JP2004159305A - Multilayered band pass filter - Google Patents

Multilayered band pass filter Download PDF

Info

Publication number
JP2004159305A
JP2004159305A JP2003316266A JP2003316266A JP2004159305A JP 2004159305 A JP2004159305 A JP 2004159305A JP 2003316266 A JP2003316266 A JP 2003316266A JP 2003316266 A JP2003316266 A JP 2003316266A JP 2004159305 A JP2004159305 A JP 2004159305A
Authority
JP
Japan
Prior art keywords
electrode pattern
resonator
magnetic field
field coupling
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003316266A
Other languages
Japanese (ja)
Other versions
JP4242738B2 (en
Inventor
Kouji Shigesawa
功士 繁澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Corp
Original Assignee
Koa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Corp filed Critical Koa Corp
Priority to JP2003316266A priority Critical patent/JP4242738B2/en
Publication of JP2004159305A publication Critical patent/JP2004159305A/en
Application granted granted Critical
Publication of JP4242738B2 publication Critical patent/JP4242738B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact ceramic multilayered band pass filter capable of easily changing a frequency at an attenuation pole and reducing a height of the filter. <P>SOLUTION: In the multilayered band pass filter having two strip line resonator electrodes with short circuit ends on one side and open ends on the other side arranged in a filter or a module substrate formed by stacking a plurality of dielectric sheets or insulating sheets with conductor electrodes formed thereon, a U-shaped magnetic field coupling electrode pattern is arranged on a layer other than that for the resonator electrodes in a such a way that the U-shaped magnetic field coupling electrodes pattern faces the two strip line resonators, and both ends of the U-shaped magnetic field coupling electrodes pattern are short-circuited in a direction which is the same as a direction to which the resonator electrodes are short-circuited. <P>COPYRIGHT: (C)2004,JPO

Description

本発明は減衰極を有する高周波用積層型帯域通過フィルタに係り、特に、セラミックチップ内部またはセラミック基板内部に内部電極としてフィルタ特性を有する共振器電極パターンと入出力回路に接続する入出力電極パターンとを設けるとともに低背化(薄型化)に適した構造を有する帯域通過フィルタに関する。   The present invention relates to a high-frequency multilayer bandpass filter having an attenuation pole, and in particular, a resonator electrode pattern having a filter characteristic as an internal electrode inside a ceramic chip or a ceramic substrate and an input / output electrode pattern connected to an input / output circuit. And a band-pass filter having a structure suitable for reduction in height (thickness).

近年、例えば携帯電話や無線LANなどの無線機器に使用されている部品は、小型化、高性能化、高機能化の進展が著しい。この動向に伴い、これらの無線機器に採用される帯域通過フィルタに対しても、小型化と低背化(薄型化)と高性能化への要求が強く、セラミック積層型の高周波帯域通過フィルタについても小型化と同時に低背化の要求が強くなっている。また、低温焼成のセラミック基板(LTCC基板)にフィルタを内層化し、小型化した高周波モジュールが製品化されているが、この場合もモジュール自体の低背化が要求されている。   2. Description of the Related Art In recent years, components used in wireless devices such as mobile phones and wireless LANs have been significantly reduced in size, performance, and functionality. With this trend, there is a strong demand for band-pass filters used in these wireless devices to be small, low-profile (thin) and high-performance. In addition, there is a strong demand for a reduction in height as well as a reduction in size. In addition, a high-frequency module has been commercialized in which a filter is formed as an inner layer on a ceramic substrate (LTCC substrate) fired at a low temperature, and the size of the module itself is also required to be reduced.

これらのセラミック積層型帯域通過フィルタの先行技術としては、例えば下記の特許文献に開示されたものが知られている。
特許第3208967号公報 特許第3191560号公報 特開平7−312503号公報 特開平8−316101号公報
As prior arts of these ceramic laminated bandpass filters, for example, those disclosed in the following patent documents are known.
Japanese Patent No. 3208967 Japanese Patent No. 3191560 JP-A-7-313503 JP-A-8-316101

しかしながら、従来のセラミック積層型帯域通過フィルタは、図10および図11に示す構造の場合、上下のシールド層間の距離を短くして低背化しようとすると、共振器電極パターン間の磁界結合が弱くなり、通過帯域付近の減衰極を通過帯域周波数に近づけ、通過帯域付近での減衰を大きくすることが困難になるという問題がある。   However, in the case of the conventional ceramic laminated bandpass filter having the structure shown in FIGS. 10 and 11, when the distance between the upper and lower shield layers is reduced to reduce the height, the magnetic field coupling between the resonator electrode patterns is weakened. Therefore, there is a problem that it is difficult to make the attenuation pole near the pass band close to the pass band frequency and increase the attenuation near the pass band.

本発明は上述した事情に鑑みて為されたもので、減衰極の周波数を容易に変えることができ、良好な帯域通過特性が得られるとともに、低背化(薄型化)が可能な構造を有する小型セラミック積層型帯域通過フィルタを提供することを目的とする。   The present invention has been made in view of the above circumstances, and has a structure that can easily change the frequency of an attenuation pole, obtain good bandpass characteristics, and can be reduced in height (thinned). It is an object of the present invention to provide a small ceramic laminated bandpass filter.

本発明の積層型帯域通過フィルタは、導体電極が形成された複数の誘電体シートまたは絶縁体シートを積層して形成されたフィルタまたはモジュール基板内に、片側が短絡端、他方は開放端となっている2個のストリップ線路型共振器電極が配置された積層型帯域通過フィルタにおいて、コの字型磁界結合電極パターンを前記2個のストリップ線路型共振器に対向するように、該共振器電極が形成されている層とは別層に配置し、前記コの字型磁界結合電極パターンの両端は前記共振器電極が短絡された方向と同一方向で短絡されていることを特徴とする。   The laminated bandpass filter of the present invention has a short-circuited end on one side and an open-ended end on a filter or module substrate formed by laminating a plurality of dielectric sheets or insulator sheets on which conductor electrodes are formed. In the laminated band-pass filter in which the two strip line resonator electrodes are arranged, the U-shaped magnetic field coupling electrode pattern is arranged so as to face the two strip line resonators. Are formed on a layer different from the layer on which the resonator electrodes are formed, and both ends of the U-shaped magnetic field coupling electrode pattern are short-circuited in the same direction as the direction in which the resonator electrode is short-circuited.

これにより、磁界結合電極パターンと共振器電極パターンとの間の距離、即ち、磁界結合電極パターンと共振器電極パターンとの間の絶縁層の厚さを任意に調整することができ、両パターン間の磁界結合の強さを任意に調整することができる。従って、容易に両パターン間の磁界結合を強めることができ、低背化しても十分な磁界結合の強さが得られ、減衰極を通過帯域付近に近づけ、通過帯域付近の減衰量を大きくした設計が可能となる。即ち、上下のシールド層間を1mm以下に低背化しても、良好な減衰特性・帯域通過特性を有するセラミック積層型帯域通過フィルタが得られる。   Thereby, the distance between the magnetic field coupling electrode pattern and the resonator electrode pattern, that is, the thickness of the insulating layer between the magnetic field coupling electrode pattern and the resonator electrode pattern can be arbitrarily adjusted. Can be arbitrarily adjusted. Therefore, the magnetic field coupling between both patterns can be easily strengthened, sufficient magnetic field coupling strength can be obtained even if the height is reduced, the attenuation pole is brought closer to the pass band, and the attenuation near the pass band is increased. Design becomes possible. That is, even if the height between the upper and lower shield layers is reduced to 1 mm or less, a ceramic laminated bandpass filter having good attenuation characteristics and bandpass characteristics can be obtained.

ここで、前記共振器電極パターンの開放端側がコの字状に折り返した帯状パターンであり、帯状パターンの短絡端側が前記接地電極に接続されている。共振器電極パターンは、小型化・低背化に適したストリップライン型が好ましく、共振器電極パターンの長さは共振周波数で決定されるが、帯状の共振器電極パターンをコの字状に折り返すことにより共振器の占める面積を狭小にでき、フィルタの小型化が実現される。   Here, the open end side of the resonator electrode pattern is a band-shaped pattern folded in a U-shape, and the short-circuited end side of the band-shaped pattern is connected to the ground electrode. The resonator electrode pattern is preferably a strip line type suitable for miniaturization and reduction in height. The length of the resonator electrode pattern is determined by the resonance frequency, but the band-shaped resonator electrode pattern is folded in a U-shape. As a result, the area occupied by the resonator can be reduced, and the size of the filter can be reduced.

また、前記共振器電極パターンの開放端側が前記共振器電極パターンの短絡端側に対して幅広のSIR(stepped Impedance Resonator)とし、共振器電極パターンをこの構造にすることにより共振器電極パターンの長さを1/4波長以下に短縮でき、フィルタの小型化が達成される。   Further, the open end side of the resonator electrode pattern is a wider stepped impedance resonator (SIR) than the short-circuit end side of the resonator electrode pattern, and the length of the resonator electrode pattern is increased by adopting this structure. The length can be reduced to 1 / wavelength or less, and the size of the filter can be reduced.

また、前記共振器電極パターンと入出力電極パターンとが別層に配置され、容量結合により結合するようにしてもよい。また、このセラミック積層型帯域通過フィルタは、単品のチップ部品としてもよく、高周波モジュール基板に内層する電極パターンとしても用いることができる。   Further, the resonator electrode pattern and the input / output electrode pattern may be arranged in different layers and coupled by capacitive coupling. Further, this ceramic laminated band-pass filter may be used as a single chip component, or may be used as an electrode pattern for an inner layer on a high-frequency module substrate.

本発明によれば、良好なフィルタ特性が得られると共に、低背化した構造を有する小型セラミック積層型帯域通過フィルタが提供される。   ADVANTAGE OF THE INVENTION According to this invention, while favorable filter characteristics are obtained, the small ceramic laminated band-pass filter which has a low profile structure is provided.

以下、本発明の実施形態について添付図面を参照しながら説明する。なお、各図中、同一の機能を有する電極または誘電体シートには同一の符号を付して、その重複した説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In each of the drawings, the same reference numerals are given to electrodes or dielectric sheets having the same function, and redundant description is omitted.

図1は、本発明の一実施形態のセラミック積層型帯域通過フィルタの外観図である。図2は、本発明の第1実施例であるセラミック積層型帯域通過フィルタの各グリーンシートに配置された内部電極パターン例を示す分解斜視図であり、図3はその要部の電極パターンを示す平面図であり、図4はその積層状態を示す断面図である。   FIG. 1 is an external view of a ceramic multilayer bandpass filter according to one embodiment of the present invention. FIG. 2 is an exploded perspective view showing an example of an internal electrode pattern arranged on each green sheet of the ceramic multilayer band-pass filter according to the first embodiment of the present invention, and FIG. 3 shows an electrode pattern of a main part thereof. FIG. 4 is a plan view, and FIG. 4 is a cross-sectional view showing the stacked state.

これらの図に示すように、複数のグリーンシートS1,S2,S3,S4,S5…を積み重ねて、圧着した後にチップ状に切断して、焼成することで、セラミックチップ5が得られる。ここで、セラミックグリーンシートがセラミック層の焼結体となり、印刷により形成された内部電極ペーストパターンが金属の内部電極層となる。次に、焼結した直方体状のセラミックチップ5の外側面等に、印刷法、またはスパッタリングなどにより下地電極を形成して、その上にNiめっきおよびSnめっき等を行い、これにより、入出力電極1,2と接地電極3,4を形成する。   As shown in these figures, a plurality of green sheets S1, S2, S3, S4, S5,... Are stacked, pressed, cut into chips, and fired, whereby ceramic chips 5 are obtained. Here, the ceramic green sheet becomes a sintered body of the ceramic layer, and the internal electrode paste pattern formed by printing becomes a metal internal electrode layer. Next, on the outer surface of the sintered rectangular parallelepiped ceramic chip 5 or the like, a base electrode is formed by a printing method, sputtering, or the like, and Ni plating and Sn plating are performed thereon. 1 and 2 and ground electrodes 3 and 4 are formed.

図2および図3に示すように、グリーンシートS1,S3,S5,S7,S9は、内部電極パターンが形成されないブランク層である。グリーンシートS2,S8には、例えば、H形状のシールド電極パターンP21,P81が銀系(例えば銀、銀−パラジウム等)のペーストでスクリーン印刷により形成され、焼結後にはシールド層となる。但し、該シールド電極パターンP21やP81の形状は、グリーンシートS4の共振器電極パターンP41,P42を覆うような構造であれば、形状に限定されることはない。シールド電極パターンP21,P81はグリーンシートS2,S8の端部まで延伸して、チップ5の外側面に設けられた接地電極3,4に電気的に接続される。なお、図示はしないが内部電極パターンが形成された各グリーンシート間の間隔(厚み)は、その調整のために、内部電極が形成されていないブランク層のグリーンシートを所要枚数だけ積層して、その厚みを調整することができる。   As shown in FIGS. 2 and 3, the green sheets S1, S3, S5, S7, and S9 are blank layers on which no internal electrode pattern is formed. On the green sheets S2 and S8, for example, H-shaped shield electrode patterns P21 and P81 are formed by screen printing with a silver-based (for example, silver, silver-palladium, etc.) paste, and become a shield layer after sintering. However, the shape of the shield electrode patterns P21 and P81 is not limited to a shape as long as it covers the resonator electrode patterns P41 and P42 of the green sheet S4. The shield electrode patterns P21 and P81 extend to the ends of the green sheets S2 and S8, and are electrically connected to the ground electrodes 3 and 4 provided on the outer surface of the chip 5. Although not shown, the interval (thickness) between the green sheets on which the internal electrode patterns are formed is adjusted by adjusting the required number of blank green sheets on which no internal electrodes are formed. Its thickness can be adjusted.

グリーンシートS4に一対の共振器電極パターンP41,P42がその開放端D,Eを向かい合うように並列に配置され、前記共振器電極パターンの他方側(短絡端)C,Fが接地電極3に接続されている。即ち、共振器電極パターンP41,P42は、その開放端D,E側がコの字状に折り返した帯状パターンであり、帯状パターンの短絡端C,Fが接地電極3に接続された片側短絡ストリップ線路共振器となり、通過域周波数で約4分の1波長(λ)の長さに調整されている。また、この2個の共振器は開放端側D,Eが向かい合うように配置されているので、通過帯域での結合は磁界結合よりも電界結合の方が強くなっている。そして、共振器電極パターンP41,P42に、入出力電極パターンP41a,P42aの一端が接続され、その他端が入出力電極1,2にそれぞれ接続されている。   A pair of resonator electrode patterns P41 and P42 are arranged in parallel on the green sheet S4 so as to face their open ends D and E, and the other sides (short-circuit ends) C and F of the resonator electrode patterns are connected to the ground electrode 3. Have been. That is, each of the resonator electrode patterns P41 and P42 is a band-shaped pattern whose open ends D and E are folded in a U-shape, and the short-circuited ends C and F of the band-shaped pattern are connected to the ground electrode 3 on one side of the strip line. It becomes a resonator and is adjusted to have a length of about a quarter wavelength (λ) at the pass band frequency. Further, since these two resonators are arranged so that the open ends D and E face each other, the coupling in the pass band is stronger in the electric field coupling than in the magnetic field coupling. One ends of the input / output electrode patterns P41a and P42a are connected to the resonator electrode patterns P41 and P42, and the other ends are connected to the input / output electrodes 1 and 2, respectively.

グリーンシートS6には、コの字型形状の帯状磁界結合電極パターンP61が配置されている。磁界結合電極パターンP61は、グリーンシートS4の一対の共振器電極パターンP41,P42の中央部に対面するように別層のグリーンシートS6上に、平行に配置される。コの字型形状の磁界結合電極パターンP61の両端は、チップの端部まで延伸して接地電極3に電気的に接続される。この磁界結合電極パターンP61の寸法aとパターン幅w、および共振器電極パターンとの間隔tを変えることにより(図3,4参照)、一対の共振器電極パターンP41,P42との磁界結合の結合度を変えることが出来る。
また、入出力電極パターンP41a,P42aと共振器電極パターンP41,P42、(または少なくとも共振器電極パターンP41,P42)は、縦断面(図4参照)において、上下の各シールドパターンP21,P81間の距離のほぼ中間に位置するように、グリーンシートS3,S5,S7の厚みを調整もしくは設定することが望ましい。
On the green sheet S6, a U-shaped band-shaped magnetic field coupling electrode pattern P61 is arranged. The magnetic field coupling electrode pattern P61 is arranged in parallel on another layer of the green sheet S6 so as to face the center of the pair of resonator electrode patterns P41 and P42 of the green sheet S4. Both ends of the U-shaped magnetic field coupling electrode pattern P61 extend to the end of the chip and are electrically connected to the ground electrode 3. By changing the dimension a and the pattern width w of the magnetic field coupling electrode pattern P61 and the interval t between the resonator electrode patterns (see FIGS. 3 and 4), the magnetic field coupling between the pair of resonator electrode patterns P41 and P42 is achieved. You can change the degree.
Further, the input / output electrode patterns P41a and P42a and the resonator electrode patterns P41 and P42 (or at least the resonator electrode patterns P41 and P42) are located between the upper and lower shield patterns P21 and P81 in the vertical cross section (see FIG. 4). It is desirable to adjust or set the thickness of the green sheets S3, S5, S7 so as to be located at approximately the middle of the distance.

図4に示すように、共振器電極パターンP41,P42と磁界結合電極パターンP61との間隔tにより、これらのパターン間の磁界結合の結合度が大きく影響される。この間隔tの調整は、グリーンシートS4とS6の間に挿入するグリーンシートS5の枚数、或いは厚みを変えることにより行うことができる。具体的には、間隔tを小さくすると、共振器電極パターンと磁界結合電極パターンの磁界結合が大きくなり、結果として一対の共振器電極間の磁界結合が大きくなり、減衰極周波数が上昇する。これに反して、間隔tを大きくすれば、結果として一対の共振器電極間の磁界結合が小さくなり、減衰極周波数を下げることが出来る。   As shown in FIG. 4, the coupling degree of the magnetic field coupling between the resonator electrode patterns P41, P42 and the magnetic field coupling electrode pattern P61 is greatly affected by the distance t between these patterns. The adjustment of the interval t can be performed by changing the number or thickness of the green sheets S5 inserted between the green sheets S4 and S6. Specifically, when the interval t is reduced, the magnetic field coupling between the resonator electrode pattern and the magnetic field coupling electrode pattern increases, and as a result, the magnetic field coupling between the pair of resonator electrodes increases, and the attenuation pole frequency increases. On the contrary, if the interval t is increased, the magnetic field coupling between the pair of resonator electrodes is reduced, and the attenuation pole frequency can be reduced.

セラミック積層型帯域通過フィルタを低背化すると、シールド電極パターンP21,P61間距離が小さくなり、共振器電極パターンP41とP42の短絡部分の磁界結合が弱くなる。これにより、2個の共振器電極の開放端側間で生じている容量結合と短絡端側間で生じている磁界結合による減衰極の共振周波数を制御するのが困難となる。しかしながら、この実施形態の場合、低背化しても共振器電極パターンP41,P42とは別層に設けた磁界結合電極パターンP61と共振器電極パターンP41,P42の距離tを小さくすることにより、容易に磁界結合を強くすることが出来るので、減衰極周波数を通過帯域に近づけ通過帯域近傍の減衰を大きくすることが出来る。このため、磁界結合電極パターンP61の存在により低背化しても磁界結合と静電結合による通過帯域の低域側に生じる減衰極を通過帯域に近づけることが容易である。従って、通過帯域の低域側に急峻な減衰特性を有する良好な帯域通過特性を有する帯域通過型フィルタを実現できる。   When the height of the ceramic laminated band-pass filter is reduced, the distance between the shield electrode patterns P21 and P61 is reduced, and the magnetic field coupling at the short-circuited portion between the resonator electrode patterns P41 and P42 is weakened. This makes it difficult to control the resonance frequency of the attenuation pole due to capacitive coupling occurring between the open ends of the two resonator electrodes and magnetic field coupling occurring between the short ends. However, in the case of this embodiment, even if the height is reduced, the distance t between the magnetic field coupling electrode pattern P61 and the resonator electrode patterns P41, P42 provided on a different layer from the resonator electrode patterns P41, P42 can be easily reduced. Therefore, the attenuation pole frequency can be made closer to the pass band, and the attenuation near the pass band can be increased. For this reason, even if the height is reduced by the presence of the magnetic field coupling electrode pattern P61, it is easy to make the attenuation pole generated on the lower side of the pass band due to the magnetic field coupling and the electrostatic coupling close to the pass band. Therefore, it is possible to realize a band-pass filter having a good band-pass characteristic having a steep attenuation characteristic on the lower side of the pass band.

図5は、本発明の第2実施例である積層型帯域通過フィルタの各グリーンシートに配置された内部電極パターン例を示す。入出力電極パターンを共振器電極パターンの形成された層と別の層に形成した実施例である。即ち、グリーンシートS54上に入出力電極パターンP541,P542を形成して、入出力電極パターンP541,P542の一対の開放端がグリーンシートS55上に形成される一対のコの字型共振器電極パターンP551,P552の開放端に対面して配置され、両者は容量結合する。   FIG. 5 shows an example of an internal electrode pattern arranged on each green sheet of the multilayer bandpass filter according to the second embodiment of the present invention. This is an embodiment in which the input / output electrode pattern is formed on a layer different from the layer on which the resonator electrode pattern is formed. That is, the input / output electrode patterns P541 and P542 are formed on the green sheet S54, and the pair of open ends of the input / output electrode patterns P541 and P542 are formed on the green sheet S55. P551 and P552 are arranged so as to face open ends, and both are capacitively coupled.

その他の点は、第2実施例と第1実施例とは同じである。即ち、グリーンシートS55上の一対のコの字型共振器電極パターンP551,P552はその一対の開放端が対向するように並列に配置して形成される。グリーンシートS57上にコの字状の磁界結合電極パターンP571をグリーンシートS55の一対の共振器電極パターンP551,P552の中央部と対向するように配置して形成する。この磁界結合電極パターンP571の両端はグリーンシートS57の端部まで延伸して接地電極3に電気的に接続される。ここで、共振器電極パターンP551,P552は、縦断面視において、上下の各シールド電極パターンP521とP591との間の距離のほぼ中間に位置するように、グリーンシートS53,S56,S58の厚みを調整もしくは設定し、配設することが望ましい。このため、低背化しても共振器電極間の磁界結合と容量結合による通過帯域の低域側に生じる減衰極を通過帯域に近づけることが容易であり、通過帯域の低域側に急峻な減衰特性を有する良好な帯域通過特性を有する帯域通過型フィルタを実現できる点も同様である。   The other points are the same as the second embodiment and the first embodiment. That is, a pair of U-shaped resonator electrode patterns P551 and P552 on the green sheet S55 are formed in parallel so that the pair of open ends face each other. A U-shaped magnetic field coupling electrode pattern P571 is formed on the green sheet S57 so as to face the center of the pair of resonator electrode patterns P551 and P552 of the green sheet S55. Both ends of the magnetic field coupling electrode pattern P571 extend to the ends of the green sheet S57 and are electrically connected to the ground electrode 3. Here, the thickness of the green sheets S53, S56, and S58 is set such that the resonator electrode patterns P551 and P552 are located at approximately the middle of the distance between the upper and lower shield electrode patterns P521 and P591 in a longitudinal sectional view. It is desirable to adjust or set and arrange. For this reason, even when the height is reduced, it is easy to bring the attenuation pole generated on the lower side of the pass band due to the magnetic field coupling and the capacitive coupling between the resonator electrodes closer to the pass band, and the steep attenuation on the lower side of the pass band. Similarly, a band-pass filter having good band-pass characteristics having characteristics can be realized.

図6は、本発明の第3実施例であるセラミック積層型帯域通過フィルタの各グリーンシートに配置された内部電極パターン例を示す分解斜視図である。本発明の第3実施例は、SIR(Stepped Impedance Resonator)型共振器を用いた帯域通過フィルタであり、図7(a)はその要部の電極パターンを示す平面図であり、図7(b)はその積層状態を示す断面図である。   FIG. 6 is an exploded perspective view showing an example of internal electrode patterns arranged on each green sheet of the ceramic multilayer bandpass filter according to the third embodiment of the present invention. The third embodiment of the present invention is a bandpass filter using an SIR (Stepped Impedance Resonator) type resonator, and FIG. 7A is a plan view showing an electrode pattern of a main part thereof, and FIG. () Is a cross-sectional view showing the state of lamination.

グリーンシートS61,S63,S65,S67,S69は、内部電極パターンが形成されないブランク層である。グリーンシートS62,S68には、シールド電極パターンP621,P681が銀系または銅系の厚膜ペーストのスクリーン印刷で形成され、シールド層となる。グリーンシートS64上に入出力電極パターンP641a,P642aと共振器電極パターンP641,P642が形成される。共振器電極パターンP641,P642は、幅狭で特性インピーダンスが高い第1伝送路パターンP641b,P642bと第1伝送路パターンより幅広で特性インピーダンスが低い第2伝送路パターンP641c,P642cをそれぞれ縦続接続したものである。その全線路長は積層型帯域通過フィルタの中心周波数の付近で共振するように調整されており、その一端の短絡端I、Lはチップ側端面に露出して接地電極3に接続されている。他端J,Kは幅広の開放端となり、この開放端J,Kが向かい合うように配置されて一対の共振器電極パターンが形成されている。そして、コの字状の帯状磁界結合電極パターンP661がそれぞれの前記共振器電極パターンP641,P642の中央部と対面するように別層であるグリーンシートS66上に配置されている。   The green sheets S61, S63, S65, S67, and S69 are blank layers on which no internal electrode pattern is formed. On the green sheets S62 and S68, the shield electrode patterns P621 and P681 are formed by screen printing of a silver-based or copper-based thick film paste to be a shield layer. Input / output electrode patterns P641a and P642a and resonator electrode patterns P641 and P642 are formed on the green sheet S64. The resonator electrode patterns P641 and P642 are formed by cascading first transmission line patterns P641b and P642b which are narrow and have high characteristic impedance and second transmission line patterns P641c and P642c which are wider and have lower characteristic impedance than the first transmission line pattern. Things. The total line length is adjusted so as to resonate near the center frequency of the multilayer bandpass filter, and short-circuit ends I and L at one end thereof are exposed to the chip-side end face and connected to the ground electrode 3. The other ends J and K are wide open ends, and the open ends J and K are arranged so as to face each other to form a pair of resonator electrode patterns. The U-shaped band-shaped magnetic field coupling electrode pattern P661 is disposed on the green sheet S66, which is a separate layer, so as to face the center of each of the resonator electrode patterns P641 and P642.

図8(a)は、本発明の第1乃至第3実施例であるセラミック積層型帯域通過フィルタの等価回路を示す。Cpは、共振器電極パターンが有する分布容量を集中定数の容量で表したものであり、Lpは、共振器電極パターンが有する分布インダクタンスを集中定数のインダクタンスで表したものである。共振器電極は、その長さが通過帯域の中心周波数付近で共振するように調整されていて、CpとLpとでその共振回路を構成している。また、Cmは一対の共振器電極の開放端側が向かい合うことによる電界結合によって生じる等価容量を示し、Mは共振器電極と磁界結合電極との間の磁界結合を集中定数のインダクタンスで表したものである。磁界結合によるMと、電界結合によるCmとで、通過帯域外に減衰極が生じ、その減衰極の周波数は、MとCmにより決定される。ここで、入出力電極は、等価インダクタンスLpの中間より取り出されている。ただし、第2の実施例の場合は、入出力は容量結合である。   FIG. 8A shows an equivalent circuit of the ceramic multilayer band-pass filter according to the first to third embodiments of the present invention. Cp represents the distributed capacitance of the resonator electrode pattern as a lumped-constant capacitance, and Lp represents the distributed inductance of the resonator electrode pattern as a lumped-constant inductance. The resonator electrode is adjusted so that its length resonates near the center frequency of the passband, and Cp and Lp constitute a resonance circuit. Cm represents an equivalent capacitance generated by electric field coupling caused by the open ends of the pair of resonator electrodes facing each other, and M represents magnetic field coupling between the resonator electrode and the magnetic field coupling electrode by a lumped constant inductance. is there. An attenuation pole is generated outside the pass band by M due to magnetic field coupling and Cm due to electric field coupling, and the frequency of the attenuation pole is determined by M and Cm. Here, the input / output electrodes are taken out from the middle of the equivalent inductance Lp. However, in the case of the second embodiment, input and output are capacitively coupled.

図8(b)は、図10,11に示す従来例のセラミック積層型帯域通過フィルタの等価回路を示す。Cpは、共振器電極パターンが有する分布容量を集中定数の容量で表したものであり、Lpは、共振器電極パターンが有する分布インダクタンスを集中定数のインダクタンスで表したものである。共振器電極は、その長さが通過帯域の中心周波数付近で共振するように調整されていて、CpとLpとでその共振回路を構成している。また、Cmは一対の共振器電極の開放端側が向かい合うことによる電界結合によって生じる等価容量を示し、Mは一対の共振器電極間の磁界結合を集中定数のインダクタンスで表したものである。磁界結合によるMと、電界結合によるCmとで、通過帯域外に減衰極が生じ、その減衰極の周波数は、MとCmにより決定される。   FIG. 8B shows an equivalent circuit of the conventional ceramic multilayer band-pass filter shown in FIGS. Cp represents the distributed capacitance of the resonator electrode pattern as a lumped-constant capacitance, and Lp represents the distributed inductance of the resonator electrode pattern as a lumped-constant inductance. The resonator electrode is adjusted so that its length resonates near the center frequency of the passband, and Cp and Lp constitute a resonance circuit. Further, Cm indicates an equivalent capacitance generated by electric field coupling when the open ends of the pair of resonator electrodes face each other, and M indicates magnetic field coupling between the pair of resonator electrodes by a lumped constant inductance. An attenuation pole is generated outside the pass band by M due to magnetic field coupling and Cm due to electric field coupling, and the frequency of the attenuation pole is determined by M and Cm.

この帯域通過フィルタでは、通過帯域付近の周波数において共振器電極パターンの開放端J,Kで生じている容量結合が短絡側I,Lで生じている磁界結合より強くなるように共振器電極パターンを配置している。これにより、通過帯域での結合は容量性となり、通過帯域の低域側に磁気結合と容量結合による減衰極が形成される。二つの共振器電極パターンの結合度は開放端間距離d32と短絡端間距離d31により決定される(図7参照)。距離d32を狭くすると容量結合が強くなり、距離d31を狭くすると磁界結合Mが強くなる。結合度はこの容量結合度と磁界結合度の差によりほぼ決まる。また、フィルタの入出力インピーダンス整合は共振器電極パターンからの入出力引き出し電極の位置b3によりほぼ決定される。また、磁界結合Mと静電結合Cmにより通過帯域外に減衰極を生じ、その減衰極の周波数はこの磁界結合Mと静電結合Cmによる関係式によりほぼ決定される。   In this band-pass filter, the resonator electrode pattern is formed such that the capacitive coupling generated at the open ends J and K of the resonator electrode pattern is stronger than the magnetic field coupling generated at the short-circuit sides I and L at a frequency near the pass band. Are placed. As a result, the coupling in the pass band becomes capacitive, and an attenuation pole due to magnetic coupling and capacitive coupling is formed on the lower side of the pass band. The degree of coupling between the two resonator electrode patterns is determined by the distance d32 between the open ends and the distance d31 between the short-circuit ends (see FIG. 7). When the distance d32 is reduced, the capacitive coupling becomes stronger, and when the distance d31 is reduced, the magnetic field coupling M becomes stronger. The degree of coupling is substantially determined by the difference between the degree of capacitive coupling and the degree of magnetic field coupling. The input / output impedance matching of the filter is substantially determined by the position b3 of the input / output lead electrode from the resonator electrode pattern. Further, an attenuation pole is generated outside the pass band by the magnetic field coupling M and the electrostatic coupling Cm, and the frequency of the attenuation pole is substantially determined by a relational expression based on the magnetic field coupling M and the electrostatic coupling Cm.

上述したように、通過帯域の結合が容量性の場合は通過帯域より低域側に減衰極が形成され、磁界結合と静電結合の強さを調整することにより、減衰極周波数を調整し、通過帯域近傍の減衰量を大きくし、優れた減衰特性を得る事が出来る。通過帯域近傍の減衰量を大きくするために、減衰極を通過帯域付近に近づけるには磁界結合を大きくする必要があるので、従来技術においては図11における共振器電極間距離fを小さくしなければならない。しかしながら、低背化するために上下のシールド電極間距離を短くすると、磁界が著しく弱くなり、距離fをかなり小さくする必要があり製造プロセスの限界により制限されてしまう。   As described above, when the coupling of the pass band is capacitive, an attenuation pole is formed on the lower side than the pass band, and the attenuation pole frequency is adjusted by adjusting the strength of the magnetic field coupling and the electrostatic coupling, It is possible to increase the amount of attenuation near the pass band and obtain excellent attenuation characteristics. In order to increase the attenuation in the vicinity of the pass band, it is necessary to increase the magnetic field coupling to bring the attenuation pole close to the vicinity of the pass band. Therefore, in the prior art, the distance f between the resonator electrodes in FIG. No. However, if the distance between the upper and lower shield electrodes is shortened to reduce the height, the magnetic field becomes extremely weak, and the distance f needs to be considerably reduced, which is limited by the limitations of the manufacturing process.

本発明では、共振器電極パターンと別層に磁界結合電極が追加され、グリーンシートS66上に磁界結合電極パターンP661が形成されている。この磁界結合電極パターンはコの字型をしており、図6に示す様に2つの共振器電極パターンP641,P642の中央部と対向する位置に形成されている。また、磁界結合電極パターンP661の両端はチップ端部に露出しており接地電極3に接続されている。図7に示すように、この磁界結合電極パターンP661の線幅w3の方が共振器電極パターンP641,P642の幅に対して狭くなっているが、これは積層ズレによるフィルタ特性の変化を抑える為である。   In the present invention, a magnetic field coupling electrode is added on a layer different from the resonator electrode pattern, and a magnetic field coupling electrode pattern P661 is formed on the green sheet S66. This magnetic field coupling electrode pattern has a U-shape and is formed at a position facing the center of the two resonator electrode patterns P641 and P642 as shown in FIG. Further, both ends of the magnetic field coupling electrode pattern P661 are exposed at the chip end and are connected to the ground electrode 3. As shown in FIG. 7, the line width w3 of the magnetic field coupling electrode pattern P661 is narrower than the width of the resonator electrode patterns P641 and P642. It is.

図6の帯域通過フィルタでは通過帯域付近の周波数において共振器電極の開放端側で生じている静電結合が短絡側で生じている磁界結合より強くなるように共振器電極パターンを配置している。これにより、通過帯域での結合は容量性となっており、通過帯域より低域側に磁気結合Mと容量(電界)結合Cmによる減衰極が形成される。   In the band-pass filter of FIG. 6, the resonator electrode pattern is arranged such that the electrostatic coupling generated on the open end side of the resonator electrode is stronger than the magnetic field coupling generated on the short-circuit side at a frequency near the pass band. . Thereby, the coupling in the pass band is capacitive, and an attenuation pole due to the magnetic coupling M and the capacitance (electric field) coupling Cm is formed on the lower side of the pass band.

次に、本発明の帯域通過フィルタにおける磁界結合Mおよび電界結合Cmの調整方法について説明する。電界結合Cmの調整は、従来の帯域通過フィルタと同様に共振器電極パターンの開放端間距離d32(図7)を変更することにより行う。距離d32を小さくすれば電界結合が強くなり、逆に大きくすれば弱くなる。さらに電界結合を強くする場合には図示してないが、共振器電極パターンの開放端部電極面に対面するように容量結合電極パターンを別層に設けても良い。   Next, a method for adjusting the magnetic field coupling M and the electric field coupling Cm in the bandpass filter of the present invention will be described. The electric field coupling Cm is adjusted by changing the distance d32 between the open ends of the resonator electrode pattern (FIG. 7), similarly to the conventional bandpass filter. If the distance d32 is reduced, the electric field coupling becomes stronger, and if it is increased, the electric field coupling becomes weaker. Although not shown, when further increasing the electric field coupling, a capacitive coupling electrode pattern may be provided on another layer so as to face the open end electrode surface of the resonator electrode pattern.

磁界結合Mの調整は、磁界結合電極パターンP661と共振器電極パターンP641,P642の層間距離t3(図7(b))を変更することにより行う。t3を小さくすれば磁界結合が強くなり、大きくすれば弱くなる。この磁界結合Mの調整が従来の帯域通過フィルタと大きく異なる箇所であり、本発明の帯域通過フィルタの特徴とするところである。即ち、磁界結合電極パターンを共振器電極パターンと別層に設け、この層間距離t3を調整するようにしたものである。この構成であれば、低背によりシールド電極間距離が短くなったとしても、t3を調整することにより磁界結合を強くすることが可能となるので、磁界結合Mと静電結合Cmで生じている低域側減衰極を通過帯域付近に近づけることが容易となり、低背化しても低域側減衰特性が優れた帯域通過フィルタを設計することが出来る。   The adjustment of the magnetic field coupling M is performed by changing the interlayer distance t3 (FIG. 7B) between the magnetic field coupling electrode pattern P661 and the resonator electrode patterns P641 and P642. When t3 is reduced, the magnetic field coupling is increased, and when t3 is increased, it is reduced. The adjustment of the magnetic field coupling M is significantly different from that of the conventional bandpass filter, and is a feature of the bandpass filter of the present invention. That is, the magnetic field coupling electrode pattern is provided on a different layer from the resonator electrode pattern, and the interlayer distance t3 is adjusted. With this configuration, even if the distance between the shield electrodes is shortened due to the low profile, it is possible to strengthen the magnetic field coupling by adjusting t3, so that the magnetic field coupling M and the electrostatic coupling Cm occur. It becomes easy to bring the low-frequency side attenuation pole close to the vicinity of the pass band, and it is possible to design a band-pass filter having excellent low-frequency side attenuation characteristics even when the height is reduced.

図9(a)に本発明の帯域通過フィルタと従来の帯域通過フィルタの特性比較を示す。両帯域通過フィルタの高さ、およびシールド電極間距離は同じである。同図より判るとおり、本発明の帯域通過フィルタでは減衰極が通過帯域付近に近づいており、通過帯域近傍の減衰特性が優れている。更に、低背化しようとすると従来型はさらに減衰極が通過帯域から離れてしまい通過帯域付近での減衰量を大きくすることは困難であるが、本発明の帯域通過フィルタであれば、層間距離t3を調整すれば容易に減衰極周波数を通過帯域に近づけることが可能である。   FIG. 9A shows a comparison of characteristics between the band-pass filter of the present invention and a conventional band-pass filter. The height of both bandpass filters and the distance between the shield electrodes are the same. As can be seen from the figure, in the band-pass filter of the present invention, the attenuation pole approaches the vicinity of the pass band, and the attenuation characteristics near the pass band are excellent. Further, in order to reduce the height, in the conventional type, the attenuation pole is further away from the pass band, and it is difficult to increase the amount of attenuation near the pass band. Adjusting t3 makes it possible to easily bring the attenuation pole frequency closer to the pass band.

本発明の第1実施例の積層型帯域通過フィルタに関して、グリーンシートS5として、3種の厚さの異なるグリーンシート(t=270μm、320μm、420μm)を使用して、層間距離tを変えて共振器電極パターンP41,P42と磁界結合電極パターンP61との磁界結合Mの結合度を変えた時の電磁界シミュレーションによる伝送特性を図9(b)に示す。この結果によれば、層間距離tが減少すると減衰極周波数が通過帯域の周波数に近づき、通過帯域近傍の周波数特性が改善されていることが判る。   Regarding the multilayer bandpass filter of the first embodiment of the present invention, three types of green sheets (t = 270 μm, 320 μm, 420 μm) having different thicknesses are used as the green sheet S5, and resonance is performed by changing the interlayer distance t. FIG. 9B shows transmission characteristics by electromagnetic field simulation when the coupling degree of the magnetic field coupling M between the device electrode patterns P41 and P42 and the magnetic field coupling electrode pattern P61 is changed. According to this result, it can be seen that when the interlayer distance t decreases, the attenuation pole frequency approaches the frequency of the pass band, and the frequency characteristics near the pass band are improved.

なお、上記のようなセラミック積層型帯域通過フィルタの3つの実施例を示したが、本発明は上記実施例に限定するものでなく、例えば、低温焼成セラミック基板に積層型フィルタを内層化した高周波モジュールにも適用できる。このように、本発明の趣旨を逸脱することなく、種々の変形実施例が可能なことは勿論である。   Although three embodiments of the above-described ceramic multilayer band-pass filter have been described, the present invention is not limited to the above-described embodiments. Applicable to modules. As described above, it goes without saying that various modifications can be made without departing from the spirit of the present invention.

セラミック積層型帯域通過フィルタの外観図である。It is an outline view of a ceramic lamination type bandpass filter. 本発明の第1実施例であるセラミック積層型帯域通過フィルタの各グリーンシートに配置された内部電極パターン例を示す分解斜視図である。FIG. 3 is an exploded perspective view showing an example of internal electrode patterns arranged on each green sheet of the ceramic multilayer bandpass filter according to the first embodiment of the present invention. 本発明の第1実施例であるセラミック積層型帯域通過フィルタの共振器電極パターンと入出力電極パターンに対して磁界結合電極パターンの相対位置を示す平面図である。FIG. 2 is a plan view showing a relative position of a magnetic field coupling electrode pattern with respect to a resonator electrode pattern and an input / output electrode pattern of the ceramic multilayer bandpass filter according to the first embodiment of the present invention. 本発明の第1実施例であるセラミック積層型帯域通過フィルタの図3に示すA−A線による断面図である。FIG. 4 is a cross-sectional view taken along line AA shown in FIG. 3 of the multilayer ceramic bandpass filter according to the first embodiment of the present invention. 本発明の第2実施例であるセラミック積層型帯域通過フィルタの各グリーンシートに配置された内部電極パターン例を示す分解斜視図である。It is an exploded perspective view showing an example of an internal electrode pattern arranged in each green sheet of a ceramic lamination type bandpass filter which is a 2nd example of the present invention. 本発明の第3実施例であるセラミック積層型帯域通過フィルタの各グリーンシートに配置された内部電極パターン例を示す分解斜視図である。It is an exploded perspective view showing an example of an internal electrode pattern arranged in each green sheet of a ceramic lamination type bandpass filter which is a 3rd example of the present invention. 本発明の第3実施例であるセラミック積層型帯域通過フィルタの共振器電極パターンと入出力電極パターンに対して磁界結合電極パターンの相対位置を示す(a)平面図と(b)図7(a)に示すH−H線による断面図である。FIG. 7A is a plan view showing a relative position of a magnetic field coupling electrode pattern with respect to a resonator electrode pattern and an input / output electrode pattern of a ceramic multilayer bandpass filter according to a third embodiment of the present invention. FIG. 2 is a sectional view taken along line HH shown in FIG. 本発明の(a)第1実施例と(b)従来例のセラミック積層型帯域通過フィルタの等価回路図である。It is an equivalent circuit diagram of (a) 1st Example of this invention, and (b) the ceramic laminated bandpass filter of the prior art example. 本発明の第1実施例と従来例のセラミック積層型帯域通過フィルタの伝送特性図であり、(a)は第1実施例の伝送特性(点線)と従来例の伝送特性(実線)であり、(b)は、本発明の第1実施例に関してグリーンシート厚を変えた時の伝送特性を示す。It is a transmission characteristic diagram of the ceramic laminated bandpass filter of the first embodiment of the present invention and the conventional example, (a) is the transmission characteristic of the first embodiment (dotted line) and the transmission characteristic of the conventional example (solid line), (B) shows the transmission characteristics when the green sheet thickness is changed according to the first embodiment of the present invention. 従来例の各グリーンシートに配置された内部電極パターン例を示す分解斜視図である。It is an exploded perspective view showing an example of an internal electrode pattern arranged in each green sheet of a conventional example. 従来例の共振器電極パターンと入出力電極パターンを示す平面図である。It is a top view which shows the resonator electrode pattern and input / output electrode pattern of the conventional example.

符号の説明Explanation of reference numerals

1,2 入出力電極
3,4 接地電極
5 セラミックチップ
S1〜S9,S51〜S60,S61〜S69 グリーンシート
S101〜S107 グリーンシート
P21,P81,P521,P591,P621,P681 シールドパターン
P1021,P1061 シールドパターン
P41,P42,P551,P552 共振器電極パターン
P641,P642,P1041,P1042 共振器電極パターン
P41a,P42a,P541,P542 入出力電極パターン
P641a,P642a,P1041a,P1042a 入出力電極パターン
P61,P571,P661 磁界結合電極パターン
1, 2 I / O electrodes 3, 4 Ground electrode 5 Ceramic chips S1-S9, S51-S60, S61-S69 Green sheets S101-S107 Green sheets P21, P81, P521, P591, P621, P681 Shield pattern P1021, P1061 Shield pattern P41, P42, P551, P552 Resonator electrode patterns P641, P642, P1041, P1042 Resonator electrode patterns P41a, P42a, P541, P542 Input / output electrode patterns P641a, P642a, P1041a, P1042a Input / output electrode patterns P61, P571, P661 Magnetic field Coupling electrode pattern

Claims (6)

導体電極が形成された複数の誘電体シートまたは絶縁体シートを積層して形成されたフィルタまたはモジュール基板内に、片側が短絡端、他方は開放端となっている2個のストリップ線路型共振器電極が配置された積層型帯域通過フィルタにおいて、
コの字型磁界結合電極パターンを前記2個のストリップ線路型共振器に対向するように、該共振器電極が形成されている層とは別層に配置し、前記コの字型磁界結合電極パターンの両端は前記共振器電極が短絡された方向と同一方向で短絡されていることを特徴とする積層型帯域通過フィルタ。
In a filter or module substrate formed by laminating a plurality of dielectric sheets or insulator sheets on which conductor electrodes are formed, two strip line resonators each having a short-circuited end on one side and an open end on the other. In a multilayer bandpass filter in which electrodes are arranged,
The U-shaped magnetic field coupling electrode is disposed on a layer different from the layer on which the resonator electrodes are formed so that the U-shaped magnetic field coupling electrode pattern faces the two strip line resonators. The both ends of the pattern are short-circuited in the same direction as the direction in which the resonator electrode is short-circuited.
前記ストリップ線路型共振器電極の上下シールド電極間距離が1mm以下の低背であることを特徴とする請求項1記載の積層型帯域通過フィルタ。   2. The multilayer bandpass filter according to claim 1, wherein the distance between the upper and lower shield electrodes of the stripline type resonator electrode is as low as 1 mm or less. 前記帯域通過フィルタにおいて、前記共振器電極パターンがコの字型であり、前記コの字型共振器電極パターンの開放端側が向かい合うように配置されたことを特徴とする請求項1記載の積層型帯域通過フィルタ。   2. The multilayer filter according to claim 1, wherein in the band-pass filter, the resonator electrode pattern has a U shape, and the open end sides of the U shape resonator electrode pattern face each other. 3. Bandpass filter. 前記帯域通過フィルタにおいて、前記共振器電極パターンの開放端側が、前記共振器電極パターンの短絡端側に対して幅広のSIR(stepped Impedance Resonator)となっていることを特徴とする請求項1記載の積層型帯域通過フィルタ。   2. The bandpass filter according to claim 1, wherein the open end side of the resonator electrode pattern is a wide SIR (stepped Impedance Resonator) with respect to the short-circuit end side of the resonator electrode pattern. 3. Stacked bandpass filter. 入出力電極パターンが前記共振器電極パターンの途中より取り出されていることを特徴とする請求項1、3、または4記載の積層型帯域通過フィルタ。   5. The multilayer bandpass filter according to claim 1, wherein an input / output electrode pattern is taken out of the resonator electrode pattern. 入出力電極パターンが前記共振器電極とは別層に、前記共振器電極パターンの一部と対向するように形成され、容量結合により取り出されていることを特徴とする請求項1、3、または4記載の積層型帯域通過フィルタ。   The input / output electrode pattern is formed on a layer different from the resonator electrode so as to face a part of the resonator electrode pattern, and is taken out by capacitive coupling. 5. The multilayer bandpass filter according to item 4.
JP2003316266A 2002-10-18 2003-09-09 Multilayer bandpass filter Expired - Fee Related JP4242738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003316266A JP4242738B2 (en) 2002-10-18 2003-09-09 Multilayer bandpass filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002304460 2002-10-18
JP2003316266A JP4242738B2 (en) 2002-10-18 2003-09-09 Multilayer bandpass filter

Publications (2)

Publication Number Publication Date
JP2004159305A true JP2004159305A (en) 2004-06-03
JP4242738B2 JP4242738B2 (en) 2009-03-25

Family

ID=32827991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003316266A Expired - Fee Related JP4242738B2 (en) 2002-10-18 2003-09-09 Multilayer bandpass filter

Country Status (1)

Country Link
JP (1) JP4242738B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100609434B1 (en) 2004-12-30 2006-08-03 한국항공우주연구원 Transversal Filter
US7369018B2 (en) * 2004-08-19 2008-05-06 Matsushita Electric Industrial Co., Ltd. Dielectric filter
JP2009200988A (en) * 2008-02-25 2009-09-03 Kyocera Corp Filter device
US9041493B2 (en) 2010-10-14 2015-05-26 Samsung Electro-Mechanics Co., Ltd. Coupling structure for multi-layered chip filter, and multi-layered chip filter with the structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7369018B2 (en) * 2004-08-19 2008-05-06 Matsushita Electric Industrial Co., Ltd. Dielectric filter
KR100609434B1 (en) 2004-12-30 2006-08-03 한국항공우주연구원 Transversal Filter
JP2009200988A (en) * 2008-02-25 2009-09-03 Kyocera Corp Filter device
US9041493B2 (en) 2010-10-14 2015-05-26 Samsung Electro-Mechanics Co., Ltd. Coupling structure for multi-layered chip filter, and multi-layered chip filter with the structure

Also Published As

Publication number Publication date
JP4242738B2 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
JP4356803B2 (en) Multilayer bandpass filter
JP2002057543A (en) Laminated lc component
JP3115149B2 (en) Multilayer dielectric filter
US6529101B2 (en) Multilayered LC filter
JPH07193403A (en) Resonator
JP4303693B2 (en) Multilayer electronic components
JP2004180032A (en) Dielectric filter
JP4354943B2 (en) Multilayer dielectric resonator and bandpass filter
JP2005159512A (en) Multilayer band-pass filter
KR100461719B1 (en) Dielectric laminated filter
JP5601334B2 (en) Electronic components
JP4242738B2 (en) Multilayer bandpass filter
JP4986882B2 (en) Filter device
JP4051307B2 (en) Multilayer bandpass filter
JP4051252B2 (en) Noise filter
JP2830638B2 (en) Resonator
JP2730323B2 (en) Bandpass filter
JP4640218B2 (en) Multilayer dielectric resonator and bandpass filter
JPH09214273A (en) Multilayered high frequency low pass filter
JP4490611B2 (en) Band pass filter
JP2000196392A (en) Noise filter
JP2730321B2 (en) Bandpass filter
JP3860800B2 (en) Trap device with built-in trap circuit
JP2003069358A (en) Layered filter
JPH07122904A (en) Band-pass filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees