JP2004159504A - Gene transfer agent composition comprising polyamidoamine dendron - Google Patents

Gene transfer agent composition comprising polyamidoamine dendron Download PDF

Info

Publication number
JP2004159504A
JP2004159504A JP2002325633A JP2002325633A JP2004159504A JP 2004159504 A JP2004159504 A JP 2004159504A JP 2002325633 A JP2002325633 A JP 2002325633A JP 2002325633 A JP2002325633 A JP 2002325633A JP 2004159504 A JP2004159504 A JP 2004159504A
Authority
JP
Japan
Prior art keywords
gene transfer
gene
transfer agent
methanol
lipid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002325633A
Other languages
Japanese (ja)
Other versions
JP4305615B2 (en
Inventor
Toshinari Takahashi
俊成 高橋
Kenji Kono
健司 河野
Toru Takagishi
徹 高岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Technology Licensing Organization Co Ltd
Original Assignee
Kansai Technology Licensing Organization Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Technology Licensing Organization Co Ltd filed Critical Kansai Technology Licensing Organization Co Ltd
Priority to JP2002325633A priority Critical patent/JP4305615B2/en
Publication of JP2004159504A publication Critical patent/JP2004159504A/en
Application granted granted Critical
Publication of JP4305615B2 publication Critical patent/JP4305615B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly safe gene transfer agent having excellent transfer efficiency and to provide a kit for gene transfer and a method for gene transfer. <P>SOLUTION: The gene transfer agent composition comprises a polyamidoamine dendron. Thereby, the gene transfer agent having remarkably improved gene transfer efficiency as compared with that of a conventional gene transfer agent and low cytotoxicity is obtained. Furthermore, a technology for gene transfer having both excellent aspects of safety and transfer efficiency is established. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、遺伝子導入剤、遺伝子導入用キット及び遺伝子導入方法に関する。
【0002】
【従来の技術及びその課題】
遺伝子治療等に用いられる効率の高い遺伝子導入剤としてウィルスベクターが知られているが、該ウィルスベクターは、臨床応用において死に至る重篤な副作用が報告されており、より安全な遺伝子導入剤が求められている。
【0003】
非ウィルスベクターは、ウィルスベクターと比較してより安全性が高いが、遺伝子の導入効率が低い欠点があった。
【0004】
本発明は、安全性及び導入効率に優れた遺伝子導入剤、遺伝子導入用キット及び遺伝子導入方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、以下の遺伝子導入剤、遺伝子導入用キット及び遺伝子導入方法を提供するものである。
項1. 下記式DL−G1〜DL−G8のいずれかで表される化合物を含む遺伝子導入剤組成物。
DL−G1:RNX(XH
DL−G2:RNX(X(XH
DL−G3:RNX(X(X(XH
DL−G4:RNX(X(X(X(XH
DL−G5:RNX(X(X(X(X(XH
DL−G6:RNX(X(X(X(X(X(XH
DL−G7:RNX(X(X(X(X(X(X(XH
DL−G8:RNX(X(X(X(X(X(X(X(XH
(式中R及びRは、同一または異なってアルキル基、アルコキシ基、アリール基またはアラルキル基を示す。Xは、−CHCHCONHCHCHN−を示す。)
項2. さらにリン脂質を含む請求項1に記載の遺伝子導入剤組成物。
項3. リン脂質がDOPEである請求項2に記載の組成物。
項4. 項1〜3のいずれかに記載の遺伝子導入剤または遺伝子導入剤組成物を遺伝子とともにイン・ビトロまたはイン・ビボで細胞に適用することを特徴とする遺伝子の細胞への導入方法。
項5. 請求項1〜3のいずれか1項に記載の組成物を含有する遺伝子導入用キット。
【0006】
【発明の実施の形態】
本発明のDL−G1〜DL−G8のいずれかのポリアミドアミンデンドロンにおいて:
アルキル基としては、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、トリデシル、テトラデシル、ヘキサデシル、オクタデシル、エイコシル、2−エチルヘキシルなどの炭素数6〜20の直鎖または分枝を有するアルキル基が挙げられる。
アルコキシ基としては、ヘキシルオキシ、ヘプチルオキシ、オクチルオキシ、ノニルオキシ、デシルオキシ、ウンデシルオキシ、ドデシルオキシ、トリデシルオキシ、テトラデシルオキシ、ヘキサデシルオキシ、オクタデシルオキシ、エイコシルオキシ、2−エチルヘキシルオキシなどの炭素数6〜20の直鎖または分枝を有するアルコキシ基が挙げられる。
アリール基としては、ベンジル、ナフチル、ビフェニル、アントラニル、フェナントリルなどが挙げられる。
アラルキル基としては、ベンジル、フェネチルなどが挙げられる。
【0007】
Xは、−CHCHCONHCHCHN−を表し、その末端のNは、通常2個の水素原子を有するが、1個の水素原子がロイシン、バリン、イソロイシン、ノルロイシン、フェニルアラニン、チロシンなどの疎水性アミノ酸で置換されていてもよい。
【0008】
本発明のポリアミドアミンデンドロンは、例えば以下のようにして製造することができる。
【0009】
【化1】

Figure 2004159504
【0010】
本発明の好ましいポリアミドアミンデンドロンを以下に示す。
【0011】
【化2】
Figure 2004159504
【0012】
本発明の遺伝子導入剤組成物は、ポリアミドアミンデンドロンの他に、リン脂質を好適に含むことができる。このようなリン脂質としては、ホスファチジルエタノールアミン、ホスファリジルコリン、ホスファチジルセリン、ホスファチジルイノシトール、ホスファチジルグリセロール、カルジオリピン、スフィンゴミエリン、プラスマロゲンおよびホスファチジン酸等を挙げることができ、これらは1種または2種以上を組み合わせて用いることができる。このうち、ホスファチジルエタノールアミンおよびホスファリジルコリンをそれぞれ単独で、または組み合わせて用いるのが好ましい。これらのリン脂質の脂肪酸残基は、特に限定されるべきものではないが、炭素数12から18の飽和または不飽和の脂肪酸残基を挙げることができ、具体的には、ラウロイル基、ミリストイル基、パルミトイル基、ステアロイル基、オレオイル基、リノレイル基等を挙げることができ、DOPE(ジオレオイルホスファチジルエタノールアミン)が特に好ましい。
【0013】
リン脂質の配合量は特に限定されないが、リン脂質とポリアミドアミンデンドロンの合計量を100重量部とした場合にリン脂質30〜90重量部、ポリアミドアミンデンドロン70〜10重量部、好ましくはリン脂質50〜80重量部、ポリアミドアミンデンドロン50〜20重量部、より好ましくはリン脂質60〜70重量部、ポリアミドアミンデンドロン40〜30重量部である。
【0014】
リン脂質の他に、遺伝子導入剤組成物に含有され得る添加剤としては、コレステロールなどが例示される。
【0015】
ポリアミドアミンデンドロン脂質を単独で用いる場合、遺伝子と遺伝子導入剤の配合割合は、遺伝子1重量部に対し、遺伝子導入剤を1〜20重量部、好ましくは3〜15重量部、より好ましくは5〜7重量部使用する。また、ポリアミドアミンデンドロン脂質とリン脂質の混合物を用いる場合、遺伝子と遺伝子導入剤の配合割合は、遺伝子1重量部に対し、遺伝子導入剤を1〜50重量部、好ましくは5〜30重量部、より好ましくは10〜15重量部使用する。
【0016】
遺伝子としては、オリゴヌクレオチド、DNAおよびRNAのいずれでもよく、特に形質転換等のイン・ビトロにおける導入用遺伝子や、イン・ビボで発現することにより作用する遺伝子、例えば、遺伝子治療用遺伝子、実験動物や家畜等の産業用動物の品種改良に用いられる遺伝子が好ましい。遺伝子治療用遺伝子としては、アンチセンスオリゴヌクレオチド、アンチセンスDNA、アンチセンスRNA、酵素、サイトカイン等の生理活性物質をコードする遺伝子等を挙げることができる。
【0017】
遺伝子が導入される細胞としては、ヒトなどの動物細胞、植物細胞などの真核細胞、細菌などの原核細胞が例示できる。
【0018】
本発明の組成物の形態としては、ポリアミドアミンデンドロン(DL−G1〜DL−G8)のみが存在していてもよく、ポリアミドアミンデンドロンとリン脂質が単に混合物として存在していてもよく、ポリアミドアミンデンドロンとリン脂質とが組み合わさって脂質膜構造体を形成していてもよい。該脂質膜構造体の存在形態およびその製造方法は特に限定されるべきものではないが、例えば、存在形態としては、乾燥した脂質混合物形態、水系溶媒に分散した形態、さらにこれを乾燥させた形態や凍結させた形態等を挙げることができる。
【0019】
乾燥した脂質混合物は、例えば、使用する脂質成分をいったんクロロホルム等の有機溶媒に溶解させ、次いでエバポレータによる減圧乾固や噴霧乾燥機による噴霧乾燥を行うことで製造することができる。
【0020】
脂質膜構造体が水系溶媒に分散した形態としては、一枚膜リポソーム、多重層リポソーム、O/W型エマルション、W/O/W型エマルション、球状ミセル、ひも状ミセル、不定型の層状構造物などを挙げることができる。分散した状態の脂質膜構造体の大きさは、特に限定されるべきものではないが、例えば、リポソームやエマルションの場合には、粒子径が50nmから数μmであり、球状ミセルの場合、粒子径が5nmから50nmである。ひも状ミセルや不定型の層状構造物の場合は、その1層あたりの厚みが5nmから10nmでこれらが層を形成していると考えればよい。
【0021】
水系溶媒(分散媒)の組成も特に限定されるべきものではないが、水のほかに、グルコース、乳糖、ショ糖などの糖水溶液、グリセリン、プロピレングリコールなどの多価アルコール水溶液、リン酸緩衝液、クエン酸緩衝液、リン酸緩衝化生理食塩液等の緩衝液、生理食塩水、細胞培養用の培地などを挙げることができる。この水系溶媒に分散した脂質膜構造体を安定に長期間保存するには、凝集などの物理的安定性の面から、水系溶媒中の電解質を極力なくすことが重要である。また、脂質の化学的安定性の面から、水系溶媒のpHを弱酸性から中性付近(pH3.0から8.0)に設定したり、窒素バブリングにより溶存酸素を除去することが重要である。さらに凍結乾燥保存や噴霧乾燥保存をする場合には、糖水溶液を、凍結保存する場合には、糖水溶液や多価アルコール水溶液をそれぞれ用いると効果的な保存が可能である。
【0022】
これらの水系溶媒の添加物の濃度は特に限定されるべきものではないが、例えば、糖水溶液においては、2から20%(W/V)が好ましく、5から10%(W/V)がさらに好ましい。また、多価アルコール水溶液においては、1から5%(W/V)が好ましく、2から2.5%(W/V)がさらに好ましい。緩衝液においては、緩衝剤の濃度が5から50mMが好ましく、10から20mMがさらに好ましい。
【0023】
水系溶媒中の脂質膜構造体の濃度は、特に限定されるべきものではないが、本発明においては脂質膜構造体として用いるリン脂質の総量の濃度は、0.001mMから100mMが好ましく、0.01mMから20mMがさらに好ましい。
【0024】
脂質膜構造体が水系溶媒に分散した形態は、上記の乾燥した脂質混合物を水系溶媒に添加し、さらにホモジナイザー等の乳化機、超音波乳化機、高圧噴射乳化機等により乳化することで製造することができる。また、リポソームを製造する方法としてよく知られている方法、例えば逆相蒸発法などによっても製造することもでき、特に限定されるべきものではない。脂質膜構造体の大きさを制御したい場合には、孔径のそろったメンブランフィルター等を用いて、高圧下でイクストルージョン(押し出し濾過)を行えばよい。
【0025】
また、上記の水系溶媒に分散した脂質膜構造体をさらに乾燥させる方法としては、通常の凍結乾燥や噴霧乾燥を挙げることができる。この時の水系溶媒としては、上記したように、糖水溶液、好ましくはショ糖水溶液、乳糖水溶液を用いるとよい。ここで、水系溶媒に分散した脂質膜構造体をいったん製造した上でさらに乾燥すると、脂質膜構造体の長期保存が可能となるほか、この乾燥した脂質膜構造体に遺伝子水溶液を添加すると、効率よく脂質混合物が水和されるために遺伝子自身も効率よく、脂質膜構造体に保持させることができるといったメリットがある。
【0026】
本発明の遺伝子導入剤は、遺伝子だけでなく、親水性の大きい薬物、高分子量の生理活性ペプチド類、蛋白質などの細胞内に導入されにくい薬物などにも適用できる。本発明の組成物を用いれば、イン・ビトロ及びイン・ビボのいずれにおいても細胞内に遺伝子を効率良く導入することができる。
【0027】
イン・ビトロでの遺伝子導入は、標的とする細胞を含む懸濁液に本発明の遺伝子含有導入剤組成物を添加したり、本発明の遺伝子含有組成物を含有する培地で標的とする細胞を培養する等の手段により、行うことができる。
【0028】
イン・ビボでの遺伝子導入は、本発明の遺伝子含有組成物を宿主に投与すればよい。宿主への投与手段としては、経口投与でも、非経口投与でもよいが、非経口投与が好ましい。剤形としては、通常知られたものでよく、経口投与の剤形としては、例えば、錠剤、散剤、顆粒剤、シロップ剤等を挙げることができる。また、非経口投与の剤形としては、例えば、注射剤、点眼剤、軟膏剤、坐剤等を挙げることができる。中でも、注射剤が好ましく、投与方法としては、静脈注射、標的とする細胞や臓器に対しての局所注射が好ましい。
【0029】
【発明の効果】
本発明によれば、従来の遺伝子導入剤と比較して、遺伝子導入効率を格段に向上し、かつ、細胞毒性の低い遺伝子導入剤が得られ、安全性及び導入効率の両面に優れた遺伝子導入技術が確立された。
【0030】
【実施例】
以下、本発明を実施例に基づきより詳細に説明する。
【0031】
なお、以下の実施例において、「リポプレックス」とは本発明のデンドロン脂質とDNAの複合体を意味する。
実施例1
1. デンドロン脂質(DL)の合成
1.1. DL−G−0.5の合成
蒸留したアクリル酸メチル(14ml, 0.156mol)にジ−n−ドデシルアミン(2.00g, 5.66mmol)を溶かし、窒素雰囲気において80℃で18時間還流した。その後、未反応のアクリル酸メチルを減圧留去し、シリカゲル(展開溶媒 石油エーテル:ジエチルエーテル=2:1)で精製した。(収量2.387g, 96.1%.)
H NMR (400MHz, CDCl): δ 0.85 (m, Ha), δ 1.23 (s, Hb), δ 1.38 (m, Hc), δ 2.35 (t, Hf), δ 2.40 (t, Hd), δ 2.74 (t, He), δ 3.63 (s, OC3);13C NMR (400MHz, CDCl): δ 14.1 (Ca), δ 22.7, 27.1, 27.5, 29.3, 29.6 and 31.9 (Cb, Cc), δ 32.2 (Cf), δ 49.3 (Ce), δ 51.4 (OH3), δ 53.9 (Cd), δ 173.3 (OOCH3); TOF−MS m/z 440.7 (M+1).1.2. DL−G0の合成
DL−G−0.5 (2.162g, 4.92mmol)をメタノール(50ml, 1.23mol)に溶かした。この溶液を、シアン化ナトリウム(0.048g, 0.979mmol)を含む蒸留したエチレンジアミン(100ml, 1.50mol)に徐々に加え、窒素雰囲気において45℃で50時間撹拌した。その後、メタノールと未反応のエチレンジアミンを減圧留去し、Sephadex LH−20カラム(溶離液 メタノール) によって精製した。(収量1.945g, 84.6%.)
H NMR (400MHz, CDCl): δ 0.85 (m, Ha), δ 1.23 (s, Hb), δ 1.41 (m, Hc), δ 2.33 (t, Hf), δ 2.39 (t, Hd), δ 2.62 (t, He), δ 2.76 (t, Hh), δ 3.25 (m, Hg), δ 8.65 (m, CON); 13C NMR (400MHz, CDCl): δ 14.1 (Ca), δ 22.6, 26.6, 27.6, 29.3, 29.6 and 31.9 (Cb, Cc), δ 32.7 (Cf), δ 41.9 (Ch), δ 42.2 (Cg), δ 50.3 (Ce), δ 53.3 (Cd), δ 173.3 (ONH); TOF−MS m/z 468.2 (M+1).
1.3. DL−G0.5の合成
DL−G0(2.256g, 4.82mmol)をメタノール(17.5ml, 0.431mol)に溶かした。この溶液を、蒸留したアクリル酸メチル(43.5ml, 0.485mol)に徐々に加え、窒素雰囲気において35℃で50時間撹拌した。その後、メタノールと未反応のアクリル酸メチルを減圧留去し、シリカゲル(展開溶媒 石油エーテル:ジエチルエーテル=2:1 のち ジクロロメタン:メタノール=9:1)で精製した。(収量2.634g, 85.4%.)
H NMR (400MHz, CDCl): δ 0.84 (m, Ha), δ 1.21 (s, Hb), δ 1.39 (m, Hc), δ 2.30 (t, Hf), δ 2.38 (m, Hj), δ 2.39 (m, Hd), δ 2.49 (t, Hh), δ 2.67 (t, He), δ 2.73 (t, Hi), δ 3.25 (m, Hg), δ 3.63 (s, OC3), δ7.76 (m, CON); 13C NMR (400MHz, CDCl): δ 14.1 (Ca), δ 22.6, 26.7, 27.6, 29.3, 29.6, 31.9 and 32.5 (Cb, Cc), δ 33.1 (Cj), δ 36.9 (Cf), δ 49.1 (Ci), δ 50.1 (Ce), δ 51.5 (OH3), δ 53.0 (Cd), δ 53.5 (Ch), δ 172.7 (OOCH3), δ 172.8 (ONH); TOF−MS m/z 640.8 (M+1).1.4. DL−G1の合成
DL−G0.5(0.714g, 1.12mmol)をメタノール(20.5ml, 0.505mol)に溶かした。この溶液を、シアン化ナトリウム(0.011g, 0.224mmol)を含む蒸留したエチレンジアミン(37.5ml, 0.562mol)に徐々に加え、窒素雰囲気において45℃で50時間撹拌した。その後、メタノールと未反応のエチレンジアミンを減圧留去し、Sephadex LH−20カラム(溶離液 メタノール) によって精製した。(収量0.674g, 86.4%.)
H NMR (400MHz, CDCl): δ 0.84 (m, Ha), δ 1.22 (s, Hb), δ 1.38 (m, Hc), δ 2.12 (m, N2), δ 2.28 (m, Hj), δ 2.31 (m, Hf), δ 2.36 (m, Hd), δ 2.46 (t, Hh), δ 2.63 (t, He), δ 2.70 (t, Hi), δ 2.79 (t, Hl), δ 3.17 (m, Hg), δ 3.25 (m, Hk), δ 7.45 and 8.63 (m, CON); 13C NMR (400MHz, CDCl): δ 14.0 (Ca), δ 22.6, 26.5, 27.6, 29.2, 29.6 and 31.8 (Cb, Cc), δ 32.9 and 34.3 (Cf, Cj), δ 37.8 (Cg), δ 41.3 and 41.9 (Ck, Cl), δ 50.0 (Ci), δ 50.8 (Ce), δ 52.9 (Cd), δ 53.3 (Ch), δ 173.4 and 172.9 (ONH); TOF−MS m/z 697.4 (M+1).
1.5. DL−G1.5の合成
DL−G1(1.539g, 2.21mmol)をメタノール(86.5ml, 2.13mol)に溶かした。この溶液を、蒸留したアクリル酸メチル(152ml, 1.69mol)に徐々に加え、窒素雰囲気において35℃で50時間撹拌した。その後、メタノールと未反応のアクリル酸メチルを減圧留去し、シリカゲル(展開溶媒 ジクロロメタン:メタノール=9:1)で精製した。(収量1.703g, 74.0%.)
H NMR (400MHz, CDCl): δ 0.88 (m, Ha), δ 1.26 (s, Hb), δ 1.45 (m, Hc), δ 2.37 (m, Hj), δ 2.44 (m, Hd), δ 2.56 (m, Hh), δ 2.77 (m, Hi), δ 3.29 (m, Hg), δ 3.68 (s, OC3), δ 7.04 and 8.08 (m, CON); 13C NMR (400MHz, CDCl): δ 14.1 (Ca), δ 22.7, 26.5, 27.6, 29.4, 29.6 and 31.9 (Cb, Cc), δ 32.7, 33.0 and 33.9 (Cj), δ 37.2 and 37.5 (Cg), δ 49.3 and 50.0 (Ci), δ 50.2 (Ce), δ 51.7 (OH3), δ 52.8 (Cd), δ 53.0 and 53.4 (Ch), δ 172.3 (OOCH3), δ 172.7 and 173.1 (ONH); TOF−MS m/z 1041.5 (M+1).
1.6. DL−G2の合成
DL−G1.5(1.703g, 1.64mmol)をメタノール(46ml, 1.13mol)に溶かした。この溶液を、シアン化ナトリウム(0.032g, 0.655mmol)を含む蒸留したエチレンジアミン(134ml, 2.00mol)に徐々に加え、窒素雰囲気において45℃で50時間撹拌した。その後、メタノールと未反応のエチレンジアミンを減圧留去し、Sephadex LH−20カラム(溶離液 メタノール) によって精製した。(収量1.713g, 90.8%.)
H NMR (400MHz, CDCl): δ 0.87 (m, Ha), δ 1.25 (s, Hb), δ 1.42 (m, Hc), δ 2.13 (m, N2), δ 2.33 (m, Hj), δ 2.36 (m, Hd), δ 2.52 (m, Hh), δ 2.73 (m, Hi), δ 2.82 (m, Hl), δ 3.24 (m, Hg), δ 3.27 (m, Hk), δ 7.74, 7.79 and 8.58 (m, CON); 13C NMR (400MHz, CDCl): δ 14.2 (Ca), δ 22.7, 26.6, 27.7, 29.4, 29.7 and 31.9 (Cb, Cc), δ 33.0, 34.0 and 34.3 (Cf, Cj), δ 37.8 (Cg), δ 41.5 and 42.2 (Ck, Cl), δ 50.2 (Ci), δ 50.5 (Ce), δ 53.0 (Cd), δ 53.3 (Ch), δ 172.6, 173.0 and 173.4 (ONH); TOF−MS m/z 1153.0 (M+).
1.7. DL−G2.5の合成
DL−G2(1.713g, 1.49mmol)をメタノール(120ml, 2.96mol)に溶かした。この溶液を、蒸留したアクリル酸メチル(100ml, 1.12mol)に徐々に加え、30℃で25時間撹拌した。その後、メタノールと未反応のアクリル酸メチルを減圧留去し、シリカゲル(展開溶媒 ジクロロメタン:メタノール=85:15 のち 80:20)で精製した。(収量1.900g, 69.4%.)
H NMR (400MHz, CDCl): δ 0.88 (m, Ha), δ 1.26 (s, Hb), δ 1.45 (m, Hc), δ 2.37 (m, Hj), δ 2.44 (m, Hd), δ 2.56 (m, Hh), δ 2.76 (m, Hi), δ 3.28 (m, Hg), δ 3.68 (s, OC3), δ 7.13, 7.67 and 8.12 (m, CON); 13C NMR (400MHz, CDCl): δ 14.1 (Ca), δ 22.7, 26.5, 27.6, 29.4, 29.6, 29.7 and 31.9 (Cb, Cc), δ 32.7 (Cf), 33.9 (Cj), δ 37.2 and 37.5 (Cg), δ49.3 and 49.9 (Ci), δ 50.2 (Ce), δ 51.7 (OH3), δ 52.6 (Cd), δ 53.0and 53.4 (Ch), δ 172.4 (OOCH3), 173.0 (OOCH3); TOF−MS m/z 1840.7 (M+).
1.8. DL−G3の合成
DL−G2.5(0.115g, 0.063mmol)をメタノール(2.53ml, 0.625mol)に溶かした。この溶液を、シアン化ナトリウム(0.0012g, 0.025mmol)を含む蒸留したエチレンジアミン(5.00ml, 0.075mol)に徐々に加え、窒素雰囲気において45℃で55時間撹拌した。その後、メタノールと未反応のエチレンジアミンを減圧留去し、Sephadex LH−20カラム(溶離液 メタノール) によって精製した。(収量0.114g, 88.4%.)
H NMR (400MHz, CDCl): δ 0.88 (m, Ha), δ 1.26 (s, Hb), δ 1.42 (m, Hc), δ 2.37 (br, Hj), δ 2.54 (br, Hh), δ 2.75 (br, Hi), δ 2.83 (br, Hl), δ 3.24 (br, Hg), δ 3.29 (br, Hk), δ 7.94, 8.07 and 8.57 (br, CON); 13C NMR (400MHz, CDCl): δ 14.2 (Ca), δ 22.7, 26.5, 27.7, 29.4, 29.7 and 31.9 (Cb, Cc), δ 34.0 and 34.3 (Cf, Cj), δ 37.8 (Cg), δ 41.4 and 41.9 (Ck, Cl), δ 50.1 (Ci), δ 50.5 (Ce), δ 52.9 (Cd), δ 53.3 (Ch),δ 172.8 and 173.1 (ONH); TOF−MS m/z 2066.0 (M+).1.9. DL−G3.5の合成
DL−G3(1.004g, 0.486mmol)をメタノール(40ml, 0.986mol)に溶かした。この溶液を、蒸留したアクリル酸メチル(35ml, 0.39mol)に徐々に加え、25℃で50時間撹拌した。その後、メタノールと未反応のアクリル酸メチルを減圧留去し、Sephadex LH−20カラム(溶離液 メタノール) により二度精製後、さらにシリカゲル(展開溶媒 ジクロロメタン:メタノール=8:2)で精製した。(収量1.141g, 68.2%.)
H NMR (400MHz, CDCl): δ 0.88 (m, Ha), δ 1.23 (s, Hb), δ 2.37 (br, Hj), δ 2.44 (br, Hd), δ 2.54 (br, Hh), δ 2.76 (br, Hi), δ 3.27 (br, Hg), δ 3.67 (s, OC3), δ 7.13, 7.71 and 8.10 (br, CON); 13C NMR (400MHz, CDCl): δ 14.1 (Ca), δ 22.7, 29.4, 29.7 and 31.9 (Cb, Cc), δ 32.7 (Cf), 33.8 (Cj), δ 37.2 and 37.5 (Cg), δ 49.3 and 49.9 (Ci), δ 50.6 (Ce), δ 51.7 (OH3), δ 52.5 (Cd), δ 53.0 (Ch), δ 172.4 (OOCH3), δ 172.6 and 173.1 (ONH).
1.10. DL−G4の合成
DL−G3.5(1.141g, 0.331mmol)をメタノール(18.5ml, 0.456mol)に溶かした。この溶液を、シアン化ナトリウム(0.0065g, 0.133mmol)を含む蒸留したエチレンジアミン(37ml, 0.554mol)に徐々に加え、窒素雰囲気において45℃で55時間撹拌した。その後、メタノールと未反応のエチレンジアミンを減圧留去し、Sephadex LH−20カラム(溶離液 メタノール) により二度精製した。(収量0.699g, 54.2%.)
H NMR (400MHz, DMSO−6): δ 0.85 (m, Ha), δ 1.26 (s, Hb), δ 1.37 (m, Hc), δ 2.20 (br, Hj), δ 2.30 (br, Hd), δ 2.57 (br, Hh), δ 2.65 (br, Hi), δ 3.07 (br, Hk), δ 7.91, 7.98 and 8.16 (br, CON); 13C NMR (400MHz, DMSO−6): δ 14.0 (Ca), δ 22.2, 27.0, 29.1 and 31.4 (Cb, Cc), δ 33.3 (Cf, Cj), δ 37.0 (Cg), δ 41.7 (Ck, Cl), δ 49.7 (Ci), δ 52.2 (Ch), δ 171.6 (ONH).
2. 測定
2.1. 電気泳動による複合体形成能の評価
デンドロン脂質(DL−G1,DLG2,DLG−3,DLG4)のクロロホルム溶液(DLG4についてはメタノール溶液)から溶媒を減圧留去し、脂質薄膜を得た。これにPBS(リン酸緩衝生理食塩水)を加え、バス型超音波照射装置を用いて超音波を2分間照射し、脂質分散液を調製した。次に、調製したデンドロン脂質分散液を20mMTris−HClのプラスミドDNA溶液(1μg/5μl)にN/P比が0.2、0.4、0.6、0.7、0.8、1.0、1.2、1.4、1.6になるように加えて混合し(全量10μl)、室温で10分インキュベーションしてリポプレックスを調製した。調製したリポプレックスを0.6wt%アガロースゲルに加え、40mM Tris / 20mM NaOAc / 2mM EDTA−2Naバッファー中において100Vの電位下、30分間電気泳動を行った。なお、電気泳動は Mupidミニゲル泳動槽(ADVANCE Co.)を用いて行った(図1)。
2.2. リポプレックスの調製
2.2.1デンドロン脂質とプラスミドDNAとのリポプレックス
カチオン性脂質(DL−G1、DL−G2、DL−G3、DL−G4)のクロロホルム溶液(DL−G4についてはメタノール溶液)からロータリーエバポレーターを用いて溶媒を除去して、脂質薄膜を形成させた。これにPBSを加え、バス型超音波照射装置を用いて超音波を2分間照射し、脂質分散液を調製した。次に、20mMTris−HClのプラスミドDNA溶液(1μg/50μl)と種々の濃度の脂質分散液(50μl)を加えて混合し、室温で10分間インキュベーションして、リポプレックスを得た図2。
2.2.2.DL−G3、DOPE、プラスミドからなるリポプレックス
DL−G3(41.7μg)と種々の量のDOPEからなる混合薄膜に、PBS 0.5mlを加え、バス型超音波照射装置を用いて超音波を2分間照射し、混合脂質分散液を調製した。20mMTris−HClのプラスミドDNA溶液(1μg/50μl)に混合脂質分散液を種々のN/P(DL−G3の1級アミノ基/DNAのリン酸エステル、モル/モル)比に混合し、室温で10分インキュベーションしてリポプレックスを調製した(図3,図4)。
2.2.3.DC−chol、DOPE、プラスミドからなるリポプレックス
カチオン性脂質DC−Chol(3β[N,N−ジメチルアミノエタンカルバモイル]コレステロール)(161.3μg)とDOPE(240μg)の混合薄膜にPBS 2.5mlを加え、バス型超音波照射装置を用いて超音波を2分間照射し、混合脂質分散液を調製した。20mMTris−HClのプラスミドDNA溶液(1μg/50μl)に混合脂質分散液をN/P比が2になるように加えて混合し、室温で10分インキュベーションしてリポプレックスを調製した(図4)。
2.3. 遺伝子導入
アフリカミドリザル腎臓由来のCV−1細胞を24穴ディッシュ1穴当たり5.0×10個になるように撒き、10%FBS含有DMEMメディウム0.5ml中、37℃で一晩培養した。その後、0.36mM CaClと0.42mM MgClを含むPBS(PBS(+))で3回洗浄した後、血清を含まないDMEMメディウム1mlを加え、1穴当たり所定量のプラスミドDNAを含むリポプレックスを細胞に加え、4時間インキュベーションした。その後PBS(+)で3回洗浄して、細胞に取り込まれていないリポプレックスを除去し、10%FBS含有DMEMメディウム1mlを加え40時間培養した(図2,図3,図4)。
【0032】
図1〜図4に示されるように、本発明の遺伝子導入剤は、デンドロンがDL−G2からDL−G4へ大きくなるにつれて高い遺伝子導入効率を発現することが明らかになった。特にDL−G4は高い遺伝子導入効率を有している。
2.4. ルシフェラーゼアッセイによる遺伝子導入の評価
リポプレックスと処理し、40時間培養した後、PBS(+)で3回洗浄し、さらにPBS(−)で1回洗浄した後、1穴当たり80μlの細胞溶解剤を加えて細胞を溶かし、12000rpmで2分間遠心分離し、その上澄みを回収した。得られた細胞溶解液のルシフェラーゼ活性及びタンパク量を、ピッカジーンルシフェラーゼアッセイキット(東洋インキ)およびBCA Protein Assay Reagent (Pierce) により行った。
2.5. リポプレックスの細胞毒性
リポプレックスで処理した細胞を40時間培養後、メディウムを除去し、新しい10%FBS含有DMEMメディウムを1穴当たり200μlずつ加えた。さらにMTT溶液(5mg/ml PBS)を1穴当たり20μlずつ加え、2時間インキュベーションした。次にメディウムを除去して0.1M HCl含有イソプロパノール(500μl)を加えた。その溶液を遠心チューブに回収し、15000rpmで10秒間遠心分離を行った。上澄み液を570nmの吸光度を測定することによって生細胞数を求め、リポプレックスと処理していない細胞を培養した場合との比(%)を求めた(図4)。
【0033】
図4に示されるように、本発明のデンドロン(DL−G3)は、従来汎用されているDC−cholと比較して遺伝子導入活性が向上し(図4A,B)、かつ、遺伝子導入活性を有する量(DNA量が1〜2μg)において細胞生存率が65%以上と有意に高く(図4C)、高い遺伝子導入活性及び低毒性を同時に達成した、非常に優れた遺伝子導入剤であることが明らかになった。
【図面の簡単な説明】
【図1】デンドロン脂質とDNAの複合体形成を示す。図1において、「A」はDL−G1リポプレックス、「B」はDL−G2リポプレックス、「C」はDL−G3リポプレックス、「D」はDL−G4リポプレックスを各々示す。
【図2】遺伝子導入活性に及ぼす世代数の影響を示す。図2は、各種のN/P比を有するDL−G2,DL−G3またはDL−G4リポプレックスで処理したCV1細胞のルシフェラーゼ活性(gルシフェラーゼ/mg蛋白質(A)およびgルシフェラーゼ/ウェル(B))を示す。細胞(5×10)は血清を含まない培地中1μgのDNAを含むリポプレックスで処理された。NおよびPは、各々脂質の第一級アミノ基及びDNAホスフェートの当量を示す。
【図3】遺伝子導入活性に及ぼす世代数の影響を示す。図3Aは、DOPE/DL−G3比を変化させたリポプレックスで処理されたCV1細胞のルシフェラーゼ活性を示し、図3Bは、N/P比を変化させたリポプレックスで処理されたCV1細胞のルシフェラーゼ活性を示す。
【図4】DC−cholリポプレックスとの比較を示す。図4は、DL−G3/DOPEリポプレックスまたはDC−chol/DOPEリポプレックスで処理されたCV1細胞のルシフェラーゼ活性((A):gルシフェラーゼ/mg蛋白質、(B):gルシフェラーゼ/ウェル)及び細胞生存度(C)を示す。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a gene transfer agent, a gene transfer kit, and a gene transfer method.
[0002]
[Prior art and its problems]
A viral vector is known as a highly efficient gene transfer agent used for gene therapy and the like. However, the virus vector has been reported to have serious side effects that cause death in clinical applications. Have been.
[0003]
Non-viral vectors are safer than viral vectors, but have the disadvantage of low gene transfer efficiency.
[0004]
An object of the present invention is to provide a gene transfer agent, a gene transfer kit and a gene transfer method which are excellent in safety and transfer efficiency.
[0005]
[Means for Solving the Problems]
The present invention provides the following gene transfer agent, gene transfer kit and gene transfer method.
Item 1. A gene transfer composition comprising a compound represented by any of the following formulas DL-G1 to DL-G8.
DL-G1: R1R2NX (XH2)2
DL-G2: R1R2NX (X (XH2)2)2
DL-G3: R1R2NX (X (X (XH2)2)2)2
DL-G4: R1R2NX (X (X (X (XH2)2)2)2)2
DL-G5: R1R2NX (X (X (X (X (XH2)2)2)2)2)2
DL-G6: R1R2NX (X (X (X (X (X (XH2)2)2)2)2)2)2
DL-G7: R1R2NX (X (X (X (X (X (X (XH2)2)2)2)2)2)2)2
DL-G8: R1R2NX (X (X (X (X (X (X (X (XH2)2)2)2)2)2)2)2)2
(Where R1And R2Represents the same or different alkyl groups, alkoxy groups, aryl groups and aralkyl groups. X is -CH2CH2CONHCH2CH2N-. )
Item 2. The gene transfer agent composition according to claim 1, further comprising a phospholipid.
Item 3. 3. The composition according to claim 2, wherein the phospholipid is DOPE.
Item 4. Item 7. A method for introducing a gene into a cell, comprising applying the gene introduction agent or the gene introduction agent composition according to any one of Items 1 to 3 to a cell together with the gene in vitro or in vivo.
Item 5. A gene introduction kit comprising the composition according to claim 1.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
In the polyamidoamine dendron of any of DL-G1 to DL-G8 of the present invention:
Examples of the alkyl group include a linear or branched alkyl group having 6 to 20 carbon atoms such as hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, hexadecyl, octadecyl, eicosyl, and 2-ethylhexyl. No.
Examples of the alkoxy group include hexyloxy, heptyloxy, octyloxy, nonyloxy, decyloxy, undecyloxy, dodecyloxy, tridecyloxy, tetradecyloxy, hexadecyloxy, octadecyloxy, eicosyloxy, and 2-ethylhexyloxy. A straight-chain or branched alkoxy group having 6 to 20 carbon atoms is exemplified.
Aryl groups include benzyl, naphthyl, biphenyl, anthranyl, phenanthryl and the like.
Examples of the aralkyl group include benzyl, phenethyl and the like.
[0007]
X is -CH2CH2CONHCH2CH2N- represents N-, and the terminal N generally has two hydrogen atoms, but one hydrogen atom may be substituted with a hydrophobic amino acid such as leucine, valine, isoleucine, norleucine, phenylalanine, and tyrosine. .
[0008]
The polyamidoamine dendron of the present invention can be produced, for example, as follows.
[0009]
Embedded image
Figure 2004159504
[0010]
Preferred polyamidoamine dendrons of the present invention are shown below.
[0011]
Embedded image
Figure 2004159504
[0012]
The gene transfer agent composition of the present invention can suitably contain a phospholipid in addition to the polyamidoamine dendron. Examples of such a phospholipid include phosphatidylethanolamine, phospharidylcholine, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, cardiolipin, sphingomyelin, plasmalogen and phosphatidic acid, and these may be used alone or in combination of two or more. Can be used in combination. Of these, phosphatidylethanolamine and phospharidylcholine are preferably used alone or in combination. Fatty acid residues of these phospholipids are not particularly limited, and include saturated or unsaturated fatty acid residues having 12 to 18 carbon atoms. Specifically, lauroyl group, myristoyl group And a palmitoyl group, a stearoyl group, an oleoyl group, a linoleyl group, and the like, and DOPE (dioleoylphosphatidylethanolamine) is particularly preferable.
[0013]
The blending amount of the phospholipid is not particularly limited, but when the total amount of the phospholipid and the polyamidoamine dendron is 100 parts by weight, the phospholipid is 30 to 90 parts by weight, the polyamidoamine dendron is 70 to 10 parts by weight, preferably the phospholipid 50. To 80 parts by weight, 50 to 20 parts by weight of polyamidoamine dendron, more preferably 60 to 70 parts by weight of phospholipid, and 40 to 30 parts by weight of polyamidoamine dendron.
[0014]
In addition to the phospholipid, examples of the additive that can be contained in the gene transfer agent composition include cholesterol and the like.
[0015]
When the polyamideamine dendron lipid is used alone, the mixing ratio of the gene and the gene transfer agent is 1 to 20 parts by weight, preferably 3 to 15 parts by weight, more preferably 5 to 5 parts by weight of the gene transfer agent per 1 part by weight of the gene. Use 7 parts by weight. When a mixture of polyamidoamine dendron lipid and phospholipid is used, the mixing ratio of the gene and the gene transfer agent is 1 to 50 parts by weight of the gene transfer agent, preferably 5 to 30 parts by weight, relative to 1 part by weight of the gene. More preferably, 10 to 15 parts by weight are used.
[0016]
The gene may be any of oligonucleotide, DNA and RNA, and in particular, a gene for introduction in vitro such as transformation, and a gene that acts by being expressed in vivo, for example, a gene for gene therapy, an experimental animal Genes used for breeding of industrial animals such as livestock and domestic animals are preferred. Examples of the gene for gene therapy include genes encoding bioactive substances such as antisense oligonucleotides, antisense DNA, antisense RNA, enzymes, and cytokines.
[0017]
Examples of cells into which the gene is introduced include animal cells such as humans, eukaryotic cells such as plant cells, and prokaryotic cells such as bacteria.
[0018]
As the form of the composition of the present invention, only the polyamidoamine dendron (DL-G1 to DL-G8) may be present, or the polyamidoamine dendron and the phospholipid may be simply present as a mixture. The dendron and the phospholipid may be combined to form a lipid membrane structure. The existence form of the lipid membrane structure and the method for producing the same are not particularly limited. Examples of the existence form include a dried lipid mixture form, a form dispersed in an aqueous solvent, and a form obtained by drying the same. And frozen forms.
[0019]
The dried lipid mixture can be produced, for example, by dissolving the lipid component to be used once in an organic solvent such as chloroform and then performing drying under reduced pressure using an evaporator or spray drying using a spray dryer.
[0020]
Examples of the form in which the lipid membrane structure is dispersed in an aqueous solvent include unilamellar liposomes, multilamellar liposomes, O / W emulsions, W / O / W emulsions, spherical micelles, string micelles, and irregular lamellar structures. And the like. The size of the dispersed lipid membrane structure is not particularly limited. For example, in the case of a liposome or an emulsion, the particle size is 50 nm to several μm, and in the case of a spherical micelle, the particle size is Is from 5 nm to 50 nm. In the case of string-like micelles or irregular layered structures, the thickness per layer may be considered to be 5 nm to 10 nm and these layers are formed.
[0021]
The composition of the aqueous solvent (dispersion medium) is not particularly limited, but in addition to water, aqueous solutions of sugars such as glucose, lactose, and sucrose; aqueous solutions of polyhydric alcohols such as glycerin and propylene glycol; And buffer solutions such as citrate buffer and phosphate buffered saline, physiological saline, and a medium for cell culture. In order to stably store the lipid membrane structure dispersed in the aqueous solvent for a long period of time, it is important to minimize the electrolyte in the aqueous solvent from the viewpoint of physical stability such as aggregation. From the viewpoint of lipid chemical stability, it is important to set the pH of the aqueous solvent from weakly acidic to near neutral (pH 3.0 to 8.0) or to remove dissolved oxygen by nitrogen bubbling. . Further, when freeze-drying storage or spray-drying storage is used, effective storage is possible by using a sugar aqueous solution, and when freeze-preserving, using a sugar aqueous solution or a polyhydric alcohol aqueous solution, respectively.
[0022]
The concentration of the additive in these aqueous solvents is not particularly limited. For example, in a sugar aqueous solution, the concentration is preferably 2 to 20% (W / V), and more preferably 5 to 10% (W / V). preferable. In the polyhydric alcohol aqueous solution, 1 to 5% (W / V) is preferable, and 2 to 2.5% (W / V) is more preferable. In the buffer, the concentration of the buffer is preferably 5 to 50 mM, more preferably 10 to 20 mM.
[0023]
Although the concentration of the lipid membrane structure in the aqueous solvent is not particularly limited, the concentration of the total amount of the phospholipid used as the lipid membrane structure in the present invention is preferably from 0.001 mM to 100 mM, and is preferably from 0.1 mM to 100 mM. More preferred is from 01 mM to 20 mM.
[0024]
The form in which the lipid membrane structure is dispersed in an aqueous solvent is produced by adding the above-mentioned dried lipid mixture to an aqueous solvent, and further emulsifying with an emulsifier such as a homogenizer, an ultrasonic emulsifier, a high-pressure jet emulsifier, or the like. be able to. The liposome can also be produced by a well-known method, for example, a reverse phase evaporation method, and is not particularly limited. When it is desired to control the size of the lipid membrane structure, extrusion (extrusion filtration) may be performed under high pressure using a membrane filter or the like having a uniform pore size.
[0025]
Examples of a method for further drying the lipid membrane structure dispersed in the aqueous solvent include ordinary freeze drying and spray drying. As the aqueous solvent at this time, as described above, an aqueous sugar solution, preferably an aqueous sucrose solution or an aqueous lactose solution, may be used. Here, once the lipid membrane structure dispersed in an aqueous solvent is produced and then dried, the lipid membrane structure can be stored for a long period of time. Since the lipid mixture is well hydrated, there is an advantage that the gene itself can be efficiently retained in the lipid membrane structure.
[0026]
The gene transfer agent of the present invention can be applied to not only genes but also drugs having high hydrophilicity, high molecular weight bioactive peptides, drugs such as proteins which are hardly introduced into cells, and the like. By using the composition of the present invention, a gene can be efficiently introduced into cells both in vitro and in vivo.
[0027]
In vitro gene transfer can be performed by adding the gene-containing transfection agent composition of the present invention to a suspension containing the target cells, or treating the target cells in a medium containing the gene-containing composition of the present invention. It can be performed by means such as culturing.
[0028]
Gene transfer in vivo may be performed by administering the gene-containing composition of the present invention to a host. The means of administration to the host may be oral or parenteral, but parenteral administration is preferred. The dosage form may be a commonly known dosage form, and the dosage form for oral administration includes, for example, tablets, powders, granules, syrups and the like. Examples of dosage forms for parenteral administration include injections, eye drops, ointments, suppositories and the like. Of these, injections are preferred, and intravenous injection and local injection into target cells or organs are preferred as administration methods.
[0029]
【The invention's effect】
According to the present invention, gene transfer efficiency is significantly improved as compared with conventional gene transfer agents, and a gene transfer agent having low cytotoxicity is obtained, and gene transfer excellent in both safety and transfer efficiency is obtained. Technology has been established.
[0030]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples.
[0031]
In the following examples, “lipoplex” means a complex of the dendron lipid and DNA of the present invention.
Example 1
1. Synthesis of Dendron Lipid (DL)
1.1. Synthesis of DL-G-0.5
Di-n-dodecylamine (2.00 g, 5.66 mmol) was dissolved in distilled methyl acrylate (14 ml, 0.156 mol), and the mixture was refluxed at 80 ° C. for 18 hours in a nitrogen atmosphere. Thereafter, unreacted methyl acrylate was distilled off under reduced pressure, and the residue was purified on silica gel (developing solvent: petroleum ether: diethyl ether = 2: 1). (Yield 2.387 g, 96.1%.)
1H NMR (400 MHz, CDCl3): Δ 0.85 (m, Ha), δ 1.23 (s, Hb), δ 1.38 (m, Hc), δ 2.35 (t, Hf), δ 2.40 (t, Hd) ), Δ 2.74 (t, He), δ 3.63 (s, OCH3);ThirteenC NMR (400 MHz, CDCl3): Δ 14.1 (Ca), δ 22.7, 27.1, 27.5, 29.3, 29.6 and 31.9 (Cb, Cc), δ 32.2 (Cf), δ 49 .3 (Ce), δ 51.4 (OCH3), δ 53.9 (Cd), δ 173.3 (COOCH3); TOF-MS m / z 440.7 (M + 1). 1.2. Synthesis of DL-G0
DL-G-0.5 (2.162 g, 4.92 mmol) was dissolved in methanol (50 ml, 1.23 mol). This solution was slowly added to distilled ethylenediamine (100 ml, 1.50 mol) containing sodium cyanide (0.048 g, 0.979 mmol) and stirred at 45 ° C. for 50 hours in a nitrogen atmosphere. Thereafter, methanol and unreacted ethylenediamine were distilled off under reduced pressure, and purified by a Sephadex LH-20 column (eluent: methanol). (Yield 1.945 g, 84.6%.)
1H NMR (400 MHz, CDCl3): Δ 0.85 (m, Ha), δ 1.23 (s, Hb), δ 1.41 (m, Hc), δ 2.33 (t, Hf), δ 2.39 (t, Hd) ), Δ 2.62 (t, He), δ 2.76 (t, Hh), δ 3.25 (m, Hg), δ 8.65 (m, CONH);ThirteenC NMR (400 MHz, CDCl3): Δ 14.1 (Ca), δ 22.6, 26.6, 27.6, 29.3, 29.6 and 31.9 (Cb, Cc), δ 32.7 (Cf), δ 41 .9 (Ch), δ 42.2 (Cg), δ 50.3 (Ce), δ 53.3 (Cd), δ 173.3 (CONH); TOF-MS m / z 468.2 (M + 1).
1.3. Synthesis of DL-G0.5
DL-G0 (2.256 g, 4.82 mmol) was dissolved in methanol (17.5 ml, 0.431 mol). This solution was slowly added to distilled methyl acrylate (43.5 ml, 0.485 mol) and stirred at 35 ° C. for 50 hours in a nitrogen atmosphere. Thereafter, methanol and unreacted methyl acrylate were distilled off under reduced pressure, and the residue was purified on silica gel (developing solvent: petroleum ether: diethyl ether = 2: 1 followed by dichloromethane: methanol = 9: 1). (Yield 2.634 g, 85.4%.)
1H NMR (400 MHz, CDCl3): Δ 0.84 (m, Ha), δ 1.21 (s, Hb), δ 1.39 (m, Hc), δ 2.30 (t, Hf), δ 2.38 (m, Hj) ), Δ 2.39 (m, Hd), δ 2.49 (t, Hh), δ 2.67 (t, He), δ 2.73 (t, Hi), δ 3.25 (m, Hg) ), Δ 3.63 (s, OCH3), δ7.76 (m, CONH);ThirteenC NMR (400 MHz, CDCl3): Δ 14.1 (Ca), δ 22.6, 26.7, 27.6, 29.3, 29.6, 31.9 and 32.5 (Cb, Cc), δ 33.1 (Cj) ), Δ 36.9 (Cf), δ 49.1 (Ci), δ 50.1 (Ce), δ 51.5 (OCH3), δ 53.0 (Cd), δ 53.5 (Ch), δ 172.7 (COOCH3), δ 172.8 (CONH); TOF-MS m / z 640.8 (M + 1). 1.4. Synthesis of DL-G1
DL-G0.5 (0.714 g, 1.12 mmol) was dissolved in methanol (20.5 ml, 0.505 mol). This solution was slowly added to distilled ethylenediamine (37.5 ml, 0.562 mol) containing sodium cyanide (0.011 g, 0.224 mmol) and stirred at 45 ° C. for 50 hours in a nitrogen atmosphere. Thereafter, methanol and unreacted ethylenediamine were distilled off under reduced pressure, and purified by a Sephadex LH-20 column (eluent: methanol). (Yield 0.674 g, 86.4%.)
1H NMR (400 MHz, CDCl3): Δ 0.84 (m, Ha), δ 1.22 (s, Hb), δ 1.38 (m, Hc), δ 2.12 (m, N)H2), δ 2.28 (m, Hj), δ 2.31 (m, Hf), δ 2.36 (m, Hd), δ 2.46 (t, Hh), δ 2.63 (t, He), δ 2.70 (t, Hi), δ 2.79 (t, Hl), δ 3.17 (m, Hg), δ 3.25 (m, Hk), δ 7.45 and 8. 63 (m, CONH);ThirteenC NMR (400 MHz, CDCl3): Δ 14.0 (Ca), δ 22.6, 26.5, 27.6, 29.2, 29.6 and 31.8 (Cb, Cc), δ 32.9 and 34.3 (Cf) , Cj), δ 37.8 (Cg), δ 41.3 and 41.9 (Ck, Cl), δ 50.0 (Ci), δ 50.8 (Ce), δ 52.9 (Cd), δ 53.3 (Ch), δ 173.4 and 172.9 (CONH); TOF-MS m / z 697.4 (M + 1).
1.5. Synthesis of DL-G1.5
DL-G1 (1.539 g, 2.21 mmol) was dissolved in methanol (86.5 ml, 2.13 mol). This solution was slowly added to distilled methyl acrylate (152 ml, 1.69 mol) and stirred at 35 ° C. for 50 hours in a nitrogen atmosphere. Thereafter, methanol and unreacted methyl acrylate were distilled off under reduced pressure, and purified by silica gel (developing solvent: dichloromethane: methanol = 9: 1). (Yield 1.703 g, 74.0%.)
1H NMR (400 MHz, CDCl3): Δ 0.88 (m, Ha), δ 1.26 (s, Hb), δ 1.45 (m, Hc), δ 2.37 (m, Hj), δ 2.44 (m, Hd) ), Δ 2.56 (m, Hh), δ 2.77 (m, Hi), δ 3.29 (m, Hg), δ 3.68 (s, OCH3), δ 7.04 and 8.08 (m, CONH);ThirteenC NMR (400 MHz, CDCl3): Δ 14.1 (Ca), δ 22.7, 26.5, 27.6, 29.4, 29.6 and 31.9 (Cb, Cc), δ 32.7, 33.0 and 33 .9 (Cj), δ 37.2 and 37.5 (Cg), δ 49.3 and 50.0 (Ci), δ 50.2 (Ce), δ 51.7 (OCH3), δ 52.8 (Cd), δ 53.0 and 53.4 (Ch), δ 172.3 (COOCH3), δ 172.7 and 173.1 (CONH); TOF-MS m / z 1041.5 (M + 1).
1.6. Synthesis of DL-G2
DL-G1.5 (1.703 g, 1.64 mmol) was dissolved in methanol (46 ml, 1.13 mol). This solution was slowly added to distilled ethylenediamine (134 ml, 2.00 mol) containing sodium cyanide (0.032 g, 0.655 mmol) and stirred at 45 ° C. for 50 hours in a nitrogen atmosphere. Thereafter, methanol and unreacted ethylenediamine were distilled off under reduced pressure, and purified by a Sephadex LH-20 column (eluent: methanol). (Yield 1.713 g, 90.8%.)
1H NMR (400 MHz, CDCl3): Δ 0.87 (m, Ha), δ 1.25 (s, Hb), δ 1.42 (m, Hc), δ 2.13 (m, N)H2), δ 2.33 (m, Hj), δ 2.36 (m, Hd), δ 2.52 (m, Hh), δ 2.73 (m, Hi), δ 2.82 (m, H Hl), δ 3.24 (m, Hg), δ 3.27 (m, Hk), δ 7.74, 7.79 and 8.58 (m, CONH);ThirteenC NMR (400 MHz, CDCl3): Δ 14.2 (Ca), δ 22.7, 26.6, 27.7, 29.4, 29.7 and 31.9 (Cb, Cc), δ 33.0, 34.0 and 34 0.3 (Cf, Cj), δ 37.8 (Cg), δ 41.5 and 42.2 (Ck, Cl), δ 50.2 (Ci), δ 50.5 (Ce), δ 53.0 (Cd), δ 53.3 (Ch), δ 172.6, 173.0 and 173.4 (CONH); TOF-MS m / z 1153.0 (M +).
1.7. Synthesis of DL-G2.5
DL-G2 (1.713 g, 1.49 mmol) was dissolved in methanol (120 ml, 2.96 mol). This solution was gradually added to distilled methyl acrylate (100 ml, 1.12 mol) and stirred at 30 ° C. for 25 hours. Thereafter, methanol and unreacted methyl acrylate were distilled off under reduced pressure, and purified by silica gel (developing solvent: dichloromethane: methanol = 85: 15, then 80:20). (Yield 1.900 g, 69.4%.)
1H NMR (400 MHz, CDCl3): Δ 0.88 (m, Ha), δ 1.26 (s, Hb), δ 1.45 (m, Hc), δ 2.37 (m, Hj), δ 2.44 (m, Hd) ), Δ 2.56 (m, Hh), δ 2.76 (m, Hi), δ 3.28 (m, Hg), δ 3.68 (s, OC)H3), δ 7.13, 7.67 and 8.12 (m, CONH);ThirteenC NMR (400 MHz, CDCl3): Δ 14.1 (Ca), δ 22.7, 26.5, 27.6, 29.4, 29.6, 29.7 and 31.9 (Cb, Cc), δ 32.7 (Cf) ), 33.9 (Cj), δ 37.2 and 37.5 (Cg), δ 49.3 and 49.9 (Ci), δ 50.2 (Ce), δ 51.7 (OCH3), δ 52.6 (Cd), δ 53.0 and 53.4 (Ch), δ 172.4 (COOCH3), 173.0 (COOCH3); TOF-MS m / z 1840.7 (M +).
1.8. Synthesis of DL-G3
DL-G2.5 (0.115 g, 0.063 mmol) was dissolved in methanol (2.53 ml, 0.625 mol). This solution was slowly added to distilled ethylenediamine (5.00 ml, 0.075 mol) containing sodium cyanide (0.0012 g, 0.025 mmol) and stirred at 45 ° C. for 55 hours in a nitrogen atmosphere. Thereafter, methanol and unreacted ethylenediamine were distilled off under reduced pressure, and purified by a Sephadex LH-20 column (eluent: methanol). (Yield 0.114 g, 88.4%.)
1H NMR (400 MHz, CDCl3): Δ 0.88 (m, Ha), δ 1.26 (s, Hb), δ 1.42 (m, Hc), δ 2.37 (br, Hj), δ 2.54 (br, Hh) ), Δ 2.75 (br, Hi), δ 2.83 (br, Hl), δ 3.24 (br, Hg), δ 3.29 (br, Hk), δ 7.94, 8.07. and 8.57 (br, CONH);ThirteenC NMR (400 MHz, CDCl3): Δ 14.2 (Ca), δ 22.7, 26.5, 27.7, 29.4, 29.7 and 31.9 (Cb, Cc), δ 34.0 and 34.3 (Cf) , Cj), δ 37.8 (Cg), δ 41.4 and 41.9 (Ck, Cl), δ 50.1 (Ci), δ 50.5 (Ce), δ 52.9 (Cd), δ 53.3 (Ch), δ 172.8 and 173.1 (CONH); TOF-MS m / z 2066.0 (M +). 1.9. Synthesis of DL-G3.5
DL-G3 (1.004 g, 0.486 mmol) was dissolved in methanol (40 ml, 0.986 mol). This solution was gradually added to distilled methyl acrylate (35 ml, 0.39 mol) and stirred at 25 ° C. for 50 hours. Thereafter, methanol and unreacted methyl acrylate were distilled off under reduced pressure, purified twice with a Sephadex LH-20 column (eluent methanol), and further purified with silica gel (developing solvent dichloromethane: methanol = 8: 2). (Yield 1.141 g, 68.2%.)
1H NMR (400 MHz, CDCl3): Δ 0.88 (m, Ha), δ 1.23 (s, Hb), δ 2.37 (br, Hj), δ 2.44 (br, Hd), δ 2.54 (br, Hh) ), Δ 2.76 (br, Hi), δ 3.27 (br, Hg), δ 3.67 (s, OCH3), δ 7.13, 7.71 and 8.10 (br, CONH);ThirteenC NMR (400 MHz, CDCl3): Δ 14.1 (Ca), δ 22.7, 29.4, 29.7 and 31.9 (Cb, Cc), δ 32.7 (Cf), 33.8 (Cj), δ 37. 2 and 37.5 (Cg), δ 49.3 and 49.9 (Ci), δ 50.6 (Ce), δ 51.7 (OCH3), δ 52.5 (Cd), δ 53.0 (Ch), δ 172.4 (COOCH3), δ 172.6 and 173.1 (CONH).
1.10. Synthesis of DL-G4
DL-G3.5 (1.141 g, 0.331 mmol) was dissolved in methanol (18.5 ml, 0.456 mol). This solution was slowly added to distilled ethylenediamine (37 ml, 0.554 mol) containing sodium cyanide (0.0065 g, 0.133 mmol) and stirred at 45 ° C. for 55 hours in a nitrogen atmosphere. Thereafter, methanol and unreacted ethylenediamine were distilled off under reduced pressure, and purified twice using a Sephadex LH-20 column (eluent: methanol). (Yield 0.699 g, 54.2%.)
1H NMR (400 MHz, DMSO-d6): δ 0.85 (m, Ha), δ 1.26 (s, Hb), δ 1.37 (m, Hc), δ 2.20 (br, Hj), δ 2.30 (br, Hd), δ 2.57 (br, Hh), δ 2.65 (br, Hi), δ 3.07 (br, Hk), δ 7.91, 7.98 and 8.16 (br, CON)H);ThirteenC NMR (400 MHz, DMSO-d6): δ 14.0 (Ca), δ 22.2, 27.0, 29.1 and 31.4 (Cb, Cc), δ 33.3 (Cf, Cj), δ 37.0 (Cg) , Δ 41.7 (Ck, Cl), δ 49.7 (Ci), δ 52.2 (Ch), δ 171.6 (CONH).
2. Measurement
2.1. Evaluation of complex formation ability by electrophoresis
The solvent was distilled off under reduced pressure from a chloroform solution (methanol solution for DLG4) of the dendron lipid (DL-G1, DLG2, DLG-3, DLG4) to obtain a lipid thin film. PBS (phosphate buffered saline) was added thereto, and ultrasonic waves were irradiated for 2 minutes using a bath-type ultrasonic irradiation device to prepare a lipid dispersion. Next, the prepared dendron lipid dispersion was added to a 20 mM Tris-HCl plasmid DNA solution (1 μg / 5 μl) at an N / P ratio of 0.2, 0.4, 0.6, 0.7, 0.8, 1. 0, 1.2, 1.4, and 1.6 were added and mixed (total volume: 10 μl), and incubated at room temperature for 10 minutes to prepare a lipoplex. The prepared lipoplex was added to a 0.6 wt% agarose gel, and subjected to electrophoresis in a 40 mM Tris / 20 mM NaOAc / 2 mM EDTA-2Na buffer at a potential of 100 V for 30 minutes. The electrophoresis was performed using a Mupid mini gel electrophoresis tank (ADVANCE Co.) (FIG. 1).
2.2. Preparation of lipoplex
2.2.1 Lipoplex of Dendron Lipid and Plasmid DNA
A solvent was removed from a chloroform solution (a methanol solution for DL-G4) of the cationic lipids (DL-G1, DL-G2, DL-G3, and DL-G4) using a rotary evaporator to form a lipid thin film. . PBS was added thereto, and ultrasonic waves were irradiated for 2 minutes using a bath-type ultrasonic irradiation device to prepare a lipid dispersion. Next, a 20 mM Tris-HCl plasmid DNA solution (1 μg / 50 μl) and various concentrations of lipid dispersions (50 μl) were added and mixed, followed by incubation at room temperature for 10 minutes to obtain a lipoplex (FIG. 2).
2.2.2. Lipoplex consisting of DL-G3, DOPE, plasmid
To a mixed thin film composed of DL-G3 (41.7 μg) and various amounts of DOPE, 0.5 ml of PBS was added, and ultrasonic waves were irradiated for 2 minutes using a bath-type ultrasonic irradiation device to prepare a mixed lipid dispersion. did. The mixed lipid dispersion was mixed with a 20 mM Tris-HCl plasmid DNA solution (1 μg / 50 μl) at various N / P (primary amino group of DL-G3 / phosphate ester of DNA, mol / mol), and the mixture was stirred at room temperature. A lipoplex was prepared by incubation for 10 minutes (FIGS. 3 and 4).
2.2.3. Lipoplex consisting of DC-chol, DOPE, plasmid
2.5 ml of PBS was added to a mixed thin film of the cationic lipid DC-Chol (3β [N, N-dimethylaminoethanecarbamoyl] cholesterol) (161.3 μg) and DOPE (240 μg), and a bath-type ultrasonic irradiation device was used. Ultrasonic waves were irradiated for 2 minutes to prepare a mixed lipid dispersion. The mixed lipid dispersion was added to a 20 mM Tris-HCl plasmid DNA solution (1 μg / 50 μl) so that the N / P ratio became 2, and the mixture was incubated at room temperature for 10 minutes to prepare a lipoplex (FIG. 4).
2.3. Gene transfer
African green monkey kidney-derived CV-1 cells were prepared at 5.0 × 10 4 per well of a 24-well dish.4The cells were cultivated overnight at 37 ° C. in 0.5 ml of DMEM medium containing 10% FBS. Then, 0.36 mM CaCl2And 0.42 mM MgCl2After washing three times with PBS containing PBS (PBS (+)), 1 ml of serum-free DMEM medium was added, lipoplex containing a predetermined amount of plasmid DNA per well was added to the cells, and the cells were incubated for 4 hours. Thereafter, the cells were washed three times with PBS (+) to remove lipoplexes not taken up by cells, and 1 ml of 10% FBS-containing DMEM medium was added, followed by culturing for 40 hours (FIGS. 2, 3 and 4).
[0032]
As shown in FIG. 1 to FIG. 4, it was revealed that the gene transfer agent of the present invention expresses higher gene transfer efficiency as the dendron increases from DL-G2 to DL-G4. In particular, DL-G4 has high gene transfer efficiency.
2.4. Evaluation of gene transfer by luciferase assay
After treating with lipoplex and culturing for 40 hours, the cells were washed three times with PBS (+) and further once with PBS (-), and thereafter, cells were lysed by adding 80 μl of cell lysing agent per well, and 12000 rpm. For 2 minutes, and the supernatant was recovered. The luciferase activity and protein amount of the obtained cell lysate were measured using a Pica Gene luciferase assay kit (Toyo Ink) and BCA Protein Assay Reagent (Pierce).
2.5. Lipoplex cytotoxicity
After culturing the cells treated with the lipoplex for 40 hours, the medium was removed, and 200 μl of fresh DMEM medium containing 10% FBS was added per well. Further, an MTT solution (5 mg / ml PBS) was added in an amount of 20 μl per well and incubated for 2 hours. Next, the medium was removed, and isopropanol (500 μl) containing 0.1 M HCl was added. The solution was collected in a centrifuge tube, and centrifuged at 15000 rpm for 10 seconds. The number of viable cells was determined by measuring the absorbance of the supernatant at 570 nm, and the ratio (%) to that obtained by culturing lipoplex and untreated cells was determined (FIG. 4).
[0033]
As shown in FIG. 4, the dendron (DL-G3) of the present invention has improved gene transfer activity (FIGS. 4A and 4B) and has a lower gene transfer activity than DC-chol, which is conventionally widely used. The cell viability was significantly higher at 65% or more in the amount (DNA amount of 1 to 2 μg) (FIG. 4C), and was a very excellent gene transfer agent that achieved high gene transfer activity and low toxicity at the same time. It was revealed.
[Brief description of the drawings]
FIG. 1 shows complex formation of dendron lipid and DNA. In FIG. 1, “A” indicates a DL-G1 lipoplex, “B” indicates a DL-G2 lipoplex, “C” indicates a DL-G3 lipoplex, and “D” indicates a DL-G4 lipoplex.
FIG. 2 shows the effect of the number of generations on gene transfer activity. FIG. 2 shows luciferase activity (g luciferase / mg protein (A) and g luciferase / well (B)) of CV1 cells treated with DL-G2, DL-G3 or DL-G4 lipoplex having various N / P ratios. ). Cells (5 × 104) Were treated with lipoplex containing 1 μg DNA in medium without serum. N and P indicate the primary amino group of the lipid and the equivalent of DNA phosphate, respectively.
FIG. 3 shows the effect of the number of generations on gene transfer activity. FIG. 3A shows luciferase activity of CV1 cells treated with lipoplex with varying DOPE / DL-G3 ratio, and FIG. 3B shows luciferase of CV1 cells treated with lipoplex with varying N / P ratio. Show activity.
FIG. 4 shows a comparison with DC-chol lipoplex. FIG. 4 shows luciferase activity ((A): g luciferase / mg protein, (B): g luciferase / well) and cells of CV1 cells treated with DL-G3 / DOPE lipoplex or DC-chol / DOPE lipoplex. The viability (C) is shown.

Claims (5)

下記式DL−G1〜DL−G8のいずれかで表される化合物を含む遺伝子導入剤組成物。
DL−G1:RNX(XH
DL−G2:RNX(X(XH
DL−G3:RNX(X(X(XH
DL−G4:RNX(X(X(X(XH
DL−G5:RNX(X(X(X(X(XH
DL−G6:RNX(X(X(X(X(X(XH
DL−G7:RNX(X(X(X(X(X(X(XH
DL−G8:RNX(X(X(X(X(X(X(X(XH
(式中R及びRは、同一または異なってアルキル基、アルコキシ基、アリール基またはアラルキル基を示す。Xは、−CHCHCONHCHCHN−を示す。)
A gene transfer composition comprising a compound represented by any of the following formulas DL-G1 to DL-G8.
DL-G1: R 1 R 2 NX (XH 2 ) 2
DL-G2: R 1 R 2 NX (X (XH 2 ) 2 ) 2
DL-G3: R 1 R 2 NX (X (X (XH 2 ) 2 ) 2 ) 2
DL-G4: R 1 R 2 NX (X (X (X (XH 2) 2) 2) 2) 2
DL-G5: R 1 R 2 NX (X (X (X (X (XH 2) 2) 2) 2) 2) 2
DL-G6: R 1 R 2 NX (X (X (X (X (X (XH 2) 2) 2) 2) 2) 2) 2
DL-G7: R 1 R 2 NX (X (X (X (X (X (X (XH 2) 2) 2) 2) 2) 2) 2) 2
DL-G8: R 1 R 2 NX (X (X (X (X (X (X (X (XH 2) 2) 2) 2) 2) 2) 2) 2) 2
(In the formula, R 1 and R 2 are the same or different and represent an alkyl group, an alkoxy group, an aryl group, or an aralkyl group. X represents —CH 2 CH 2 CONHCH 2 CH 2 N—.)
さらにリン脂質を含む請求項1に記載の遺伝子導入剤組成物。The gene transfer agent composition according to claim 1, further comprising a phospholipid. リン脂質がDOPEである請求項2に記載の組成物。3. The composition according to claim 2, wherein the phospholipid is DOPE. 請求項1〜3のいずれかに記載の遺伝子導入剤または遺伝子導入剤組成物を遺伝子とともにイン・ビトロまたはイン・ビボで細胞に適用することを特徴とする遺伝子の細胞への導入方法。A method for introducing a gene into a cell, comprising applying the gene introduction agent or the gene introduction agent composition according to any one of claims 1 to 3 to a cell together with the gene in vitro or in vivo. 請求項1〜3のいずれか1項に記載の組成物を含有する遺伝子導入用キット。A gene introduction kit comprising the composition according to claim 1.
JP2002325633A 2002-11-08 2002-11-08 Gene transfer agent composition comprising polyamidoamine dendron Expired - Lifetime JP4305615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002325633A JP4305615B2 (en) 2002-11-08 2002-11-08 Gene transfer agent composition comprising polyamidoamine dendron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002325633A JP4305615B2 (en) 2002-11-08 2002-11-08 Gene transfer agent composition comprising polyamidoamine dendron

Publications (2)

Publication Number Publication Date
JP2004159504A true JP2004159504A (en) 2004-06-10
JP4305615B2 JP4305615B2 (en) 2009-07-29

Family

ID=32804795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002325633A Expired - Lifetime JP4305615B2 (en) 2002-11-08 2002-11-08 Gene transfer agent composition comprising polyamidoamine dendron

Country Status (1)

Country Link
JP (1) JP4305615B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006312689A (en) * 2005-05-09 2006-11-16 Osaka Prefecture Univ Polymeric compound
JP2007137805A (en) * 2005-11-16 2007-06-07 Osaka Prefecture Univ Transport medium composition for gene or the like comprising polyamidoamine dendron lipid
WO2008139855A1 (en) * 2007-05-08 2008-11-20 Osaka Prefecture University Public Corporation Polyamidoamine dendron-bearing lipid containing lower acyl group
JP2009269855A (en) * 2008-05-07 2009-11-19 Osaka Prefecture Univ Polyamide amine dendron lipid containing paramagnetic metal
WO2010128669A1 (en) 2009-05-07 2010-11-11 公立大学法人大阪府立大学 Gene transfer agent composition containing polyamidoamine dendron
JP2013135623A (en) * 2011-12-28 2013-07-11 National Cerebral & Cardiovascular Center Nucleic acid transfer agent, method for transferring nucleic acid and cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006312689A (en) * 2005-05-09 2006-11-16 Osaka Prefecture Univ Polymeric compound
JP2007137805A (en) * 2005-11-16 2007-06-07 Osaka Prefecture Univ Transport medium composition for gene or the like comprising polyamidoamine dendron lipid
WO2008139855A1 (en) * 2007-05-08 2008-11-20 Osaka Prefecture University Public Corporation Polyamidoamine dendron-bearing lipid containing lower acyl group
JP2008303210A (en) * 2007-05-08 2008-12-18 Osaka Prefecture Univ Polyamideamine dendron-bearing lipid containing lower acyl group
JP2009269855A (en) * 2008-05-07 2009-11-19 Osaka Prefecture Univ Polyamide amine dendron lipid containing paramagnetic metal
WO2010128669A1 (en) 2009-05-07 2010-11-11 公立大学法人大阪府立大学 Gene transfer agent composition containing polyamidoamine dendron
US8557875B2 (en) 2009-05-07 2013-10-15 Public University Corporation Osaka Prefecture University Gene transfer agent composition containing polyamidoamine dendron
JP5653348B2 (en) * 2009-05-07 2015-01-14 公立大学法人大阪府立大学 Gene transfer agent composition comprising polyamidoamine dendron
JP2013135623A (en) * 2011-12-28 2013-07-11 National Cerebral & Cardiovascular Center Nucleic acid transfer agent, method for transferring nucleic acid and cell

Also Published As

Publication number Publication date
JP4305615B2 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
KR20210093871A (en) Ionizable amine lipids
JP5796113B2 (en) Lipids and lipid aggregates containing transfection enhancer elements
WO1999005303A1 (en) Preparation of lipid-nucleic acid particles using a solvent extraction and direct hydration method
JP2004511572A (en) Lipid formulations for targeted delivery
EP2211840B1 (en) Amphoteric liposomes comprising neutral lipids
WO2012024233A2 (en) Zwitterionic lipids
JP5850915B2 (en) Vectors, transduction agents and uses for pulmonary delivery
US20100330154A1 (en) amphoteric liposomes comprising neutral lipids
WO2023236976A1 (en) Lipid compound and preparation method therefor, and use thereof
US20080145413A1 (en) Lipids and lipid assemblies comprising transfection enhancer elements
CA3203294A1 (en) Nanomaterials comprising carbonates
EP1938843A1 (en) Lipids and lipid assemblies comrising transfection enhancer elements
JP2004159504A (en) Gene transfer agent composition comprising polyamidoamine dendron
JP6605477B2 (en) Cationic lipids for nucleic acid delivery
JP5931212B2 (en) Weakly acidic pH-responsive peptide and liposome containing the peptide
JP5325576B2 (en) Composition for introduction of nucleic acid
JPH09173067A (en) Transfection of cell
KR20010081924A (en) Transfecting compositions sensitive to reducing conditions, pharmaceutical compositions containing them, and their applications
US20140178462A1 (en) Amphoteric liposomes comprising neutral lipids
JP4962931B2 (en) Gene transportation medium composition containing polyamidoamine dendron lipid
US20090233366A1 (en) Composition for introduction of nucleic acid
AU2014240370B2 (en) Amphoteric liposomes comprising neutral lipids
WO2024031051A1 (en) Lipids for nucleic acid delivery
WO2023121964A1 (en) Nanomaterials comprising disulfides
CN118059061A (en) Preparation method and application of lipid nanoparticle for efficiently delivering nucleic acid drug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051101

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051101

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090421

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4305615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term