane-producing phase" are separated is employed.
[0006]
In addition, as a division of the conversion technology of various organic wastes into biogas by anaerobic microorganisms, the hardly decomposable substance is a two-phase medium-temperature anaerobic digestion composed of an “acid generation phase” and a “methane generation phase”. The high temperature anaerobic digestion method is adopted for easily decomposable substances. The former has a long digestive digestion time of 20 to 30 days, and the latter has a short period of 5 to 10 days. Furthermore, the biogas emission rate is 1.5 times faster in the latter than in the former, and the decomposition rate of waste is higher in the latter than in the former.
[0007]
[Non-patent document 1]
"Anaerobic digestion of organic wastes"-Reaction factors and equilibrium in practice (co-author: M. Kranert, K. Hillbrecht. Source: United Nations, Advanced Research Institute (Japan); http://www.ias.unu.edu/ (procedings / icibs / ic-mfa / hillblecht / paper.html)
[0008]
[Problems to be solved by the invention]
However, in order to stably produce high-component biogas, when the acetic acid concentration in the fermenter is below a certain level, it is judged that the microbial reaction between acetic acid molecules and methane bacteria is stable, When the nitrogen compounds constituting the organic waste become ammonia molecules in the putrefaction process or the methane production process and the ammonia concentration in the digestion tank increases to 5000 ppm or more, the ammonia molecules are combined with the acetic acid molecules, and the pH of the digestive juice is increased. As a result, an essential problem has arisen, which is about 9 and hinders biogas generation.
Countermeasures such as dilution with water and neutralization with an alkaline solution have been taken to cope with this phenomenon, but none of these measures has led to any essential countermeasures. That is the current situation.
[0009]
In particular, pig manure, cow manure, and poultry manure contain many nitrogen compounds, which generate high concentrations of ammonia in the anaerobic digestion reaction of anaerobic microorganisms and suppress the generation of biogas. It becomes.
FIG. 2 is a graph showing the relationship between the ammonia concentration and the biogas generation rate among the results obtained in a laboratory-scale mesophilic anaerobic digestion study of chicken dung. As is clear from the graph, FIG. It is confirmed that the ammonia concentration gradually increases over time and the biogas generation rate decreases.
[0010]
The present invention has been made in view of the above problems, and has as its object to prevent ammonia generated in the process of biodegrading organic waste by anaerobic microorganisms from inhibiting the stable production of biogas.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the present invention is biodegraded by anaerobic microorganisms in a fermenter in which organic waste is stirred in a state where air is shut off, and in the conversion of biogas containing methane and carbon dioxide gas, A method for automatically managing the concentration of ammonia generated by the decomposition of the organic waste,
The anaerobic digestion solution in the fermenter is extracted and filtered through a precision membrane that allows the passage of ammonia molecules. When the ammonia concentration in the filtrate is above a certain threshold value in the range of 2000 to 5500 mg / l, it is sent to the ammonia diffusion tank. While removing the ammonia by liquor, if it is lower than the threshold value, the filtrate is returned to the fermenter, and the anaerobic digestion liquid that has not passed through the precision membrane is returned to the fermenter, and the ammonia in the fermenter is removed. An automatic ammonia concentration management method in biogas conversion, characterized in that the concentration is controlled to a predetermined value or less.
[0012]
According to the above method, when the organic substance is biodegraded by anaerobic microorganisms and converted into biogas, the ammonia contained in the anaerobic digestion fluid that inhibits the conversion reaction is appropriately removed when the concentration becomes high. Then, the ammonia concentration in the fermenter can be controlled so as not to exceed a certain level.
Moreover, when the ammonia concentration of the filtrate obtained by filtering the anaerobic digestion solution through the precision membrane of the filtration tank is lower than the threshold value at which the biogas generation rate is not reduced, the ammonia is returned to the fermentation tank as it is. A necessary ammonia nitrogen component can be secured. In addition, since the digested solution containing the anaerobic microorganisms that have not passed through the precision membrane is also returned to the fermenter, a decrease in the concentration of the anaerobic microorganisms in the fermenter can also be prevented.
Therefore, it is possible to stably maintain the reaction between the organic substance and the anaerobic microorganism, and to ensure the production of biogas with little fluctuation.
[0013]
The threshold value of the ammonia concentration for determining whether to return the filtrate to the fermentation tank or to send the filtrate to the ammonia diffusion tank is a value in the range of 2000 to 5500 mg / l as described above.
If the above threshold value is 5500 mg / l or more, the filtrate is returned to the fermenter even though the ammonia concentration is high enough to inhibit the biogas conversion reaction. On the other hand, when the threshold value is set to 2000 mg / l or less, the organic substance is sent to the ammonia diffusion tank and is not returned to the fermentation tank even though the ammonia concentration does not significantly reduce the biogas conversion reaction. This is because the nitrogen component required for biogas conversion is reduced.
Therefore, by using a value in the range of 2000 to 5500 mg / l as the threshold value, it becomes possible to perform an automatic operation in which both the prevention of the increase in the ammonia concentration in the fermenter and the securing of factors necessary for bioconversion are achieved.
[0014]
The present invention also provides an apparatus for treating organic waste, which decomposes organic waste into biogas containing methane and carbon dioxide, using the ammonia concentration management method. The processing device comprises:
A fermenter in which organic waste is stirred with anaerobic microorganisms in a state where air is shut off,
A filtration tank having a precision membrane into which the anaerobic digestion fluid extracted from the fermentation tank flows,
An ammonia concentration automatic measuring device to which the filtrate filtered in the filtration tank is sent,
A first return pipe in which the anaerobic digestion liquid that has not passed through the precision membrane in the filtration tank is returned to the fermentation tank,
An ammonia diffusion tank that is fed when the ammonia concentration of the filtrate measured by the ammonia concentration automatic measuring device is equal to or higher than a predetermined threshold,
When the ammonia concentration of the filtrate measured by the ammonia concentration automatic measuring device is lower than the threshold value, a second return pipe for refluxing the filtrate to the fermenter is provided.
[0015]
The pipe for drawing out the filtrate from the ammonia concentration automatic measuring device is branched into two branches, one of the branch pipes is used as a liquid sending pipe connected to the ammonia diffusion tank, and the other of the branch pipes is connected to a fermentation tank. The second return pipe,
A first opening / closing valve is provided in the branched liquid supply pipe, and a second opening / closing valve is provided in the second return pipe. The first and second opening / closing valves are provided by a measurement signal from the ammonia concentration automatic measuring device. The valve is opened and closed, and when the ammonia concentration is equal to or higher than a certain threshold value in the range of 2000 to 5500 mg / l, the first on-off valve is opened and the second on-off valve is closed, while the ammonia concentration is lower than the threshold value In this case, the first on-off valve is closed and the second on-off valve is open.
[0016]
With the above configuration, when the ammonia concentration of the filtrate obtained by filtering the anaerobic digestion solution in the filtration tank is determined to be lower than the threshold value by the ammonia concentration automatic measuring device, the first and second on-off valves are turned on and off according to the on-off signal. Is operated and returned to the fermenter with the second return pipe, and the anaerobic digestion solution containing the anaerobic microorganisms that did not pass through the precision membrane is also returned to the fermenter by the first return pipe. In this case, the concentration of anaerobic microorganisms can be prevented from lowering, and the nitrogen component required for the activity of anaerobic microorganisms can be prevented from lowering.
[0017]
In addition, the ammonia diffusion tank is connected to an ammonia decomposition tank. In the ammonia diffusion tank, the filtrate is adjusted to pH 10 to 14, and then ammonia is vaporized with a filler, and the ammonia supplied from the ammonia diffusion tank to the ammonia decomposition tank is supplied to the ammonia decomposition tank. The gas is decomposed into nitrogen gas by a catalyst and released to the atmosphere.
[0018]
As described above, when the ammonia concentration of the filtrate is determined to be equal to or more than the threshold value by the ammonia concentration automatic measuring device, the ammonia is sent to the ammonia dispersion tank, the pH is adjusted to 10 to 14, and the ammonia in the filtrate is passed through the filler. It has been vaporized into ammonia gas. More specifically, the ammonia molecules are dissolved in the filtrate to form ammonium ions according to the following chemical formula (1).
(Equation 1)
Figure 2004160406
When the filtrate is made alkaline, as is known, ammonium ion NH 4 + becomes ammonia molecule NH 3 due to chemical equilibrium, and when the concentration exceeds the saturation concentration, it becomes ammonia gas and emanate from the filtrate.
The ammonia gas vaporized in the ammonia diffusion tank is sent to the ammonia decomposition tank, reduced to nitrogen gas by a catalyst, and can be safely released to the atmosphere.
[0019]
The precision membrane in the filtration tank has a pore diameter of 0.1 to 0.5 μm, and has a size that allows passage of ammonia molecules but does not allow passage of anaerobic microorganisms.
That is, by returning the digested liquid in which the anaerobic microorganisms not filtered by the precision membrane are concentrated to the fermenter, the anaerobic microorganism concentration in the fermenter is maintained, and a stable and rapid microbial reaction is enabled. .
[0020]
The fermenter for biodegrading organic waste by the anaerobic microorganisms has a heating atmosphere of 35 to 37 ° C. suitable for medium-temperature anaerobic microorganisms or 53 to 56 ° C. suitable for high-temperature anaerobic microorganisms. To promote biodegradation.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a schematic diagram of an automatic ammonia concentration management device for stably converting an organic waste drug into biogas.
[0022]
The above device is installed in a factory or the like from which organic waste is discharged, and is provided with a supply path 12 to which the organic waste is supplied and a state in which the organic waste is connected to the supply path 12 and air is shut off. A fermenter 1 for stirring with an anaerobic microorganism in a filter tank 2 in which an anaerobic digestion solution of the fermenter 1 is extracted and sent through a pump 14 and contains a precision membrane filter tube 3 therein; A first return pipe 16 for returning the digested liquid that has not passed through the precision membrane filtration tube 3 to the fermenter 1, and an automatic measurement of the ammonia concentration at which the filtrate that has passed through the precision membrane filtration tube 3 is extracted and sent via the pump 15. Device 4, a discriminating unit 18 for distributing the filtrate discharged from the ammonia concentration automatic measuring device 4 in two directions, and an opening / closing signal for notifying the discriminating unit 18 whether the ammonia concentration has exceeded a certain threshold value by the ammonia concentration automatic measuring device 4. 5 and the discriminator 18 Ammonia diffusion tank 8 that is sent when the ammonia concentration is equal to or higher than the threshold, second return pipe 17 that returns the filtrate to fermenter 1 when ammonia concentration is lower than the threshold by discriminating section 18, and emission in ammonia diffusion tank 8 And an ammonia decomposition tank 9 for decomposing the ammonia gas into nitrogen gas 10 by a catalyst and releasing the gas to the atmosphere.
[0023]
The fermenter 1 stirs the organic waste at methane fermentation with an ambient temperature of 35 ° C. to 37 ° C. and agitates with a medium temperature anaerobic microorganism, or stirs a high temperature anaerobic microorganism with an ambient temperature of 53 ° C. to 66 ° C. The organic waste is then methane fermented.
Methane fermentation is the first stage of the `` acid-producing phase, '' in which organic waste is decomposed by anaerobic microorganisms and converted into various organic acids, hydrogen, alcohols, amino acids, and various nitrogen compounds. In the "methane production phase", biogas 11 containing methane gas is produced by acetic acid, hydrogen and methane bacteria by being further decomposed by various kinds of enzymes and microorganisms. At this time, a part of the nitrogen compound constituting the organic waste becomes ammonia, and is dissolved in the anaerobic digestive solution as ammonia molecules and ammonium ions.
[0024]
The filtration tank 2 is a so-called cross-flow filtration system in which a cylindrical precision membrane filtration tube 3 is disposed in the tank, and the precision membrane filtration tube 3 is provided with a polysulfone on the surface of a polymer base material through which a filtrate can easily pass. Is formed by applying an organic substance as described above, and has a pore diameter of 0.3 to 0.6 μm, which allows ammonia molecules to pass therethrough and does not allow anaerobic microorganisms to pass therethrough. In this embodiment, pores of 0.45 μm are provided.
[0025]
The anaerobic digestion liquid sent from the fermenter 1 to the filtration tank 2 flows into the outside of the precision membrane filtration tube 3, and is filtered by the precision membrane filtration tube 3 and enters the inside of the cylinder. The liquid is sent to the measuring device 4. Further, the anaerobic digestion solution outside the cylinder that has not passed through the precision membrane filtration tube 3 is returned to the fermenter 1 by the first return pipe 16.
[0026]
The ammonia concentration automatic measuring device 4 collects a small amount of the filtrate, weighs it, adjusts its pH to 10 to 14, allows the generated ammonia gas to permeate through the gas permeable membrane and absorbs it into 0.1 mol of ammonium chloride. Is measured with a composite glass electrode and a converter, and the ammonia concentration is measured from a scientifically known relational expression between pH and ammonia concentration.
[0027]
The threshold value of the ammonia concentration for determining whether to return the measured filtrate to the fermenter 1 or to send it to the ammonia divergence tank 8 is a value within the range of 2000 to 5500 mg / l, and is 3000 mg / l in the present embodiment. .
[0028]
The configuration of the discriminating unit 18 is such that the pipe 20 for leading out the filtrate from the ammonia concentration automatic measuring device 4 is branched into two branches, and one of the branch pipes is used as a liquid sending pipe 21 connected to the ammonia diffusion tank 8. The other is a second return pipe 17 connected to the fermenter 1.
A first opening / closing valve 7 is provided in the liquid supply pipe 21 and a second opening / closing valve 6 is provided in the second return pipe 17, and a first opening / closing signal 5 based on the measurement from the automatic ammonia concentration measuring device 4 is used. , The second on-off valves 7 and 6 are opened and closed.
The first and second on-off valves 7 and 6 are electromagnetic valves, the second on-off valve 6 is normally open, and the first on-off valve 7 is normally closed.
[0029]
The ammonia diffusion tank 8 includes an air blowing unit 13, a small cylindrical filler (not shown), and a pH adjusting unit (not shown), and a 10% aqueous solution of sodium hydroxide is added to the filtrate from the pH adjusting unit. PH is adjusted to 10-14. In the present embodiment, the pH is automatically adjusted to 12.
Then, by adjusting the pH to 12, ammonia in the filtrate is vaporized into ammonia gas. More specifically, the ammonia molecules are dissolved in the filtrate to form ammonium ions according to the following chemical formula (1).
(Equation 1)
Figure 2004160406
The filtrate is made alkaline at pH 12 so that ammonium ion NH 4 + becomes ammonia molecule NH 3 by chemical equilibrium, and when the concentration exceeds the saturation concentration, ammonia molecule NH 3 is vaporized and turbulently flows through the small cylindrical filler. As the liquid is liquefied, ammonia molecules NH 3 are further vaporized and ammonia gas is diverged. The ammonia gas is carried to the ammonia decomposition tank 9 together with the air blow 13.
[0030]
In the ammonia decomposition tank 9, the ammonia gas sent from the ammonia diffusion tank 8 is heated and converted into a nitrogen oxide by a catalyst at 300 to 450 ° C. as a first step, and a titanium-based catalyst at 600 to 700 ° C. as a second step. It is reduced to nitrogen gas 10 and released to the atmosphere.
In the present embodiment, the temperature of the first stage is about 380 ° C., and the temperature of the second step is about 650 ° C.
[0031]
Next, the operation of the above device will be described.
The organic waste 12 is supplied to the fermenter 1 and is stirred together with anaerobic microorganisms in a state where air is shut off, and is converted into biogas 11 containing methane and carbon dioxide by methane fermentation.
Ammonia which is generated in the process of biodegradation of the organic waste by anaerobic microorganisms and inhibits biogas generation is dissolved in the anaerobic digestion solution, and the anaerobic digestion solution is pumped from the bottom of the fermenter 1 through the pump 14. And the solution is sent to the filtration tank 2.
[0032]
The anaerobic digestion fluid that has flowed into the filtration tank 2 flows on the outer surface of the precision membrane filtration tube 3, and when the inside of the precision membrane filtration tube 3 is in a reduced pressure state, the precision membrane filtration tube is vertically moved from the outer surface. The anaerobic digestion fluid passes into the inside of 3 to obtain a filtrate. At this time, the anaerobic microorganisms present in the anaerobic digestion fluid have already been aggregated and cannot pass through because they are larger than the pores of the precision membrane filtration tube 3, and the anaerobic microorganisms are removed and the anaerobic digestion fluid containing ammonia passes. To form a filtrate.
The cross-flow filtration method has an advantage that the main flow of the anaerobic digestion fluid flows from the bottom to the top so as to slide on the outer surface of the precision membrane filtration tube 3, and thus the clogging of the precision membrane filtration tube 3 does not easily occur.
[0033]
The anaerobic digestion liquid containing the anaerobic microorganisms that has not passed through the precision membrane filtration tube 3 is returned to the fermenter 1 through the first return pipe 16. On the other hand, the filtered filtrate inside the precision membrane filtration tube 3 is sent to the ammonia concentration automatic measuring device 4 by the pump 15, and the ammonia concentration is measured.
[0034]
In the ammonia concentration automatic measuring device 4, when the ammonia concentration is lower than the threshold value of 3000 mg / l, the second return pipe is kept in the normal state, the second on-off valve 6 is open and the first on-off valve 7 is closed. The filtrate is returned to the fermenter 1 by 17. On the other hand, when the threshold value is 3000 mg / l or more, the opening / closing signal 5 from the ammonia concentration meter is transmitted to the discriminating section 18, the second opening / closing valve 6 is closed, and the first opening / closing valve 7 is opened simultaneously. Then, the filtrate is sent to the ammonia diffusion tank 8.
[0035]
In the ammonia diffusion tank 8, a 10% aqueous solution of sodium hydroxide is added to the filtrate to automatically adjust the pH to 12, and when the small cylindrical filler is turbulently circulated, it is naturally vaporized into ammonia gas. The ammonia gas vaporized in the ammonia diffusion tank 8 is introduced into the ammonia decomposition tank 9 along with an external air blow 13.
The mixed gas containing the ammonia gas is heated to about 380 ° C., oxidized to nitrogen oxides by the catalyst, and then reduced to nitrogen gas 10 by the titanium-based catalyst at about 650 ° C. to a safe state to the atmosphere. Has released.
[0036]
According to the above-described apparatus, in the conventional method, the production of biogas was unstable by a method in which ammonia was not taken out of the fermenter from the outside of the system. Since the ammonia concentration can be automatically controlled to a low level, the methane fermentation reaction can be stabilized and biogas can be stably produced.
[0037]
【The invention's effect】
As is clear from the above description, according to the present invention, when the organic waste is biodegraded by anaerobic microorganisms and converted into biogas, the ammonia concentration that inhibits the conversion reaction does not exceed a certain level. Can be automatically managed.
In addition, when the ammonia concentration of the filtrate obtained by filtering the anaerobic digestion solution with the precision membrane in the filtration tank is equal to or lower than a threshold value that does not reduce the biogas generation rate, the anaerobic digestion liquid is returned to the fermentation tank, and the anaerobic reaction that has not passed through the precision membrane Since the anaerobic digestion solution containing the anaerobic microorganisms is also returned to the fermenter, it is possible to prevent a decrease in the concentration of nitrogen components and anaerobic microorganisms required for the activity of the anaerobic microorganisms in the fermenter.
Therefore, the decomposition reaction of the organic substance by the anaerobic microorganism is stabilized, and it is possible to secure biogas production with little fluctuation.
[Brief description of the drawings]
FIG. 1 is a schematic view of an organic waste treatment apparatus using an automatic ammonia concentration management method in biogas conversion.
FIG. 2 is a graph showing changes in ammonia concentration and changes in biogas generation rate over the course of anaerobic fermentation days.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Anaerobic fermentation tank 2 Filtration tank 3 Precision membrane filtration cylinder 4 Ammonia concentration automatic measuring instrument 5 Open / close signal 6 Second open / close valve 7 First open / close valve 8 Ammonia emission tank 9 Ammonia decomposition tank 10 Nitrogen gas 11 Biogas 12 Organic waste Object 13 Air blow 14, 15 Pump 16 First return pipe 17 Second return pipe 18 Discriminator

Claims (6)

有機系廃棄物が空気を遮断した状態で撹拌される発酵槽内で嫌気性微生物により生分解され、メタンと二酸化炭素ガスを含むバイオガスの変換において、上記有機系廃棄物の分解により発生するアンモニア濃度を自動管理する方法であって、
上記発酵槽内の嫌気性消化液を抽出しアンモニア分子を通過させる精密膜で濾過し、濾液中のアンモニア濃度が2000〜5500mg/lの範囲内の一定の閾値以上の場合はアンモニア発散槽に送液してアンモニアを除去する一方、該閾値より低い場合は上記濾液を上記発酵槽に戻すと共に、上記精密膜を通過しなかった嫌気性消化液も上記発酵槽に戻し、上記発酵槽内のアンモニア濃度を所定以下に管理することを特徴とするバイオガス変換におけるアンモニア濃度自動管理方法。
Ammonia generated by the decomposition of the organic waste in the conversion of biogas containing methane and carbon dioxide gas in the fermenter where the organic waste is stirred with the air shut off A method for automatically controlling the concentration,
The anaerobic digestion solution in the fermenter is extracted and filtered through a precision membrane that allows the passage of ammonia molecules. When the ammonia concentration in the filtrate is above a certain threshold value in the range of 2000 to 5500 mg / l, it is sent to the ammonia diffusion tank. While removing the ammonia by liquor, if it is lower than the threshold value, the filtrate is returned to the fermenter, and the anaerobic digestion liquid that has not passed through the precision membrane is returned to the fermenter, and the ammonia in the fermenter is removed. An automatic ammonia concentration management method in biogas conversion, wherein the concentration is controlled to a predetermined value or less.
有機系廃棄物が分解してメタンと二酸化炭素を含むバイオガスに変換する有機系廃棄物の処理装置であって、
有機系廃棄物が空気を遮断した状態で嫌気性微生物と撹拌される発酵槽と、
上記発酵槽より抽出された嫌気性消化液が流入する精密膜を有する濾過槽と、
上記濾過槽で濾過された濾液が送液されるアンモニア濃度自動計測器と、
上記濾過槽で上記精密膜を通過しなかった嫌気性消化液が上記発酵槽へ戻される第一返送管と、
上記アンモニア濃度自動計測器で測定される濾液のアンモニア濃度が所定の閾値以上であると送給されるアンモニア発散槽と、
上記アンモニア濃度自動計測器で測定される濾液のアンモニア濃度が上記閾値より低いと上記発酵槽へ濾液を還流する第二返送管を備えていることを特徴とする有機系廃棄物の処理装置。
An organic waste treatment device in which organic waste is decomposed and converted into biogas containing methane and carbon dioxide,
A fermenter in which organic waste is stirred with anaerobic microorganisms in a state where air is shut off,
A filtration tank having a precision membrane into which the anaerobic digestion fluid extracted from the fermentation tank flows,
An ammonia concentration automatic measuring device to which the filtrate filtered in the filtration tank is sent,
Anaerobic digestion fluid that did not pass through the precision membrane in the filtration tank, the first return pipe returned to the fermentation tank,
An ammonia diffusion tank that is fed when the ammonia concentration of the filtrate measured by the ammonia concentration automatic measuring device is equal to or higher than a predetermined threshold,
An organic waste treatment apparatus, comprising: a second return pipe for refluxing the filtrate to the fermenter when the ammonia concentration of the filtrate measured by the ammonia concentration automatic measuring device is lower than the threshold.
上記アンモニア濃度自動計測器より濾液を導出する管を二股に分岐して、該分岐管の一方を上記アンモニア発散槽に接続する送液管とすると共に、分岐管の他方を発酵槽に接続する上記第二返送管とし、
上記分岐させた送液管に第1開閉弁を介設すると共に、上記第二返送管に第2開閉弁を介設し、上記アンモニア濃度自動計測器からの計測信号により上記第1、第2開閉弁を開閉作動させ、上記アンモニア濃度が2000〜5500mg/lの範囲内の一定の閾値以上の場合は第1開閉弁を開、第2開閉弁は閉とする一方、アンモニア濃度が上記閾値より低い場合は第1開閉弁を閉、第2開閉弁は開としている請求項2に記載の有機系廃棄物の処理装置。
The pipe for drawing out the filtrate from the ammonia concentration automatic measuring device is branched into two branches, one of the branch pipes is used as a liquid sending pipe connected to the ammonia diffusion tank, and the other of the branch pipes is connected to a fermentation tank. The second return pipe,
A first on-off valve is interposed in the branched liquid supply pipe, and a second on-off valve is interposed in the second return pipe, and the first and second valves are operated according to a measurement signal from the ammonia concentration automatic measuring instrument. The on-off valve is opened and closed, and when the ammonia concentration is equal to or more than a certain threshold value in the range of 2000 to 5500 mg / l, the first on-off valve is opened and the second on-off valve is closed, while the ammonia concentration is higher than the threshold value. The organic waste treatment apparatus according to claim 2, wherein the first on-off valve is closed and the second on-off valve is open when the temperature is low.
上記アンモニア発散槽はアンモニア分解槽と接続し、
上記アンモニア発散槽では濾液をpHl0〜14に調整した後に充填材でアンモニアを気化させ、該アンモニア発散槽からアンモニア分解槽に送給されたアンモニアガスを触媒により窒素ガスまで分解して大気に放出する構成としている請求項2または請求項3に記載の有機系廃棄物の処理装置。
The ammonia diffusion tank is connected to an ammonia decomposition tank,
In the above ammonia diffusion tank, the filtrate is adjusted to pH 10 to 14 and then ammonia is vaporized by the filler. The ammonia gas sent from the ammonia diffusion tank to the ammonia decomposition tank is decomposed into nitrogen gas by the catalyst and released to the atmosphere. The organic waste treatment apparatus according to claim 2 or 3, wherein the apparatus is configured.
上記濾過槽内の上記精密膜の孔径は0.1〜0.5μmとし、アンモニア分子を通すが、嫌気性微生物は通さない大きさとしている請求項2乃至請求項4のいずれか1項に記載の有機系廃棄物の処理装置。The pore size of the precision membrane in the filtration tank is 0.1 to 0.5 μm, and has a size that allows passage of ammonia molecules but does not allow anaerobic microorganisms to pass therethrough. Organic waste treatment equipment. 上記嫌気性微生物により有機系廃棄物を生分解する発酵槽は、35〜37℃または53〜56℃の加熱雰囲気としている請求項2乃至請求項5のいずれか1項に記載の有機系廃棄物の処理装置。The organic waste according to any one of claims 2 to 5, wherein the fermenter for biodegrading the organic waste by the anaerobic microorganism has a heating atmosphere of 35 to 37 ° C or 53 to 56 ° C. Processing equipment.
JP2002331191A 2002-11-14 2002-11-14 Method for automatically managing ammonia concentration in biogas conversion and organic waste treatment apparatus using the method Expired - Fee Related JP4050976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002331191A JP4050976B2 (en) 2002-11-14 2002-11-14 Method for automatically managing ammonia concentration in biogas conversion and organic waste treatment apparatus using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002331191A JP4050976B2 (en) 2002-11-14 2002-11-14 Method for automatically managing ammonia concentration in biogas conversion and organic waste treatment apparatus using the method

Publications (2)

Publication Number Publication Date
JP2004160406A true JP2004160406A (en) 2004-06-10
JP4050976B2 JP4050976B2 (en) 2008-02-20

Family

ID=32808646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002331191A Expired - Fee Related JP4050976B2 (en) 2002-11-14 2002-11-14 Method for automatically managing ammonia concentration in biogas conversion and organic waste treatment apparatus using the method

Country Status (1)

Country Link
JP (1) JP4050976B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006255571A (en) * 2005-03-16 2006-09-28 Sumitomo Heavy Ind Ltd Methane fermentation system and methane fermentation process
JP2011120975A (en) * 2009-12-09 2011-06-23 Metawater Co Ltd Method and apparatus for methane fermentation
AT509318B1 (en) * 2010-05-03 2011-08-15 Rudolf Grossfurtner Gmbh separation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006255571A (en) * 2005-03-16 2006-09-28 Sumitomo Heavy Ind Ltd Methane fermentation system and methane fermentation process
JP4611777B2 (en) * 2005-03-16 2011-01-12 住友重機械エンバイロメント株式会社 Methane fermentation system and methane fermentation method
JP2011120975A (en) * 2009-12-09 2011-06-23 Metawater Co Ltd Method and apparatus for methane fermentation
AT509318B1 (en) * 2010-05-03 2011-08-15 Rudolf Grossfurtner Gmbh separation
AT509318A4 (en) * 2010-05-03 2011-08-15 Rudolf Grossfurtner Gmbh separation
AT509318B8 (en) * 2010-05-03 2011-09-15 Rudolf Grossfurtner Gmbh separation

Also Published As

Publication number Publication date
JP4050976B2 (en) 2008-02-20

Similar Documents

Publication Publication Date Title
EP1528953B8 (en) Method and device for stripping ammonia from liquids
JP5298193B2 (en) Method and apparatus for treating organic waste
US20160002582A1 (en) High Efficiency Biometric Device For Producing Hydrogen And Methane
McDermott et al. Ultrasonication as a pre-treatment method for the enhancement of the psychrophilic anaerobic digestion of aquaculture effluents
JP5491046B2 (en) Methane fermentation system and fertilizer production equipment using the same
Rivera et al. Enhancement of swine manure anaerobic digestion using membrane-based NH3 extraction
CN108996875A (en) A kind of sludge deodorization system and method
JPH05277486A (en) Anaerobic treatment of organic waste water
KR101002386B1 (en) An operation method for anaerobic digestion of organic waste by regulating of the concentration of ammonium nitrogen
CN102925357A (en) Composite microbial inoculum for harmless processing, and its application
JP2004160406A (en) Ammonia concentration automatic control method in biogas conversion and treatment apparatus for organic waste using the same
JP4218504B2 (en) Methane fermentation treatment method
KR100994192B1 (en) Anaerobic disgestion apparatus
DK2279153T3 (en) METHOD OF TREATING AND / OR PREPARING LIQUID FERTILIZER OR WASTE FROM BIOGAS SYSTEMS TO ELIMINATE HARMFUL SUBSTANCES, PARTICULAR NITROGEN, PHOSPHORES AND AIR MOLECULES
KR20200006300A (en) ATAD type Swine Wastewater Treatment System for minimizing odor
Farrow Anaerobic digestion of poultry manure: Implementation of ammonia control to optimize biogas yield
KR100994193B1 (en) An operation method for anaerobic digestion of organic waste by regulating of bicarbonate alkalinity
CN106746407A (en) A kind of technique for improving excess sludge dewatering
JP2010000444A (en) Waste water treatment method and apparatus
KR100735545B1 (en) Method for organic wastewater treatments
KR100752332B1 (en) Composting system for sewage sludge using by autothermal thermophilic aerobic digestion
CN108585303A (en) A kind of domestic sewage processing system and its method
JP3982765B2 (en) Methane fermentation equipment for garbage
JP2009066559A (en) Biogas system
CN218755254U (en) High concentration organic waste water resourceful treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees