【0001】
【発明の属する技術分野】
本発明は、高分子電解質型燃料電池、特にその電極ならび製造方法に関する。
【0002】
【従来の技術】
高分子電解質を用いた燃料電池は、水素を含有する燃料ガスと、空気など酸素を含有する燃料ガスとを電気化学的に反応させることで、電力と熱とを同時に発生させるものである。この燃料電池は、基本的には、水素イオンを選択的に輸送する高分子電解質膜、およびその両面に配置された一対の電極からなる。電極は、白金族金属触媒を担持したカーボン粉末に水素イオン伝導性高分子電解質を混合した触媒層、この触媒層の外面に形成された、通気性と電子伝導性を併せ持つ、例えば撥水処理を施したカーボンペーパーからなるガス拡散層から構成される。
供給される燃料ガスおよび酸化剤ガスが外部に漏れたり、これら2種類のガスが互いに混合したりしないように、電極の周囲には高分子電解質膜を挟んでガスシール材やガスケットが配置される。このシール材やガスケットは、電極及び高分子電解質膜と一体化し、これをMEA(電解質膜電極接合体)と呼ぶ。MEAの外側には、これを機械的に固定するとともに、隣接したMEAを互いに電気的に直列に接続するための導電性セパレータ板が配置される。セパレータ板のMEAと接触する部分には、電極に反応ガスを供給し、生成ガスや余剰ガスを運び去るためのガス流路が形成される。ガス流路はセパレータ板と別に設けることもできるが、セパレータ板の表面に溝を設けてガス流路とする方式が一般的である。
【0003】
高分子電解質型燃料電池の電極のガス拡散層は、撥水処理を施したカーボン不織布などの多孔質カーボン層で構成されるのが一般的である。また、触媒層または高分子電解質膜の保湿を目的として、触媒層とガス拡散層との界面に撥水カーボン層を設けることもある。撥水カーボン層は、次のようにして作製される。まず、カーボン粒子と、界面活性剤を含んだポリフルオロテトラエチレンの微粒子のディスパージョンを混合し、これを乾燥あるいはろ過などの手法によりカーボン粒子とポリフルオロテトラエチレン微粒子の混合体を得る。次に、これに水または有機溶媒を加えてインク化する。このインクを、ガス拡散層であるカーボン不織布などの片面に、スクリーン印刷法やスプレー塗工法、ドクターブレード法、ロールコーター法などで塗工し、300℃から400℃程度の温度で焼成することによって界面活性剤を焼散する。こうして撥水カーボン層が形成される。この撥水カーボン層は、電極の触媒層と隣接するように配置される。
【0004】
触媒層は、白金などの触媒金属微粒子を導電性カーボンに担持した触媒と、水素イオン伝導性高分子電解質からなる。触媒担体の導電性カーボンには、触媒金属を凝集させないで、微細かつ均一に担持させるために、導電性を消失しない範囲で、比較的に高比表面積のアセチレンブラック、カーボンブラックなどが用いられてきた。カーボン担体には、触媒金属を担持する前に、あらかじめ水蒸気を含む不活性ガス雰囲気で処理した高比表面積のカーボン担体を利用することもある。
【0005】
白金などの金属微粒子を導電性カーボンに担持する方法としては、例えば、前記金属微粒子の前駆体として、塩化白金酸、ビスアセチルアセトナート白金、ジニトロアミノ白金などを、導電性カーボンを懸濁させた溶液の中に溶解させる。この懸濁液にアルカリを加えて中和することによって、Pt(OH)4が導電性カーボンに担持される。このように調製した懸濁液を濾過、水洗を繰り返し、不純物の除去を行う。この後、得られた粉末を、水素ガスなどの還元雰囲気中で加熱処理し、白金微粒子がカーボン担持された触媒粉末を得る。この白金を担持したカーボン粉末に水素イオン伝導性高分子電解質を混合し、その混合物を高分子電解質膜などに薄く塗布することで触媒層を形成する。
【0006】
一方、触媒層に用いる水素イオン伝導性高分子電解質としては、パーフルオロカーボンスルホン酸が一般的に使用されている。触媒層の形成方法は、白金などの触媒を担持したカーボン粉末と、エタノールなどのアルコール系溶媒に高分子電解質を溶解ないし分散させた溶液ないし分散液とを混合し、これにエチレングリコール、イソプロピルアルコール、ブチルアルコールなどの比較的高沸点の有機溶媒を添加することでインク化し、このインクをスクリーン印刷法やスプレー塗工法、ドクターブレード法、ロールコーター法などを用いて高分子電解質膜などに塗布する。前記インクには、ポリテトラフルオロエチレンの微粉末やこれらが分散または溶解した液を添加する場合もある。それは、電極反応で生成した水分や供給ガスに含まれる水分を反応場付近に保持すると同時に、過剰となった水分を排出することを目的にしている。
【0007】
【発明が解決しようとする課題】
燃料電池を実用化するためには、更なる発電効率の向上と経時変化を少なくすること、すなわち寿命特性の向上が重要である。そのために、微細な触媒金属の凝集を抑制するとともに、触媒層中に過剰となった水を排水し、ガス拡散性を良好にする必要がある。しかしながら、高比表面積のアセチレンブラック、カーボンブラックなどのカーボン担体と触媒金属の結合が十分でないために、担持した触媒金属が凝集し、触媒活性が低下するという問題がある。一方、ガス拡散性に関しては、触媒層にポリテトラフルオロエチレンを添加するなどの工夫を行っても、経時的にガス拡散性が低下するという問題がある。これらの理由によって、実用化に向けた十分な発電特性を得ることができない。
【0008】
【課題を解決するための手段】
本発明の高分子電解質型燃料電池は、水素イオン伝導性高分子電解質膜、前記水素イオン伝導性高分子電解質膜の両面に配置した一対の電極、前記電極の一方に燃料ガスを供給・排出し、他方の電極に酸化剤ガスを供給・排出するガス流路を有する一対の導電性セパレータを具備した高分子電解質型燃料電池であって、前記電極の触媒層が、触媒金属を担持した中空繊維状カーボンおよび水素イオン伝導性高分子電解質からなることを特徴とする。
前記中空繊維状カーボンは、その内径が前記水素イオン伝導性高分子電解質の凝集粒子の大きさよりも十分に小さいことが好ましい。
前記中空繊維状カーボンは、その内径が100nm以下で、繊維長が100μm以下であることが好ましい。
【0009】
本発明は、触媒白金を担持した中空繊維状カーボン粉末が流動する乾燥雰囲気中に、水素イオン伝導性高分子電解質の溶液ないし分散液を噴霧して前記カーボン粉末に前記電解質を付着させる工程を有する高分子電解質型燃料電池用電極の製造方法を提供する。
【0010】
【発明の実施の形態】
本発明は、前記のように、触媒層に用いる触媒担体のカーボンに中空繊維状カーボン、代表的にはカーボンナノチューブを用いる。カーボンナノチューブは結晶性が高いので、これに担持されている微細な触媒金属は移動しにくく、従って触媒金属の凝集を抑制する。また、カーボンの中空部が触媒層中で過剰となった水を排水する。これらにより経時的な特性の劣化を抑制することが可能になる。さらに、好ましくは、触媒層に用いる水素イオン伝導性高分子電解質は、中空繊維状カーボンの表面にのみ形成する。カーボンの中空部に水素イオン伝導性高分子電解質が存在する場合は、電解質が含水して膨潤するために、ガスの拡散性が阻害される。水素イオン伝導性高分子電解質を中空繊維状カーボンの表面にのみ形成すれば、そのような不都合は生じない。
このように本発明によれば、発電効率の向上と優れた寿命特性を有する高分子電解質型燃料電池を提供することができる。
【0011】
【実施例】
以下、本発明の実施例を説明する。
《実施例1》
中空繊維状カーボンとして、中空孔の孔径が5nm、繊維長が200nmの単層カーボンナノチューブを用いた。このカーボンナノチューブに、平均粒径約20Åの白金粒子を50重量%担持した。これをカソードの触媒担持粒子とした。前記と同じカーボンナノチューブに、平均粒径約30Åの白金粒子とルテニウム粒子をそれぞれ25重量%担持した。これをアノードの触媒担持粒子とした。
次に、図1に示す装置を用い、これらの触媒担持粒子の表面に水素イオン伝導性高分子電解質を被覆した。ここで、水素イオン伝導性高分子は10重量%濃度のパーフルオロカーボンスルホン酸(デュポン社製SE10072)の水分散液を用いた。
【0012】
図1は、触媒層を構成するための電極粒子の製造に用いるスプレードライ式装置の概念図である。容器1は、下部の円筒状容器、上部の径が大きくなるようにテーパーを付された筒部、および上部の円筒状容器が相互に連結されて構成されている。容器1の下部には、ヒータ付きのガス導入管4が設けてあり、ここから容器内を乾燥雰囲気とするために一定温度に制御された窒素ガスが導入される。容器1の下部には、塵埃の進入を阻止する金属フィルタ5が設けてある。金属フィルタ5の上方には、多数の通気孔を有する造粒プレート6、および造粒プレート上に固定された、中央に衝突ターゲット8を有する攪拌羽根7が回転可能に設けてある。これらの上方の容器壁面には、衝突ターゲット8に向けて圧縮ガスを噴射する一対の圧縮ガス噴射ノズル9が設けられている。容器1の中程には、高圧スプレー3が設けてある。高圧スプレー3は、容器2内の電解質の溶液ないし分散液を容器内へ噴霧する。容器1の上方には、バグフィルタ10が設けられている。バグフィルタ10内にはポンプ11から供給される圧縮ガスを噴出させるためのパイプ12が挿入されている。適宜ポンプ11からパイプ12を通じてバグフィルタ10内へ圧縮ガスを噴射することにより、バグフィルタの外面に付着した粉末などを払い落とす。容器の上部にはガス排出管13を有する。
【0013】
この装置により電極粒子を製造するには、まず、容器1内の造粒プレート6上に触媒担持粒子を入れ、高圧スプレー3から水素イオン伝導性高分子電解質の溶液ないし分散液を噴霧する。容器1内の触媒担持粒子は、ガス導入管4から供給される一定温度の窒素ガスにより容器の上方へ吹き上げられる。ガス導入管4から導入された窒素ガスは、ガスの流れ方向を示した矢印a、bにしたがって、金属フィルタ5および造粒プレート6から容器内上方へ吹き上がる。造粒プレート6は、流動風量が外周に向かって大きくなるように開孔した通気スリットを有している。この造粒プレート6を通過したガスによる流動風により、容器1に投入された触媒担持粒子は容器の上方へ流動し、そこで高分子電解質の溶液ないし分散液を付着され、乾燥される。
【0014】
高分子電解質を付着されて造粒プレート6の上部に沈降してきた触媒担持粒子は、回転する造粒プレート6上で造粒される。攪拌羽根7は、高速で回転して、そこに沈降してくる粒子を粉砕する。また、圧縮ガス噴射ノズル9から衝突ターゲット8に向けて間欠的に噴射されるパルスジェットは、流動状態の触媒担持粒子をジェット粉砕により低次の粒子に粉砕する。系内に導入された窒素ガスは、容器内上方に配置されたバグフィルタ10によって、電極粒子並びに固化した電解質の粉末をフィルトレーションし、窒素ガスのみを排出管13より系外に排出する。
【0015】
この装置により、水素イオン伝導性高分子電解質の溶液ないし分散液を触媒担持粒子に噴霧して触媒担持粒子に付着し、乾燥させるとともに、適度の粒径に造粒させることができる。すなわち、噴霧された水素イオン伝導性高分子電解質の溶液ないし分散液は触媒担持粒子の表面に付着し、これが乾燥されて溶媒が揮散するから、触媒担持粒子の表面に水素イオン伝導性高分子電解質のみを均一に付着させることができる。また、粉砕工程が加わることで、高複次粒子が低複次粒子に粉砕されるというように、粒子が細かく粉砕され、粒子表面に至るまで、水素イオン伝導性高分子電解質を均一に付着することが可能となる。
【0016】
本実施例における前記装置の稼動条件は次のとおりである。
【0017】
触媒担持粒子の投入量:40g、
水素イオン伝導性高分子電解質の分散液の使用量:185g、
高圧スプレー3よりの分散液の噴霧速度:2.0g/分、
窒素ガスの入り口温度:100℃、窒素ガス風量:0.06m3/分、
撹拌羽根7の回転速度:300rpm、
パルスジェット9のオン/オフ間隔:1回/12秒。
【0018】
このようにして得た電極粒子は、中空繊維状カーボンナノチューブの表面に水素イオン伝導性高分子電解質を均一に付着しており、複次粒子の平均粒径は5μmであった。このようにして得たカソード用およびアノード用の電極粒子を窒素雰囲気中でエチレングリコールと混合し、触媒層用のペースト状のインクを調製した。
次に、外寸が20cm×32cmの水素イオン伝導性高分子電解質膜(デュポン社製ナフィオン112)の裏表両面に、それぞれのインクをスクリーン印刷法により塗布して、カソード触媒層およびアノード触媒層を形成した。各触媒層に含まれる触媒金属量は0.5mg/cm2、触媒層の平均厚みは約20μmとした。
【0019】
一方、電極のガス拡散層は、次のようにして作製した。外寸16cm×20cm、厚み360μmのカーボン不織布(東レ(株)製、TGP―H―120)を、フッ素樹脂の水性ディスパージョン(ダイキン工業(株)製、ネオフロンND1)に含浸した後、これを乾燥し、350℃で30分加熱することで、撥水性を与えた。次に、PTFE微粉末を分散させた水と導電性カーボン粉末とを混合してインクを調製し、このインクを、前記のカーボン不織布の一方の面に、スクリーン印刷法を用いて塗布することで撥水層を形成した。このとき、撥水層の一部はカーボン不織布の中に侵入していた。
【0020】
次に、上記の一方の面にカソード触媒層、他方の面にアノード触媒層を形成した水素イオン伝導性高分子電解質膜の両面に、前記のカーボンペーパーを撥水層を有する面が触媒層に接するように重ね合わせ、ホットプレスにより接合して、電解質膜電極接合体(MEA)を作製した。また、水素イオン伝導性高分子電解質膜の外周部には、ゴム製のガスケット板を接合した。このMEAの外周部には、冷却水、燃料ガス及び酸化剤ガス流通用のマニホールド穴を形成した。
一方、外寸が20cm×32cm、厚みが2.0mm、ガス流路および冷却水流路の深さが1.0mmの樹脂含浸黒鉛板から構成したセパレータ板を準備した。MEAの一方の面に酸化剤ガス流路を有するセパレータ板を、他方の面に燃料ガス流路を有するセパレータ板をそれぞれ重ね合わせて単電池とした。単電池の両端部には、ステンレス鋼製の集電板と絶縁板を介して端板を重ね、締結ロッドで固定した。このときの締結圧はセパレータ板の面積あたり12kgf/cm2とした。
【0021】
このように作製した本実施例の高分子電解質型燃料電池を75℃に保持し、アノードに水素を、カソードに空気をそれぞれ露点が75℃となるように加温・加湿して供給し、燃料ガス利用率を70%、空気利用率を40%として放電試験を実施した。図2に電流−電圧特性を示し、図3に電池電圧の経時変化を示す。
【0022】
本実施例では、触媒担持粒子をエチレングリコールと混合して触媒層用のインクを調製したが、インクを調製するために、エチレングリコールの代わりにブタノール、イソプロパノールヘキサン、ヘプタン、プロピレングリコール、またはグリセリンを用いても、同様の高性能な電極が得られる。
【0023】
《実施例2》
中空孔の孔径が3nm、繊維長が300nmの単層カーボンナノチューブに平均粒径約20Åの白金粒子を50重量%担持してカソードの触媒担持粒子とした。前記と同じカーボンナノチューブに平均粒径約30Åの白金粒子とルテニウム粒子をそれぞれ25重量%担持したものをアノードの触媒担持粒子とした。これらの触媒担持粒子に、水、酢酸ブチル、および水素イオン伝導性高分子電解質の分散液を混合・攪拌して、触媒担持粒子の表面に電解質を被覆した。ここで、水素イオン伝導性高分子の分散液には、10重量%濃度のパーフルオロカーボンスルホン酸のエタノール分散液を用いた。水素イオン伝導性高分子電解質の導入量は、触媒を担持したカーボン重量部に対して80重量部とした。一方、酢酸ブチルは、高分子電解質が凝集して中空繊維状カーボン担体の表面にのみ付着するように、水素イオン伝導性高分子電解質の分散液の分散媒と同じ重量を加えた。また、水は、触媒によって溶媒が燃焼するのを防止するために導入した。このため、加えた水の量については、触媒全体が湿潤すればよく、特に限定する必要はないが、ここでは触媒の重量に対して3倍の水を加えた。
【0024】
以上のようにして作製した触媒層用インクをポリテトラフルオロエチレン基材上にバーコーターを用いて塗工してカソード触媒層およびアノード触媒層を形成した。これらの触媒層を水素イオン伝導性高分子電解質膜に熱転写した。以下は実施例1と同様にして単電池を作製し、放電試験を行った。図2および図3に特性を示す。
【0025】
《比較例1》
触媒を担持すえうカーボンに、ケッチェンブラックEC(オランダ国、AKZO Chemie社)を用いた他は実施例1と同様にして単電池を作製した。その特性を図2及び図3に示す。
【0026】
《実施例3》
中空孔の孔径が50〜100nm、繊維長が400nmの中空繊維状カーボンに、平均粒径約20Åの白金粒子を50重量%担持した。これをカソードの触媒担持粒子とした。前記と同じ中空繊維状カーボンに平均粒径約30Åの白金粒子とルテニウム粒子をそれぞれ25重量%ずつ担持した。これをアノードの触媒担持粒子とした。これらの触媒担持粒子を用いて触媒層を形成した他は実施例2と同様にして単電池を作製し、放電試験を行った。この電池の電流−電圧特性および電池電圧の経時変化は、実施例2とほぼ同等であった。
【0027】
【発明の効果】
以上のように本発明によれば、微細な触媒金属粒子の凝集を抑制するとともに、カーボンの中空部が触媒層中で過剰となった水を排水し、経時的な特性の劣化を抑制し、性能の優れた高分子電解質型燃料電池を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施例で用いた電極粒子の製造装置の概念を示す図である。
【図2】実施例および比較例の燃料電池の電流−電圧特性を示す図である。
【図3】実施例および比較例の燃料電池の電圧の経時変化を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polymer electrolyte fuel cell, and more particularly to an electrode and a method for manufacturing the same.
[0002]
[Prior art]
A fuel cell using a polymer electrolyte generates electricity and heat simultaneously by electrochemically reacting a fuel gas containing hydrogen and a fuel gas containing oxygen such as air. This fuel cell basically includes a polymer electrolyte membrane that selectively transports hydrogen ions, and a pair of electrodes disposed on both surfaces thereof. The electrode is a catalyst layer formed by mixing a hydrogen ion conductive polymer electrolyte with a carbon powder carrying a platinum group metal catalyst, and formed on the outer surface of the catalyst layer, having both air permeability and electron conductivity, for example, a water repellent treatment. It consists of a gas diffusion layer made of applied carbon paper.
In order to prevent the supplied fuel gas and the oxidizing gas from leaking to the outside, and to prevent the two types of gases from being mixed with each other, a gas seal material or a gasket is disposed around the electrode with a polymer electrolyte membrane interposed therebetween. . The sealing material and the gasket are integrated with the electrode and the polymer electrolyte membrane, and this is called an MEA (electrolyte membrane electrode assembly). Outside the MEA, a conductive separator plate for mechanically fixing the MEA and electrically connecting adjacent MEAs to each other in series is arranged. A gas passage for supplying a reaction gas to the electrode and carrying away generated gas and surplus gas is formed in a portion of the separator plate that comes into contact with the MEA. Although the gas flow path can be provided separately from the separator plate, a method in which a groove is provided on the surface of the separator plate to form a gas flow path is generally used.
[0003]
A gas diffusion layer of an electrode of a polymer electrolyte fuel cell is generally formed of a porous carbon layer such as a carbon nonwoven fabric subjected to a water-repellent treatment. A water-repellent carbon layer may be provided at the interface between the catalyst layer and the gas diffusion layer for the purpose of keeping the catalyst layer or the polymer electrolyte membrane moist. The water-repellent carbon layer is produced as follows. First, carbon particles and a dispersion of polyfluorotetraethylene fine particles containing a surfactant are mixed, and the mixture is dried or filtered to obtain a mixture of carbon particles and polyfluorotetraethylene fine particles. Next, water or an organic solvent is added thereto to form an ink. This ink is coated on one side of a carbon nonwoven fabric or the like which is a gas diffusion layer by a screen printing method, a spray coating method, a doctor blade method, a roll coater method, etc., and is baked at a temperature of about 300 ° C. to 400 ° C. Evaporate the surfactant. Thus, a water-repellent carbon layer is formed. This water-repellent carbon layer is arranged so as to be adjacent to the catalyst layer of the electrode.
[0004]
The catalyst layer includes a catalyst in which fine particles of catalytic metal such as platinum are supported on conductive carbon, and a hydrogen ion conductive polymer electrolyte. For the conductive carbon of the catalyst carrier, acetylene black, carbon black, and the like having a relatively high specific surface area have been used as long as the conductivity is not lost so that the catalyst metal is finely and uniformly supported without coagulation. Was. As the carbon carrier, a carbon carrier having a high specific surface area that has been treated in advance in an inert gas atmosphere containing water vapor before supporting the catalyst metal may be used.
[0005]
As a method of supporting metal fine particles such as platinum on conductive carbon, for example, as a precursor of the metal fine particles, chloroplatinic acid, bisacetylacetonatoplatinum, dinitroaminoplatinum, etc., the conductive carbon was suspended. Dissolve in the solution. Pt (OH) 4 is carried on the conductive carbon by neutralizing the suspension by adding an alkali. The suspension thus prepared is repeatedly filtered and washed with water to remove impurities. Thereafter, the obtained powder is subjected to a heat treatment in a reducing atmosphere such as hydrogen gas to obtain a catalyst powder carrying platinum fine particles on carbon. The catalyst layer is formed by mixing a hydrogen ion conductive polymer electrolyte with the carbon powder carrying platinum and applying the mixture thinly on a polymer electrolyte membrane or the like.
[0006]
On the other hand, as the hydrogen ion conductive polymer electrolyte used for the catalyst layer, perfluorocarbon sulfonic acid is generally used. The catalyst layer is formed by mixing a carbon powder carrying a catalyst such as platinum, and a solution or dispersion obtained by dissolving or dispersing a polymer electrolyte in an alcohol solvent such as ethanol, and adding ethylene glycol and isopropyl alcohol to the mixture. Addition of a relatively high boiling point organic solvent such as butyl alcohol or the like to form an ink, and applying the ink to a polymer electrolyte membrane or the like using a screen printing method, a spray coating method, a doctor blade method, a roll coater method, etc. . Fine powder of polytetrafluoroethylene or a liquid in which these are dispersed or dissolved may be added to the ink. It aims at keeping the moisture generated by the electrode reaction and the moisture contained in the supply gas near the reaction field, and at the same time, discharging the excess moisture.
[0007]
[Problems to be solved by the invention]
In order to put a fuel cell to practical use, it is important to further improve the power generation efficiency and reduce the change over time, that is, to improve the life characteristics. For this purpose, it is necessary to suppress the aggregation of the fine catalyst metal, drain the excess water in the catalyst layer, and improve the gas diffusibility. However, since the bonding between the catalyst metal and a carbon carrier such as acetylene black or carbon black having a high specific surface area is not sufficient, there is a problem that the supported catalyst metal is aggregated and the catalytic activity is reduced. On the other hand, with respect to gas diffusivity, there is a problem that gas diffusivity decreases over time even if some measures such as addition of polytetrafluoroethylene to the catalyst layer are taken. For these reasons, sufficient power generation characteristics for practical use cannot be obtained.
[0008]
[Means for Solving the Problems]
The polymer electrolyte fuel cell of the present invention is a hydrogen ion conductive polymer electrolyte membrane, a pair of electrodes disposed on both sides of the hydrogen ion conductive polymer electrolyte membrane, and supplying and discharging fuel gas to one of the electrodes. A polymer electrolyte fuel cell comprising a pair of conductive separators having a gas flow path for supplying and discharging an oxidizing gas to the other electrode, wherein the catalyst layer of the electrode has a hollow fiber supporting a catalyst metal. It is characterized by comprising carbon-like and hydrogen ion conductive polymer electrolyte.
The hollow fibrous carbon preferably has an inner diameter sufficiently smaller than the size of the aggregated particles of the proton conductive polymer electrolyte.
The hollow fibrous carbon preferably has an inner diameter of 100 nm or less and a fiber length of 100 μm or less.
[0009]
The present invention has a step of spraying a solution or dispersion of a hydrogen ion conductive polymer electrolyte into a dry atmosphere in which a hollow fibrous carbon powder carrying a catalyst platinum flows, and attaching the electrolyte to the carbon powder. Provided is a method for manufacturing an electrode for a polymer electrolyte fuel cell.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, as described above, hollow fiber carbon, typically carbon nanotube, is used as the carbon of the catalyst carrier used for the catalyst layer. Since the carbon nanotube has high crystallinity, the fine catalyst metal supported on the carbon nanotube is difficult to move, and therefore, the aggregation of the catalyst metal is suppressed. In addition, the hollow portion of carbon drains excess water in the catalyst layer. These make it possible to suppress the deterioration of the characteristics over time. Further, preferably, the hydrogen ion conductive polymer electrolyte used for the catalyst layer is formed only on the surface of the hollow fibrous carbon. When the hydrogen ion conductive polymer electrolyte is present in the hollow portion of carbon, the electrolyte is hydrated and swells, and thus the gas diffusivity is hindered. Such a disadvantage does not occur if the hydrogen ion conductive polymer electrolyte is formed only on the surface of the hollow fibrous carbon.
As described above, according to the present invention, a polymer electrolyte fuel cell having improved power generation efficiency and excellent life characteristics can be provided.
[0011]
【Example】
Hereinafter, examples of the present invention will be described.
<< Example 1 >>
As the hollow fibrous carbon, single-walled carbon nanotubes having a hollow diameter of 5 nm and a fiber length of 200 nm were used. 50% by weight of platinum particles having an average particle diameter of about 20 ° were supported on the carbon nanotubes. This was used as catalyst-carrying particles for the cathode. Platinum particles and ruthenium particles having an average particle diameter of about 30 ° were respectively supported on the same carbon nanotubes by 25% by weight. This was used as the catalyst-carrying particles for the anode.
Next, the surface of these catalyst-carrying particles was coated with a hydrogen ion conductive polymer electrolyte using the apparatus shown in FIG. Here, an aqueous dispersion of perfluorocarbonsulfonic acid (SE10072 manufactured by DuPont) having a concentration of 10% by weight was used as the proton conductive polymer.
[0012]
FIG. 1 is a conceptual diagram of a spray-dry type apparatus used for manufacturing electrode particles for forming a catalyst layer. The container 1 includes a lower cylindrical container, an upper cylindrical portion tapered so as to have a larger diameter, and an upper cylindrical container which are interconnected. A gas introduction pipe 4 with a heater is provided at a lower portion of the container 1, from which a nitrogen gas controlled at a constant temperature is introduced to make the inside of the container a dry atmosphere. A metal filter 5 for preventing dust from entering is provided at a lower portion of the container 1. Above the metal filter 5, a granulating plate 6 having a large number of ventilation holes and a stirring blade 7 fixed on the granulating plate and having a collision target 8 in the center are rotatably provided. A pair of compressed gas injection nozzles 9 for injecting compressed gas toward the collision target 8 are provided on the upper container wall. In the middle of the container 1, a high-pressure spray 3 is provided. The high-pressure spray 3 sprays the solution or dispersion of the electrolyte in the container 2 into the container. A bag filter 10 is provided above the container 1. A pipe 12 for ejecting a compressed gas supplied from a pump 11 is inserted into the bag filter 10. By appropriately injecting compressed gas into the bag filter 10 from the pump 11 through the pipe 12, powder or the like attached to the outer surface of the bag filter is wiped off. The upper part of the container has a gas discharge pipe 13.
[0013]
In order to manufacture electrode particles by this apparatus, first, catalyst-carrying particles are placed on a granulating plate 6 in a container 1 and a solution or dispersion of a hydrogen ion conductive polymer electrolyte is sprayed from a high pressure spray 3. The catalyst-carrying particles in the vessel 1 are blown up above the vessel by nitrogen gas at a constant temperature supplied from a gas introduction pipe 4. The nitrogen gas introduced from the gas introduction pipe 4 blows upward from the metal filter 5 and the granulation plate 6 into the container in accordance with arrows a and b indicating the flow direction of the gas. The granulation plate 6 has a ventilation slit that is opened so that the amount of flowing air increases toward the outer periphery. Due to the flowing wind of the gas passing through the granulating plate 6, the catalyst-carrying particles charged into the container 1 flow upward of the container, where the solution or dispersion of the polymer electrolyte is attached and dried.
[0014]
The catalyst-carrying particles having the polymer electrolyte attached thereto and settled on the upper portion of the granulating plate 6 are granulated on the rotating granulating plate 6. The stirring blade 7 rotates at a high speed to pulverize particles settling there. Further, the pulse jet which is intermittently jetted from the compressed gas jet nozzle 9 toward the collision target 8 crushes the catalyst-carrying particles in a flowing state into low-order particles by jet crushing. The nitrogen gas introduced into the system filters the electrode particles and the solidified electrolyte powder by the bag filter 10 disposed in the upper part of the container, and discharges only the nitrogen gas out of the system through the discharge pipe 13.
[0015]
With this apparatus, a solution or dispersion of the hydrogen ion conductive polymer electrolyte is sprayed onto the catalyst-carrying particles, adhered to the catalyst-carrying particles, dried, and granulated to an appropriate particle size. That is, the sprayed solution or dispersion of the hydrogen-ion conductive polymer electrolyte adheres to the surface of the catalyst-supporting particles, and is dried and the solvent is volatilized. Can be uniformly adhered. In addition, by adding a pulverizing step, the particles are finely pulverized such that the high secondary particles are pulverized into low secondary particles, and the hydrogen ion conductive polymer electrolyte is uniformly attached to the particle surface. It becomes possible.
[0016]
The operating conditions of the device in this embodiment are as follows.
[0017]
Input amount of catalyst-carrying particles: 40 g,
The amount of the dispersion of the hydrogen ion conductive polymer electrolyte used: 185 g,
Spraying speed of the dispersion from the high-pressure spray 3: 2.0 g / min.
Nitrogen gas inlet temperature: 100 ° C., nitrogen gas air volume: 0.06 m 3 / min,
Rotation speed of stirring blade 7: 300 rpm,
On / off interval of pulse jet 9: once / 12 seconds.
[0018]
In the electrode particles thus obtained, the hydrogen ion conductive polymer electrolyte was uniformly adhered to the surface of the hollow fibrous carbon nanotube, and the average particle size of the secondary particles was 5 μm. The thus-obtained cathode and anode electrode particles were mixed with ethylene glycol in a nitrogen atmosphere to prepare a paste ink for a catalyst layer.
Next, the respective inks were applied to both front and back surfaces of a hydrogen ion conductive polymer electrolyte membrane (Napion 112 manufactured by DuPont) having an outer size of 20 cm × 32 cm by screen printing to form a cathode catalyst layer and an anode catalyst layer. Formed. The amount of the catalyst metal contained in each catalyst layer was 0.5 mg / cm 2 , and the average thickness of the catalyst layers was about 20 μm.
[0019]
On the other hand, the gas diffusion layer of the electrode was produced as follows. After impregnating a carbon nonwoven fabric (TGP-H-120, manufactured by Toray Industries, Inc.) having an outer size of 16 cm × 20 cm and a thickness of 360 μm into an aqueous dispersion of fluororesin (manufactured by Daikin Industries, Ltd., NEOFLON ND1), After drying and heating at 350 ° C. for 30 minutes, water repellency was imparted. Next, an ink is prepared by mixing the water in which the PTFE fine powder is dispersed and the conductive carbon powder, and the ink is applied to one surface of the carbon non-woven fabric using a screen printing method. A water-repellent layer was formed. At this time, part of the water-repellent layer had penetrated into the carbon nonwoven fabric.
[0020]
Next, the surface having the water-repellent layer of the carbon paper as the catalyst layer on both surfaces of the hydrogen ion conductive polymer electrolyte membrane having the cathode catalyst layer formed on one surface and the anode catalyst layer formed on the other surface. They were overlapped so as to be in contact with each other and joined by hot pressing to produce an electrolyte membrane electrode assembly (MEA). A rubber gasket plate was joined to the outer periphery of the hydrogen ion conductive polymer electrolyte membrane. A manifold hole for cooling water, fuel gas, and oxidizing gas flow was formed in the outer peripheral portion of the MEA.
On the other hand, a separator plate composed of a resin-impregnated graphite plate having an outer size of 20 cm × 32 cm, a thickness of 2.0 mm, and a gas channel and a cooling water channel having a depth of 1.0 mm was prepared. A single cell was formed by laminating a separator plate having an oxidizing gas flow path on one surface of the MEA and a separator plate having a fuel gas flow path on the other surface. End plates were placed on both ends of the unit cell via a current collector plate made of stainless steel and an insulating plate, and fixed with fastening rods. The fastening pressure at this time was 12 kgf / cm 2 per area of the separator plate.
[0021]
The thus-prepared polymer electrolyte fuel cell of this example was maintained at 75 ° C., and hydrogen was supplied to the anode and air was supplied to the cathode by heating and humidifying them so that the dew point was 75 ° C. A discharge test was performed with a gas utilization rate of 70% and an air utilization rate of 40%. FIG. 2 shows the current-voltage characteristics, and FIG. 3 shows the change over time in the battery voltage.
[0022]
In this example, the catalyst-supporting particles were mixed with ethylene glycol to prepare an ink for the catalyst layer.To prepare the ink, butanol, isopropanolhexane, heptane, propylene glycol, or glycerin was used instead of ethylene glycol. Even if used, a similar high-performance electrode can be obtained.
[0023]
<< Example 2 >>
A single-walled carbon nanotube having a hollow diameter of 3 nm and a fiber length of 300 nm was loaded with 50% by weight of platinum particles having an average particle size of about 20 ° to obtain catalyst-carrying particles for a cathode. The same carbon nanotubes as above, each carrying 25% by weight of platinum particles and ruthenium particles having an average particle diameter of about 30 ° were used as catalyst-carrying particles for the anode. A dispersion of water, butyl acetate, and a hydrogen ion conductive polymer electrolyte was mixed and stirred with these catalyst-carrying particles to coat the surface of the catalyst-carrying particles with the electrolyte. Here, an ethanol dispersion of perfluorocarbon sulfonic acid having a concentration of 10% by weight was used as the dispersion of the hydrogen ion conductive polymer. The introduction amount of the hydrogen ion conductive polymer electrolyte was 80 parts by weight with respect to the carbon part supporting the catalyst. On the other hand, butyl acetate was added in the same weight as the dispersion medium of the hydrogen ion conductive polymer electrolyte dispersion so that the polymer electrolyte was aggregated and adhered only to the surface of the hollow fibrous carbon carrier. Water was introduced to prevent the catalyst from burning the solvent. For this reason, the amount of water added is not particularly limited as long as the whole catalyst is moistened, and here, water is added three times the weight of the catalyst.
[0024]
The ink for a catalyst layer prepared as described above was coated on a polytetrafluoroethylene substrate using a bar coater to form a cathode catalyst layer and an anode catalyst layer. These catalyst layers were thermally transferred to a hydrogen ion conductive polymer electrolyte membrane. Thereafter, a unit cell was manufactured in the same manner as in Example 1, and a discharge test was performed. 2 and 3 show the characteristics.
[0025]
<< Comparative Example 1 >>
A unit cell was produced in the same manner as in Example 1, except that Ketjen Black EC (AKZO Chemie, the Netherlands) was used as the carbon for supporting the catalyst. The characteristics are shown in FIGS.
[0026]
<< Example 3 >>
50% by weight of platinum particles having an average particle size of about 20 ° were supported on hollow fibrous carbon having a hollow diameter of 50 to 100 nm and a fiber length of 400 nm. This was used as catalyst-carrying particles for the cathode. Platinum particles having an average particle size of about 30 ° and ruthenium particles were respectively supported on the same hollow fibrous carbon by 25% by weight. This was used as the catalyst-carrying particles for the anode. A unit cell was prepared in the same manner as in Example 2 except that a catalyst layer was formed using these catalyst-carrying particles, and a discharge test was performed. The current-voltage characteristics and the change over time of the battery voltage of this battery were almost the same as those of Example 2.
[0027]
【The invention's effect】
As described above, according to the present invention, while suppressing aggregation of fine catalytic metal particles, the hollow portion of carbon drains excess water in the catalyst layer, and suppresses deterioration of characteristics over time, A polymer electrolyte fuel cell having excellent performance can be provided.
[Brief description of the drawings]
FIG. 1 is a view showing the concept of an apparatus for producing electrode particles used in an example of the present invention.
FIG. 2 is a diagram showing current-voltage characteristics of fuel cells of an example and a comparative example.
FIG. 3 is a diagram showing changes over time of the voltages of the fuel cells of the example and the comparative example.