JP2004159770A - Ultrasonic diagnostic equipment - Google Patents

Ultrasonic diagnostic equipment Download PDF

Info

Publication number
JP2004159770A
JP2004159770A JP2002327035A JP2002327035A JP2004159770A JP 2004159770 A JP2004159770 A JP 2004159770A JP 2002327035 A JP2002327035 A JP 2002327035A JP 2002327035 A JP2002327035 A JP 2002327035A JP 2004159770 A JP2004159770 A JP 2004159770A
Authority
JP
Japan
Prior art keywords
power
signal
transmission
difference
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002327035A
Other languages
Japanese (ja)
Inventor
Katsuhiko Nagasaki
勝彦 長崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Aloka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aloka Co Ltd filed Critical Aloka Co Ltd
Priority to JP2002327035A priority Critical patent/JP2004159770A/en
Publication of JP2004159770A publication Critical patent/JP2004159770A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To control the transmission of ultrasonic waves according to presence/absence of a diagnosis, namely the necessity of the transmission, in ultrasonic diagnostic equipment. <P>SOLUTION: In the figure, (a) is a transmission signal and shows states where a search unit is used and released subsequently in air. (b) is a present receiving signal and (c) shows a receiving signal one line prior to the present. The receiving signal is thus changed for every one line when the search unit is used, while it is scarcely changed in the air release. A difference between the receiving signal (b) and the signal (c) is found and a waveform after the detection is shown in (d). The signal after the difference and the detection becomes an extremely small signal in the air release. The difference signal is treated with a low pass filter and a threshold, outputted to a CPU (central processing unit) and used as a power limit determination and a power limit control. The difference between the receiving signals is processed under the power limit control and a power restoration control is performed based on the difference signal. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、超音波診断装置に係り、特に装置の不使用時に超音波の送信を制限する超音波診断装置に関する。
【0002】
【従来の技術】
超音波診断装置は、内部に複数の振動素子を有する探触子を用い、高電圧の送信駆動信号を各振動素子に供給して対象生体に超音波を送信する。したがって診断を行わないときに超音波の送信を続けていると、探触子が発熱し、劣化の原因ともなる。そのため、超音波診断装置の操作パネルを使用しないことが一定時間続いたときには、例えばタイマー等を用い、送信を停止することが行われている。
【0003】
【発明が解決しようとする課題】
しかしながら、タイマーを用いる方法は、操作パネルを使用しなければ診断の有無にかかわらず一律に一定時間後に送信を停止する。したがって、例えば同じモードで診断を続けているときでも超音波の送信が停止してしまい、診断が中断してしまうことが起こる。また、一旦送信が停止すると、送信を再開するには再びいちいち操作パネルの操作を行わなければならず、煩雑である。
【0004】
本発明の目的は、かかる従来技術の課題を解決し、超音波の送信の必要がないときに送信を制御できる超音波診断装置を提供することである。本発明の他の目的は、超音波の送信が必要なとき、送信再開を自動的に行うことができる超音波診断装置を提供することである。
【0005】
【課題を解決するための手段】
上記目的を達成するため、本発明に係る超音波診断装置は、超音波の送受波により受信信号を出力する送受波手段と、前記送受波手段から出力された2つの受信信号間で差分演算を実行して差分信号を出力する差分手段と、前記差分信号の大きさが第1判定値を下回る無変化状態を検出し、かつその無変化状態が第1判定期間以上継続する場合にパワー制限を判定する制限判定手段と、前記パワー制限が判定された場合に超音波の送信についてパワー制限制御を実行するパワー制限手段と、を備えることを特徴とする。
【0006】
探触子を生体に当接しているときの受信信号の波形は、探触子の姿勢変化や生体の動き等により、必ずしも同一ではない。これに対し生体への当接等を止めると、探触子からの超音波は空中に放射され、受信信号はほぼ同じ波形となる。このことを利用し、上記構成により、受信信号相互間の差分信号を求め、差分信号が第1判定値より小さいことが第1判定期間以上続くときは、生体への当接等が行われていないと考えて、パワー制限をすることができる。パワー制限については、超音波の送信を停止することもでき、あるいは、超音波の送信パワーレベルを低く設定した上で送信を継続することもできる。したがって、超音波の送信の必要がないときに送信を制限できる。
【0007】
また、本発明に係る超音波診断装置は、超音波の送受波により受信信号を出力する送受波手段と、パワー制限制御の下における超音波の送受波により前記送受波手段から出力された2つの受信信号間で差分演算を実行して差分信号を出力する差分手段と、前記差分信号の大きさが第2判定値を上回る変化状態を検出し、かつその変化状態が第2判定期間以上継続する場合にパワー復元を判定する復元判定手段と、前記パワー復元が判定された場合に超音波の送信についてパワー復元制御を実行するパワー復元手段と、を備えることを特徴とする。
【0008】
この構成により、パワー制限された後に、差分信号が第2判定値を上回る状態が第2判定期間以上続くときは、生体への当接あるいはその準備が行われていると考えて、パワー制限の前の状態にパワー復元することができる。生体への当接あるいはその準備には、探触子へのゼリー状音響整合剤の塗布等がある。したがって、超音波の送信の必要なとき、パワー復元した状態の送信を自動的に再開することができる。
【0009】
また、本発明に係る超音波診断装置は、超音波の送受波により受信信号を出力する送受波手段と、前記送受波手段から出力された2つの受信信号間で差分演算を実行して差分信号を出力する差分手段と、前記差分信号の大きさが第1判定値を下回る無変化状態に基づいて、パワー制限を判定する制限判定手段と、前記パワー制限が判定された場合に超音波の送信についてパワー制限制御を実行するパワー制限手段と、前記パワー制限制御の実行後に、前記差分信号の大きさが第2判定値を上回る変化状態に基づいてパワー復元を判定する復元判定手段と、前記パワー復元が判定された場合に超音波の送信についてパワー復元制御を実行するパワー復元手段と、を備えることを特徴とする。この場合のパワー制限は、パワー復元を判定できる限度に送信のパワーを制限して送信を継続することである。
【0010】
また、前記パワー復元の判定に先立って行われる前記パワー制限手段は、前記超音波の送信駆動電圧、前記送波される超音波パルスの繰り返し周波数、前記超音波パルスのバースト波数および前記超音波の送受波により形成される超音波ビームの走査角度のうち少なくとも1つを変更する制御を行うことが好ましい。
【0011】
この構成により、送信駆動電圧の低下、超音波パルスの繰り返し周波数の低下、バースト波数の削減および走査角度の小範囲化のうち少なくとも1つを行って、探触子の劣化を抑えつつ、前記パワー復元の判定を行うことができる。
【0012】
また、本発明に係る超音波診断装置において、前記パワー復元の判定における前記変化状態の継続する期間が、前記パワー制限の判定における前記無変化状態の継続する期間よりも短いことが好ましい。この構成により、パワー復元の応答性を適度に向上させることができる。
【0013】
【発明の実施の形態】
以下に図面を用いて、本発明に係る実施の形態につき詳細に説明する。図1は超音波診断装置10のブロック図である。
【0014】
探触子12は、内部に図示されていないアレイ振動子を備え、アレイ振動子は複数の振動素子から構成される。
【0015】
送信回路14は、送信制御回路16の制御の下で、アレイ振動子を構成する複数の各振動素子ごとに遅延された送信信号を供給する回路であり、いわゆる送信ビームフォーマとしての機能を有する。各振動素子に供給される送信信号は例えば振幅値で100V程度の高電圧である。
【0016】
送信制御回路16は、後述するCPU60の制御の下で、送信回路をコントロールするローカルな制御回路である。送信制御回路16は、後に詳述する送信信号のパワー制限およびパワー復元を行う手段としての機能を有する。
【0017】
受信回路18は、探触子12からのエコー信号をプリアンプにより増幅し、各振動素子間の信号の位相差を調整して加算処理を行い、受信信号として信号処理部20および信号差分処理部40に出力する回路で、いわゆる受信ビームフォーマとしての機能を有する。
【0018】
信号処理部20は、入力された受信信号を信号処理し、画像処理部28に出力する機能を有する回路である。信号処理部20において、検波器22は、入力された受信信号の包絡振幅を抽出して検波を行う回路で、バンドパスフィルタ24は、検波後の信号のノイズを除去する帯域フィルタで、対数変換器26は、包絡検波後の信号に対し対数圧縮処理を行う回路である。
【0019】
画像処理部28は、信号処理部20の出力に対し、ゲイン調整、AGC処理等を施して、座標変換やデータ補間等の処理を行い、Bモード断層画像を形成する回路である。画像処理部28は、いわゆるディジタルスキャンコンバータ(DSC)や各種の画像処理回路によって構成することができる。形成されたBモード断層画像は、表示器30に出力される。
【0020】
信号差分処理部40は、減算器42、ラインメモリ44、検波器46、ローパスフィルタ48、しきい値処理回路50から構成され、受信回路18から受取った受信信号に対し、以下に詳述する信号差分処理を行う差分手段の機能を有する回路である。その出力はCPU60に出力される。
【0021】
信号差分処理部40の各要素の機能について、図2を用いながら以下に説明する。図2は、横軸に時間を、縦軸に信号振幅値を取り、(a)に示す繰り返し送信される送信信号を基準に、(b)に受信信号波形、(c)以下に信号差分処理部40の各要素出力波形を示した図である。時間軸は原点を共通にした。図において、送信信号のうち最初のTx1,Tx2,Tx3については、探触子12が生体組織に当接される使用時で、Tx4以後の送信信号については、探触子12が生体組織から外され超音波が空中に放射される空中放置時である。
【0022】
減算器42は、当該受信信号と、1つ前の受信信号との間で減算処理を行って、差分信号を出力する回路である。具体的には、超音波の繰り返し送信に対応して、受信回路18から繰り返し受取る受信信号を1ライン分ずつのデータ単位で処理し、当該1ライン分の受信信号データと、当該データの1ライン前の受信信号データとの間で減算処理を行う。1ラインの受信信号とは、ビーム1本分の受信信号である。ラインメモリ44は、当該データの1ライン前の受信信号データを記憶するメモリである。なお、減算処理は、当該受信信号と他のいずれの受信信号との間で行うことができ、必ずしも当該信号とその1つ前の受信信号との間でなくてもよい。
【0023】
図2(b)は、(a)の送信信号に対応する受信信号、すなわちその送信信号に対し受信回路18から出力される現在の受信信号を示し、(c)は、ラインメモリ44の出力、すなわち現在の受信信号に対し1ライン前の受信信号を示す。図2(b)に示すように、使用時における受信信号は、探触子の姿勢あるいは生体の動き等により1ラインごとに受信信号が異なるのに対し、探触子12が生体組織から外され超音波が空中に放射される空中放置時の受信信号はほとんど変化しない。
【0024】
この違いを用いて使用時か空中放置時かを区別できる。しかし、探触子が生体に探触子が生体組織に当接される使用時においても、例えば探触子の姿勢が同じで、生体の動きが安定しているときは受信信号の変化が少ないことがある。そこで、受信信号の変化の観察をある程度の時間継続し、それでも受信信号の変化がほとんど変化しないときは、使用時でなく空中放置時であると考えることができる。
【0025】
差分信号は検波器46に入力される。検波器46は、入力されたプラスマイナス振幅を有する差分信号を、検波して絶対値化する回路である。検波後の信号はローパスフィルタ48に出力される。なお、減算処理と検波処理の順序は、上記のようにRF信号について減算処理を行いその後検波処理してもよく、順序を逆にして、検波処理によりベースバンド信号にした後減算処理してもよい。
【0026】
図2(d)は、検波器46の出力波形を示す。図に示すように、4番目の送信信号に対応する時刻から、検波後の信号波形はノイズ成分のみとなり非常に小さくなる。この状態がある期間継続するときは、使用時でなく空中放置時であると考えることができる。
【0027】
ローパスフィルタ48は、検波後の信号について高周波成分のノイズを除去するフィルタである。ノイズ除去後の信号はしきい値処理回路50に出力される。図2(e)は、ローパスフィルタ48の出力を示す。
【0028】
しきい値処理回路50は、ローパスフィルタ48の出力波形に対し、後述するCPU60の制御の下でしきい値処理を行い、矩形波形として出力する回路である。図2(e)において、ローパスフィルタ48の出力波形に関連してしきい値52を破線で示した。このしきい値以上を検出して、使用時か空中放置時かの判別をする。しきい値処理回路50の出力を図2(f)に示す。本実施例は、しきい値以下をLowレベルとし、しきい値以上をHighレベルとする場合を示している。しきい値処理後の信号は、CPU60に出力される。
【0029】
CPU60は、超音波診断装置10を構成する各構成要素を制御する機能を有する演算処理装置で、制限判定部62、復元判定部64を含む。これらの要素の機能を、図3のフローチャートを用いて以下に説明する。
【0030】
CPU60は、超音波の送受波の制御を行う(S10)。それとともに、制限判定部62により、しきい値処理回路50の出力に基づいてパワー制限すべきか否かの判定が行われる(S12)。パワー制限すべき状態であると判定したときは次のステップに進み、パワー制限すべき状態でないと判断したときは引き続きしきい値処理回路50の出力を監視する。
【0031】
具体的には、しきい値処理回路50に対し、パワー制限判定に用いられるしきい値を与え、そのパワー制限判定用のしきい値のもとでしきい値処理された矩形波形の有無を検出し、矩形波形が所定時間以上検出されない場合をパワー制限すべきであると判定することができる。パワー制限判定に用いられるしきい値や所定時間は、パワー制限判定のレベルに応じて設定される。例えば所定時間を、タイマーを用いて5分に設定することができる。
【0032】
パワー制限すべきであると判定されたときは、送信制御回路16に対してパワー制限の制御が行われる(S14)。具体的には、送信制御回路16を制御し、当初の送信条件よりパワーダウンして送信を継続させる。パワーダウンの内容としては、例えば、超音波の送信駆動電圧、送波される超音波パルスの繰り返し周波数、超音波パルスのバースト波数および超音波の送受波により形成される超音波ビームの走査角度のうち少なくとも1つを変更することができる。一例としては、送信駆動電圧を10%に絞り、超音波パルスの繰り返し周波数を10Hzに落とし、バースト波を単一パルスにし、超音波ビームを中央方位に固定して送信を継続することができる。
【0033】
このパワー制限制御の下で、しきい値処理回路50の出力に基づき、復元判定部64において、パワー復元すべきか否かが判定される(S16)。パワー復元すべきであると判定されると、送信制御回路16を制御して送信をパワー制限前の当初の送信条件に戻し(S10)、パワー復元すべきでないと判定されるときは、引き続きしきい値処理回路50の出力を監視する。
【0034】
具体的には、しきい値処理回路50に対し、パワー復元判定に用いられるしきい値を与え、そのパワー復元判定用のしきい値のもとでしきい値処理された矩形波形の有無を検出し、矩形波形が所定時間以上検出される場合をパワー制限すべきであると判定することができる。矩形波形のデューティをパワー復元の判定の資料に用いてもよい。
【0035】
パワー復元判定に用いられるしきい値や所定時間は、パワー復元判定のレベルに応じて設定される。これらの値として、パワー制限に用いられるものと異なる値を用いてもよい。例えば矩形信号が10回連続して検出されたときをパワー復元すべきであると判断することができる。この場合、超音波パルスの繰り返し周波数を10Hzとすると、およそ1秒でパワー制限前の送信条件に復元でき、パワー復元の応答性が良い。また、パワー復元判定に用いられるしきい値は、例えば、探触子に診断用のゼリー状音響整合剤を塗布した状態で矩形波形を検出できるレベルに設定することができる。
【0036】
このように、現在の受信信号データと、1つ前の受信信号データとの差分に基づいて、パワー制限すべきか否かの判定と、パワー復元すべきか否かの判定とを比較的短時間で行うことができる。例えば、パワー制限すべきか否かの判定は、従来技術で仮に20分程度として、5分程度に短くでき、パワー復元すべきか否かの判定は、例えば1秒で行うことができる。
【0037】
上記の説明では、信号差分処理部40への入力は、受信回路18の出力、すなわちRF信号としたが、信号処理部20の各構成要素の出力信号、あるいは画像処理部28の各構成要素の出力信号を用いても本発明が実施できる。例えば、検波器22の出力、バンドパスフィルタ24の出力、対数変換器26の出力、画像処理部28のゲイン調整後の出力、AGC処理後の出力等から信号差分処理を行うことでもよい。
【0038】
また、上記説明では、信号差分処理は、1ライン分のデータを単位としたが、1ライン分のデータの一部について信号差分処理を行うことでも本発明が実施できる。例えば、診断深さが同じ範囲のデータ間で信号差分処理を行うことでもよい。
【0039】
また、図1に示す超音波診断装置は、Bモードを有するものとして説明し、信号差分処理の対象の受信信号をBモード信号処理等に用いられるものとしたが、Bモード以外のMモード、ドプラモード等においても本発明が適用できる。
【0040】
【発明の効果】
本発明に係る超音波診断装置によれば、超音波の送信の必要がないときに送信を制御できる。本発明に係る超音波診断装置によれば、超音波の送信が必要なとき、送信再開を自動的に行うことができる。
【図面の簡単な説明】
【図1】本発明に係る実施の形態における超音波診断装置のブロック図である。
【図2】信号差分処理の各過程における信号波形の様子を示す図である。
【図3】パワー制限とパワー復元に関する送信制御のフローチャートである。
【符号の説明】
10 超音波診断装置、12 探触子、14 送信回路、16 送信制御回路(パワー制限手段、パワー復元手段)、18 受信回路、40 信号差分処理部(差分手段)、42 減算器、44 ラインメモリ、46 検波器、48 ローパスフィルタ、50 しきい値処理回路、60 CPU、62 制限判定部、64 復元判定部。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ultrasonic diagnostic apparatus, and more particularly to an ultrasonic diagnostic apparatus that restricts transmission of ultrasonic waves when the apparatus is not used.
[0002]
[Prior art]
The ultrasonic diagnostic apparatus uses a probe having a plurality of vibrating elements inside, supplies a high-voltage transmission drive signal to each vibrating element, and transmits ultrasonic waves to a target living body. Therefore, if the transmission of the ultrasonic wave is continued when the diagnosis is not performed, the probe generates heat and causes deterioration. Therefore, when the operation panel of the ultrasonic diagnostic apparatus is not used for a certain period of time, the transmission is stopped using, for example, a timer.
[0003]
[Problems to be solved by the invention]
However, in the method using the timer, the transmission is uniformly stopped after a predetermined time regardless of the presence or absence of the diagnosis unless the operation panel is used. Therefore, for example, even when the diagnosis is continued in the same mode, the transmission of the ultrasonic wave is stopped and the diagnosis is interrupted. Further, once the transmission is stopped, the operation panel must be operated again to restart the transmission, which is complicated.
[0004]
An object of the present invention is to solve the problems of the related art and to provide an ultrasonic diagnostic apparatus capable of controlling transmission when there is no need to transmit ultrasonic waves. Another object of the present invention is to provide an ultrasonic diagnostic apparatus capable of automatically restarting transmission when transmission of ultrasonic waves is required.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, an ultrasonic diagnostic apparatus according to the present invention includes a transmitting and receiving unit that outputs a received signal by transmitting and receiving ultrasonic waves, and a difference operation between two received signals output from the transmitting and receiving unit. A difference means for executing and outputting a difference signal; and detecting a non-change state in which the magnitude of the difference signal is smaller than the first judgment value, and limiting the power in a case where the non-change state continues for a first judgment period or more. The present invention is characterized by comprising: a limit determining unit for determining; and a power limiting unit for executing power limit control on transmission of an ultrasonic wave when the power limit is determined.
[0006]
The waveform of the received signal when the probe is in contact with the living body is not always the same due to changes in the posture of the probe, movement of the living body, and the like. On the other hand, when the contact with the living body or the like is stopped, the ultrasonic wave from the probe is radiated into the air, and the received signal has substantially the same waveform. By utilizing this, with the above-described configuration, a difference signal between the received signals is obtained, and when the difference signal is smaller than the first determination value for more than the first determination period, contact with a living body or the like is performed. Thinking that there is no, you can limit the power. Regarding the power limitation, the transmission of the ultrasonic wave can be stopped, or the transmission can be continued after setting the transmission power level of the ultrasonic wave to a low level. Therefore, transmission can be restricted when there is no need to transmit ultrasonic waves.
[0007]
Further, the ultrasonic diagnostic apparatus according to the present invention includes a transmitting / receiving means for outputting a received signal by transmitting / receiving ultrasonic waves, and two transmitting / receiving means for transmitting / receiving ultrasonic waves under power limitation control. Difference means for performing a difference operation between the received signals to output a difference signal, detecting a change state in which the magnitude of the difference signal exceeds a second determination value, and the change state continues for a second determination period or more. In this case, there is provided a restoration judging means for judging power restoration in the case, and a power restoration means for executing power restoration control for transmission of the ultrasonic wave when the power restoration is judged.
[0008]
According to this configuration, when the state in which the difference signal exceeds the second determination value continues for the second determination period after the power is limited, it is considered that the contact with the living body or the preparation for the living body is being performed, and the power limitation is performed. Power can be restored to the previous state. The contact with or preparation for the living body includes application of a jelly-like acoustic matching agent to the probe. Therefore, when the transmission of the ultrasonic wave is required, the transmission in the power restored state can be automatically restarted.
[0009]
Further, an ultrasonic diagnostic apparatus according to the present invention includes a transmitting / receiving means for outputting a received signal by transmitting / receiving ultrasonic waves, and a differential signal obtained by performing a difference operation between two received signals output from the transmitting / receiving means. A limiting means for determining a power limitation based on a non-change state in which the magnitude of the difference signal is smaller than a first determination value; and transmitting an ultrasonic wave when the power limitation is determined. Power limiting means for performing power limiting control, power recovery control, and restoration determining means for determining power restoration based on a change state in which the magnitude of the difference signal exceeds a second determination value after execution of the power limiting control; Power restoration means for executing power restoration control for transmission of ultrasonic waves when restoration is determined. The power limitation in this case is to limit the transmission power to a limit at which the power restoration can be determined and to continue the transmission.
[0010]
Further, the power limiting means performed prior to the determination of the power restoration, the transmission drive voltage of the ultrasonic wave, the repetition frequency of the transmitted ultrasonic pulse, the number of burst waves of the ultrasonic pulse and the ultrasonic wave It is preferable to perform control for changing at least one of the scanning angles of the ultrasonic beam formed by the transmission and reception.
[0011]
With this configuration, at least one of a reduction in the transmission drive voltage, a reduction in the repetition frequency of the ultrasonic pulse, a reduction in the number of burst waves, and a reduction in the scan angle is performed, and the power consumption is reduced while suppressing the deterioration of the probe. A determination of restoration can be made.
[0012]
Further, in the ultrasonic diagnostic apparatus according to the present invention, it is preferable that a period during which the change state continues in the determination of the power restoration is shorter than a period during which the non-change state continues in the determination of the power limitation. With this configuration, the responsiveness of power restoration can be appropriately improved.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram of the ultrasonic diagnostic apparatus 10.
[0014]
The probe 12 includes an array vibrator (not shown) therein, and the array vibrator includes a plurality of vibrating elements.
[0015]
The transmission circuit 14 is a circuit that supplies a transmission signal delayed for each of the plurality of vibrating elements constituting the array vibrator under the control of the transmission control circuit 16, and has a function as a so-called transmission beamformer. The transmission signal supplied to each vibrating element is a high voltage having an amplitude value of about 100 V, for example.
[0016]
The transmission control circuit 16 is a local control circuit that controls the transmission circuit under the control of a CPU 60 described later. The transmission control circuit 16 has a function as a means for performing power limitation and power restoration of a transmission signal, which will be described in detail later.
[0017]
The receiving circuit 18 amplifies the echo signal from the probe 12 by a preamplifier, adjusts the phase difference between the signals of the respective vibrating elements, performs an adding process, and obtains a signal processing unit 20 and a signal difference processing unit 40 as a received signal. And has a function as a so-called reception beamformer.
[0018]
The signal processing unit 20 is a circuit having a function of performing signal processing on an input received signal and outputting the signal to the image processing unit 28. In the signal processing unit 20, the detector 22 is a circuit for extracting and detecting the envelope amplitude of the input received signal, and the bandpass filter 24 is a bandpass filter for removing noise of the signal after the detection, and is a logarithmic conversion. The device 26 is a circuit that performs logarithmic compression processing on the signal after the envelope detection.
[0019]
The image processing unit 28 is a circuit that performs gain adjustment, AGC processing, and the like on the output of the signal processing unit 20, performs processing such as coordinate conversion and data interpolation, and forms a B-mode tomographic image. The image processing unit 28 can be configured by a so-called digital scan converter (DSC) or various image processing circuits. The formed B-mode tomographic image is output to the display 30.
[0020]
The signal difference processing unit 40 includes a subtractor 42, a line memory 44, a detector 46, a low-pass filter 48, and a threshold processing circuit 50. This is a circuit having a function of a difference unit that performs a difference process. The output is output to the CPU 60.
[0021]
The function of each element of the signal difference processing unit 40 will be described below with reference to FIG. FIG. 2 shows time on the horizontal axis and signal amplitude on the vertical axis, and shows the received signal waveform in (b) and the signal difference processing in (c) and below, based on the repeatedly transmitted transmission signal shown in (a). FIG. 4 is a diagram showing each element output waveform of a unit 40. The time axis has a common origin. In the figure, the first Tx1, Tx2, and Tx3 of the transmission signals are used when the probe 12 is in contact with the living tissue, and the transmission signal after Tx4 is used when the probe 12 is out of the living tissue. This is the time when the device is left in the air where the ultrasonic waves are emitted into the air.
[0022]
The subtracter 42 is a circuit that performs a subtraction process between the received signal and the immediately preceding received signal, and outputs a difference signal. Specifically, in response to the repeated transmission of the ultrasonic wave, the received signal repeatedly received from the receiving circuit 18 is processed in data units of one line, and the received signal data of one line and one line of the data are processed. A subtraction process is performed with the previous received signal data. The reception signal for one line is a reception signal for one beam. The line memory 44 is a memory for storing received signal data one line before the data. Note that the subtraction process can be performed between the received signal and any other received signal, and need not necessarily be performed between the signal and the immediately preceding received signal.
[0023]
FIG. 2B shows a reception signal corresponding to the transmission signal of FIG. 2A, that is, a current reception signal output from the reception circuit 18 with respect to the transmission signal, and FIG. That is, the received signal one line before the present received signal is shown. As shown in FIG. 2B, the received signal during use differs from one line to another depending on the posture of the probe or the movement of the living body, whereas the probe 12 is removed from the living tissue. The reception signal when left in the air where the ultrasonic waves are radiated in the air hardly changes.
[0024]
By using this difference, it is possible to distinguish between use and leaving in the air. However, even when the probe is in contact with the living body, the probe is in contact with the living tissue, for example, when the posture of the probe is the same and the movement of the living body is stable, the received signal changes little. Sometimes. Therefore, when the observation of the change in the received signal is continued for a certain period of time, and the change in the received signal hardly changes, it can be considered that it is not in use but in the air.
[0025]
The difference signal is input to the detector 46. The detector 46 is a circuit that detects the input difference signal having the plus and minus amplitudes and converts the difference signal into an absolute value. The signal after detection is output to the low-pass filter 48. Note that the order of the subtraction process and the detection process may be such that the subtraction process is performed on the RF signal as described above, and then the detection process is performed. Good.
[0026]
FIG. 2D shows an output waveform of the detector 46. As shown in the figure, from the time corresponding to the fourth transmission signal, the signal waveform after detection has only a noise component and is extremely small. When this state continues for a certain period of time, it can be considered that it is not in use but in the air.
[0027]
The low-pass filter 48 is a filter that removes high frequency component noise from the detected signal. The signal after noise removal is output to the threshold processing circuit 50. FIG. 2E shows the output of the low-pass filter 48.
[0028]
The threshold value processing circuit 50 is a circuit that performs a threshold value process on the output waveform of the low-pass filter 48 under the control of a CPU 60 to be described later and outputs a rectangular waveform. In FIG. 2E, the threshold 52 is shown by a broken line in relation to the output waveform of the low-pass filter 48. By detecting the threshold value or more, it is determined whether the device is in use or left in the air. FIG. 2F shows the output of the threshold processing circuit 50. In the present embodiment, a case where the level is equal to or lower than the threshold is set to the low level, and the level equal to or higher than the threshold is set to the high level. The signal after the threshold processing is output to CPU 60.
[0029]
The CPU 60 is an arithmetic processing unit having a function of controlling each component of the ultrasonic diagnostic apparatus 10, and includes a limit determining unit 62 and a restoration determining unit 64. The functions of these elements will be described below with reference to the flowchart of FIG.
[0030]
The CPU 60 controls transmission and reception of ultrasonic waves (S10). At the same time, whether or not power should be limited is determined by the limit determination unit 62 based on the output of the threshold processing circuit 50 (S12). If it is determined that the power should be limited, the process proceeds to the next step. If it is determined that the power should not be limited, the output of the threshold processing circuit 50 is continuously monitored.
[0031]
Specifically, a threshold value used for the power limit determination is given to the threshold value processing circuit 50, and the presence or absence of a rectangular waveform subjected to the threshold value process under the threshold value for the power limit determination is determined. It can be determined that the power should be limited when the rectangular waveform is detected and the rectangular waveform is not detected for a predetermined time or more. The threshold value and the predetermined time used for the power limitation determination are set according to the level of the power limitation determination. For example, the predetermined time can be set to 5 minutes using a timer.
[0032]
When it is determined that the power should be limited, the power control is performed on the transmission control circuit 16 (S14). More specifically, the transmission control circuit 16 is controlled so that the power is reduced from the initial transmission condition and the transmission is continued. The contents of the power down include, for example, the transmission drive voltage of the ultrasonic wave, the repetition frequency of the transmitted ultrasonic pulse, the burst wave number of the ultrasonic pulse, and the scan angle of the ultrasonic beam formed by the transmission and reception of the ultrasonic wave. At least one of them can be changed. For example, the transmission driving voltage can be reduced to 10%, the repetition frequency of the ultrasonic pulse can be reduced to 10 Hz, the burst wave can be made a single pulse, and the ultrasonic beam can be fixed in the central direction to continue the transmission.
[0033]
Under the power limitation control, the restoration determining unit 64 determines whether or not to restore the power based on the output of the threshold processing circuit 50 (S16). If it is determined that the power should be restored, the transmission control circuit 16 is controlled to return the transmission to the original transmission condition before the power limitation (S10). The output of the threshold value processing circuit 50 is monitored.
[0034]
Specifically, a threshold value used for power restoration determination is given to the threshold processing circuit 50, and the presence or absence of a rectangular waveform subjected to threshold processing under the power restoration determination threshold value is determined. It can be determined that the power should be limited when the rectangular waveform is detected for a predetermined time or more. The duty of the rectangular waveform may be used as data for determining power restoration.
[0035]
The threshold value and the predetermined time used for the power restoration determination are set according to the level of the power restoration determination. As these values, values different from those used for power limitation may be used. For example, it can be determined that power should be restored when a rectangular signal is detected ten times in a row. In this case, if the repetition frequency of the ultrasonic pulse is set to 10 Hz, the transmission condition before the power limitation can be restored in about 1 second, and the responsiveness of the power restoration is good. Further, the threshold value used for the power restoration determination can be set, for example, to a level at which a rectangular waveform can be detected in a state where the jelly-like acoustic matching agent for diagnosis is applied to the probe.
[0036]
In this manner, based on the difference between the current received signal data and the immediately preceding received signal data, the determination as to whether power should be limited and the determination as to whether power should be restored can be made in a relatively short time. It can be carried out. For example, the determination as to whether or not to limit the power can be made as short as about 5 minutes, for example, about 20 minutes in the related art, and the determination as to whether or not to restore the power can be made in 1 second, for example.
[0037]
In the above description, the input to the signal difference processing unit 40 is the output of the receiving circuit 18, that is, the RF signal, but the output signal of each component of the signal processing unit 20 or the output signal of each component of the image processing unit 28. The present invention can be implemented using an output signal. For example, the signal difference processing may be performed from the output of the detector 22, the output of the band-pass filter 24, the output of the logarithmic converter 26, the output of the image processing unit 28 after the gain adjustment, the output after the AGC processing, and the like.
[0038]
In the above description, the signal difference processing is performed on the data of one line as a unit. However, the present invention can be implemented by performing the signal difference processing on a part of the data of one line. For example, signal difference processing may be performed between data in the same diagnostic depth range.
[0039]
Also, the ultrasonic diagnostic apparatus shown in FIG. 1 has been described as having the B mode, and the received signal to be subjected to the signal difference processing is used for the B mode signal processing or the like. The present invention can be applied to a Doppler mode or the like.
[0040]
【The invention's effect】
According to the ultrasonic diagnostic apparatus of the present invention, transmission can be controlled when transmission of ultrasonic waves is not necessary. ADVANTAGE OF THE INVENTION According to the ultrasonic diagnostic apparatus which concerns on this invention, when transmission of an ultrasonic wave is needed, transmission restart can be performed automatically.
[Brief description of the drawings]
FIG. 1 is a block diagram of an ultrasonic diagnostic apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram illustrating a state of a signal waveform in each process of signal difference processing.
FIG. 3 is a flowchart of transmission control related to power limitation and power restoration.
[Explanation of symbols]
Reference Signs List 10 ultrasonic diagnostic apparatus, 12 probe, 14 transmission circuit, 16 transmission control circuit (power limiting means, power restoration means), 18 reception circuit, 40 signal difference processing section (difference means), 42 subtractor, 44 line memory , 46 detector, 48 low-pass filter, 50 threshold processing circuit, 60 CPU, 62 limit determining unit, 64 restoration determining unit.

Claims (5)

超音波の送受波により受信信号を出力する送受波手段と、
前記送受波手段から出力された2つの受信信号間で差分演算を実行して差分信号を出力する差分手段と、
前記差分信号の大きさが第1判定値を下回る無変化状態を検出し、かつその無変化状態が第1判定期間以上継続する場合にパワー制限を判定する制限判定手段と、
前記パワー制限が判定された場合に超音波の送信についてパワー制限制御を実行するパワー制限手段と、
を備えることを特徴とする超音波診断装置。
Transmitting and receiving means for outputting a received signal by transmitting and receiving ultrasonic waves,
Difference means for executing a difference operation between two received signals output from the wave transmitting / receiving means and outputting a difference signal;
Limit determination means for detecting a non-change state in which the magnitude of the difference signal is less than a first determination value, and determining a power limit when the non-change state continues for a first determination period or more;
Power limiting means for performing power limiting control for transmission of ultrasound when the power limitation is determined,
An ultrasonic diagnostic apparatus comprising:
超音波の送受波により受信信号を出力する送受波手段と、
パワー制限制御の下における超音波の送受波により前記送受波手段から出力された2つの受信信号間で差分演算を実行して差分信号を出力する差分手段と、
前記差分信号の大きさが第2判定値を上回る変化状態を検出し、かつその変化状態が第2判定期間以上継続する場合にパワー復元を判定する復元判定手段と、
前記パワー復元が判定された場合に超音波の送信についてパワー復元制御を実行するパワー復元手段と、
を備えることを特徴とする超音波診断装置。
Transmitting and receiving means for outputting a received signal by transmitting and receiving ultrasonic waves,
Difference means for executing a difference operation between two received signals output from the wave transmitting and receiving means by transmitting and receiving ultrasonic waves under power limiting control to output a difference signal;
Restoration determination means for detecting a change state in which the magnitude of the difference signal exceeds a second determination value, and for determining power recovery when the change state continues for a second determination period or more;
Power restoration means for executing power restoration control for transmission of ultrasound when the power restoration is determined,
An ultrasonic diagnostic apparatus comprising:
超音波の送受波により受信信号を出力する送受波手段と、
前記送受波手段から出力された2つの受信信号間で差分演算を実行して差分信号を出力する差分手段と、
前記差分信号の大きさが第1判定値を下回る無変化状態に基づいて、パワー制限を判定する制限判定手段と、
前記パワー制限が判定された場合に超音波の送信についてパワー制限制御を実行するパワー制限手段と、
前記パワー制限制御の実行後に、前記差分信号の大きさが第2判定値を上回る変化状態に基づいてパワー復元を判定する復元判定手段と、
前記パワー復元が判定された場合に超音波の送信についてパワー復元制御を実行するパワー復元手段と、
を備えることを特徴とする超音波診断装置。
Transmitting and receiving means for outputting a received signal by transmitting and receiving ultrasonic waves,
Difference means for executing a difference operation between two received signals output from the wave transmitting / receiving means and outputting a difference signal;
Limit determination means for determining power limitation based on a non-change state in which the magnitude of the difference signal is less than a first determination value;
Power limiting means for performing power limiting control for transmission of ultrasound when the power limitation is determined,
Restoring determination means for determining power restoration based on a change state in which the magnitude of the difference signal exceeds a second determination value after execution of the power limit control;
Power restoration means for executing power restoration control for transmission of ultrasound when the power restoration is determined,
An ultrasonic diagnostic apparatus comprising:
請求項1ないし請求項3のいずれか1に記載の超音波診断装置において、
前記パワー制限手段は、前記超音波の送信駆動電圧、前記送波される超音波パルスの繰り返し周波数、前記超音波パルスのバースト波数および前記超音波の送受波により形成される超音波ビームの走査角度のうち少なくとも1つを変更する制御を行うことを特徴とする超音波診断装置。
The ultrasonic diagnostic apparatus according to any one of claims 1 to 3,
The power limiting unit includes a transmission drive voltage of the ultrasonic wave, a repetition frequency of the transmitted ultrasonic pulse, a burst wave number of the ultrasonic pulse, and a scan angle of an ultrasonic beam formed by transmission and reception of the ultrasonic wave. An ultrasonic diagnostic apparatus that performs control to change at least one of the ultrasonic diagnostic apparatuses.
請求項3に記載の超音波診断装置において、
前記パワー復元の判定における前記変化状態の継続する期間が、前記パワー制限の判定における前記無変化状態の継続する期間よりも短いことを特徴とする超音波診断装置。
The ultrasonic diagnostic apparatus according to claim 3,
An ultrasonic diagnostic apparatus, wherein a period in which the change state continues in the determination of the power restoration is shorter than a period in which the non-change state continues in the determination of the power limitation.
JP2002327035A 2002-11-11 2002-11-11 Ultrasonic diagnostic equipment Pending JP2004159770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002327035A JP2004159770A (en) 2002-11-11 2002-11-11 Ultrasonic diagnostic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002327035A JP2004159770A (en) 2002-11-11 2002-11-11 Ultrasonic diagnostic equipment

Publications (1)

Publication Number Publication Date
JP2004159770A true JP2004159770A (en) 2004-06-10

Family

ID=32805809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002327035A Pending JP2004159770A (en) 2002-11-11 2002-11-11 Ultrasonic diagnostic equipment

Country Status (1)

Country Link
JP (1) JP2004159770A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009078016A (en) * 2007-09-26 2009-04-16 Toshiba Corp Ultrasonic diagnostic apparatus, its method, and control program for ultrasonic diagnostic apparatus
US11166698B2 (en) 2015-01-30 2021-11-09 Canon Medical Systems Corporation Ultrasonic diagnostic apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009078016A (en) * 2007-09-26 2009-04-16 Toshiba Corp Ultrasonic diagnostic apparatus, its method, and control program for ultrasonic diagnostic apparatus
US8425419B2 (en) 2007-09-26 2013-04-23 Kabushiki Kaisha Toshiba Ultrasonic diagnostic apparatus and ultrasonic diagnostic method
US11166698B2 (en) 2015-01-30 2021-11-09 Canon Medical Systems Corporation Ultrasonic diagnostic apparatus

Similar Documents

Publication Publication Date Title
US7269098B2 (en) Ultrasonic transmitter, ultrasonic transceiver and sounding apparatus
JP5159290B2 (en) Ultrasonic diagnostic apparatus and ultrasonic probe
US20120203110A1 (en) Ultrasound diagnostic apparatus and ultrasound image producing method
JP2012050603A (en) Ultrasonic diagnostic apparatus and method
US20110245677A1 (en) Ultrasound diagnostic apparatus
JP2008018087A (en) Ultrasonic diagnostic equipment, ultrasonic diagnostic equipment using ultrasonic probe and ultrasonic diagnostic system
US8248889B2 (en) Ultrasound diagnostic apparatus
US20210015459A1 (en) Ultrasound system and method for controlling ultrasound system
JP5459975B2 (en) Ultrasonic diagnostic equipment
JP5274806B2 (en) Ultrasonic diagnostic apparatus and method, and control program for ultrasonic diagnostic apparatus
US11766241B2 (en) Ultrasound system in which an ultrasound probe and a display device are wirelessly connected with each other and method for controlling ultrasound system in which an ultrasound probe and a display device are wirelessly connected with each other
JP2004159770A (en) Ultrasonic diagnostic equipment
US20120289834A1 (en) Ultrasound diagnostic apparatus and ultrasound image producing method
JP2008110072A (en) Ultrasonic diagnostic equipment and image processing program
JP5405251B2 (en) Ultrasonic diagnostic apparatus and transmission drive voltage control program for ultrasonic probe
JP2005342512A (en) Method and system for ultrasound contrast imaging
JP2002165796A (en) Ultrasonic diagnostic equipment
JP2003325508A (en) Ultrasonic diagnostic apparatus
JP3078569B2 (en) Ultrasound diagnostic equipment
JPH05277127A (en) Lithotripsy system
US11969292B2 (en) Ultrasound diagnostic apparatus and control method of ultrasound diagnostic apparatus
JP2009261442A (en) Ultrasonic diagnostic apparatus
JP7171933B2 (en) Acoustic probe and control method for acoustic probe
US20220096057A1 (en) Ultrasound diagnostic apparatus and control method of ultrasound diagnostic apparatus
JP2007215766A (en) Ultrasonic diagnostic apparatus