JP2004157226A - Die for coating coated optical fiber ribbon with resin - Google Patents

Die for coating coated optical fiber ribbon with resin Download PDF

Info

Publication number
JP2004157226A
JP2004157226A JP2002320998A JP2002320998A JP2004157226A JP 2004157226 A JP2004157226 A JP 2004157226A JP 2002320998 A JP2002320998 A JP 2002320998A JP 2002320998 A JP2002320998 A JP 2002320998A JP 2004157226 A JP2004157226 A JP 2004157226A
Authority
JP
Japan
Prior art keywords
optical fiber
resin
die
coating
tapered portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002320998A
Other languages
Japanese (ja)
Other versions
JP3926249B2 (en
Inventor
Nagakazu Kimoto
長和 木元
Akira Onuki
章 大貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP2002320998A priority Critical patent/JP3926249B2/en
Publication of JP2004157226A publication Critical patent/JP2004157226A/en
Application granted granted Critical
Publication of JP3926249B2 publication Critical patent/JP3926249B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a die for coating a coated optical fiber ribbon with a resin, which die can prevent entrainment of air into the resin without requiring large-scale equipment and can consequently prevent intrusion of air bubbles into the coating. <P>SOLUTION: A die 101 for coating the coated optical fiber ribbon with the resin has an optical fiber insertion hole 14 for inserting a plurality of parallel arrayed optical fibers 15. The insertion hole 14 is formed with a tapered section 16 of the cross section decreasing continuously along the insertion direction of the optical fibers and in addition, the tapered section 16 is provided with angle changing sections P of the tapered angles changing to ≤2/3 in the insertion direction of the optical fibers 15 at least at one point. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、平行に配列した複数本の光ファイバ素線の外周に樹脂を一括被覆した光ファイバテープ心線を製造する際に使用される光ファイバテープ心線樹脂被覆用ダイスに関する。
【0002】
【従来の技術】
一般に、光ファイバテープ心線は、光ファイバ上に紫外線硬化型樹脂などを被覆してなる外径が250μmの光ファイバ素線を複数本平行に配列させ、それらの外周に、紫外線硬化型樹脂や熱可塑性樹脂などを、被覆後のテープ心線の厚さが0.3mmまたは0.4mmとなるように一括被覆した構造を有する。
【0003】
従来、このような光ファイバテープ心線の製造にあたっては、図4に示すような、光ファイバ素線1の導入側から導出側に向けて断面積が連続的に減少する、例えばテーパ角θが90度からなるテーパ部2を有する光ファイバ素線挿通孔3を設けたダイス4を備えた被覆装置が用いられており、複数本の光ファイバ素線1を平行に配列した状態でダイス4に挿通させることにより、紫外線硬化型樹脂などの樹脂5を一括被覆している(例えば、特許文献1参照。)。図4において、6は、ダイス4内に複数本の光ファイバ素線1を平行に配列した状態で案内するためのニップル、7は、ニップル6の先端にダイス3を保持するためのダイスホルダーを示している。
【0004】
しかしながら、上記したような従来のダイスでは、図4に示すように、テーパ部2のテーパ角θが光ファイバ素線1の通線方向に対して一定であるため、厚さが0.3mmのいわゆる薄肉タイプの光ファイバテープ心線を製造した場合、光ファイバ素線1がニップル口6aからダイス4内に供給された樹脂5内に進入する際に、光ファイバ素線1間の空気を巻き込んでしまい、これにより、樹脂5の一括被覆内に気泡が混入する結果、この気泡に起因してマイクロベンドが生じ、光ファイバの伝送損失が増加するという問題があった。
【0005】
そこで、このような光ファイバ素線間の空気の巻き込みを防止するため、光ファイバ素線がダイス内の樹脂内に進入する箇所に炭酸ガスなどをパージさせたり、光ファイバ素線を減圧室を通してダイス内の樹脂内に進入させるなどの方法が提案されている(例えば、特許文献2参照。)。
【0006】
しかしながら、これらの方法では、炭酸ガスを供給したり減圧室内を減圧するための大掛かりな設備が必要になるという問題があった。
【0007】
【特許文献1】
特開平10−227955号公報
【特許文献2】
特開平5−203850号公報
【0008】
【発明が解決しようとする課題】
上述したように、従来のダイスでは、光ファイバ素線を被覆する樹脂内に空気を巻き込み、これによってマイクロベンドロスが生じるおそれがあった。このため、炭酸ガスを供給したり減圧室内を減圧するなどの方法が提案されているが、いずれも大掛かりな設備が必要になるという問題があった。
【0009】
本発明はこのような従来の技術的課題を解決するためになされたもので、大掛かりな設備を要することなく、樹脂内への空気の巻き込みを防止することができ、もって、被覆内への気泡の混入を防止することができる光ファイバテープ心線樹脂被覆用ダイスを提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するため、本発明の光ファイバテープ心線樹脂被覆用ダイスは、平行に配列した複数本の光ファイバ素線が挿通される光ファイバ素線挿通孔を有する光ファイバテープ心線樹脂被覆用ダイスにおいて、前記光ファイバ素線挿通孔には、光ファイバ素線の通線方向に沿って断面積が連続的に減少するテーパ部が形成されており、かつ、このテーパ部には、光ファイバ素線の通線方向に対してテーパ角が2/3以下に変化する角度変化部が少なくとも1箇所設けられていることを特徴とする。
【0011】
本発明の光ファイバテープ心線樹脂被覆用ダイスにおいては、光ファイバ素線が挿通されるテーパ部に、光ファイバ素線の通線方向に対してテーパ角が2/3以下に変化する角度変化部を少なくとも1箇所設けたことにより、ダイス内部の圧力が上昇し、これにより、光ファイバ素線がダイス内の樹脂内に進入する箇所で発生するメニスカスが押し上げられる結果、該部における光ファイバ素線間の空気の巻き込みが防止され、被覆内への気泡の混入が防止される。
【0012】
このように本発明の光ファイバテープ心線樹脂被覆用ダイスにおいては、従来のように大掛かりな設備を要することなく、空気の巻き込みを防止し、被覆内への気泡の混入を防止することができる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を図面を用いて説明する。
図1は、本発明の光ファイバテープ心線樹脂被覆用ダイスの第1の実施形態を示す断面図である。
【0014】
図1に示すように、本実施形態の光ファイバテープ心線樹脂被覆用ダイス101は、ダイスホルダー11によりニップル12の先端に取り付けられ、その中心には、図示を省略した樹脂供給装置から被覆用樹脂13が供給される光ファイバ素線挿通孔14が設けられている。複数本の光ファイバ素線15は平行に配列した状態でニップル12の先端に設けられたニップル口12aから光ファイバ素線挿通孔14に挿通され、外部へと導出され、その間、光ファイバ素線挿通孔14内に供給された樹脂13がそれらの光ファイバ素線15の外周に被覆される。
【0015】
光ファイバ素線挿通孔14は、光ファイバ素線15の通線方向に沿って断面が連続的に縮径するテーパ部16と、それに続く断面の形状が光ファイバテープ心線の形状と相似形をなし、断面積がほぼ一定のストレート部17から構成されており、さらに、テーパ部16は、ニップル側に位置するテーパ角がθからなる第1のテーパ部16aと、テーパ角がθの2/3以下のθからなる第2のテーパ部16bから構成されている。すなわち、テーパ部16は、光ファイバ素線15の通線方向のほぼ中間部でテーパ角がθから、その2/3以下のθに変化している。
【0016】
このように構成される光ファイバテープ心線樹脂被覆用ダイス101においては、平行に配列した複数本の光ファイバ素線15は光ファイバ素線挿通孔14を通過する間に、その外周に、樹脂供給装置から光ファイバ素線挿通孔14へ供給された樹脂13が被覆される。本実施形態においては、テーパ部16が、光ファイバ素線15の通線方向のほぼ中間部でテーパ角がθから、その2/3以下のθに変化しているため、光ファイバ素線挿通孔14内の樹脂13の圧力が上昇し、これにより、光ファイバ素線15の樹脂13内に進入する箇所で発生するメニスカス18が押し上げられ、該部における光ファイバ素線15間の空気の巻き込みが防止され、樹脂被覆内への気泡の混入が防止される。この結果、気泡の混入に起因する光ファイバのマイクロベンドの発生が防止される。
【0017】
なお、図1中、Pは、テーパ部16におけるテーパ角の変化部を示しており、本実施形態では、上述したようにテーパ部16の光ファイバ素線15の通線方向のほぼ中間部に設けられているが、本発明においては、中間部よりニップル12側に設けられていてもよく、あるいは、ストレート部17側に設けられていてもよい。
【0018】
また、第1のテーパ部16aのテーパ角θと第2のテーパ部16bのテーパ角θは、θがθの2/3以下であるという条件を満足する限り、特にその大きさが限定されるものではない。
【0019】
さらに、以上説明した実施の形態では、テーパ角の角度変化部Pは、テーパ部16の1箇所に設けられているが、例えば図2に示すように、2箇所、あるいはそれ以上設けるようにしてもよい。
【0020】
すなわち、図2は、本発明の他の実施の形態の光ファイバテープ心線樹脂被覆用ダイス102を示す断面図で、図1に示す実施の形態において、テーパ部16に、光ファイバ素線の通線方向に対してテーパ角が2/3以下に変化する角度変化部を2箇所設けた例である。図2において、図1に共通する部分には同一符号を付してある。
【0021】
すなわち、本実施形態においては、テーパ部16は、ニップル12側のテーパ角がθからなる第1のテーパ部16aと、それに続くテーパ角がθの2/3以下のθからなる第2のテーパ部16bと、さらにそれに続くテーパ角がθの2/3以下のθからなる第3のテーパ部16cとから構成されている。PおよびPは、第1のテーパ部16aから第2のテーパ部16b、第2のテーパ部16bから第3のテーパ部16cへとそれぞれ変化する角度変化部を示している。
【0022】
このようにテーパ部16の2箇所に角度変化部を設けた光ファイバテープ心線樹脂被覆用ダイス102においては、図1に示すような、テーパ部16の1箇所に角度変化部を設けたものに比べ、光ファイバ素線挿通孔14内の樹脂13の圧力をより上昇させることができるため、光ファイバ素線15が樹脂13内に進入する際の空気の巻き込みをより効果的に防止することができ、樹脂被覆内への気泡の混入をより確実に防止することができる。
【0023】
なお、この実施形態においても、テーパ部16におけるテーパ角の角度変化部P、Pの位置は特に限定されるものではなく、また、第1のテーパ部16aのテーパ角θ 第2のテーパ部16bのテーパ角θおよび第3のテーパ部16cのテーパ角θは、θがθの2/3以下であり、θがθの2/3以下であるという条件を満足する限り、特にその大きさが限定されるものではない。
【0024】
次に、本発明の効果を確認するため、上述したような光ファイバテープ心線樹脂被覆用ダイス101、102を用いて4心光ファイバテープ心線を製造し、その特性を調べた実験例について記載する。なお、ダイス以外は従来より一般に使用されている装置を用いた。
【0025】
実験例No.1〜No.6
θ、θが表1に示すような条件の図1に示す光ファイバテープ心線樹脂被覆用ダイスを用い、平行に配列した直径が250μmの光ファイバ素線4本の外周に紫外線硬化型樹脂を一括被覆して、幅約1.1mm、厚さ約0.4mmの4心光ファイバテープ心線(No.1)および幅約1.1mm、厚さ約0.3mmの4心光ファイバテープ心線(No.2〜No.6)を製造した。
【0026】
実験例No.7
θ、θ、θが表1に示すような条件の図2に示す光ファイバテープ心線樹脂被覆用ダイスを用い、平行に配列した直径が250μmの光ファイバ素線4本の外周に紫外線硬化型樹脂を一括被覆して、幅約1.1mm、厚さ0.3mmの4心光ファイバテープ心線を製造した。
【0027】
得られた光ファイバテープ心線について、一括被覆中に含まれる10cmあたりの気泡数および伝送損失を以下に示すようにして測定した。
すなわち、気泡数は、各光ファイバテープ心線10cm毎の気泡数を顕微鏡下で観察して集計し、その平均値を算出した。また、伝送損失は、各光ファイバテープ心線において、4本の光ファイバそれぞれについて波長1.55μmにおける伝送損失を測定し、その平均値を算出した。そして0.22dB/km以下を合格とした。
【0028】
これらの結果を表1に併せ示す。
【表1】

Figure 2004157226
【0029】
表1から明らかなように、θおよびθが同じで実質的に従来構造のダイスを用いたNo.1およびNo.2のうち、いわゆる厚肉タイプの光ファイバテープ心線を製造したNo.1では、気泡数および伝送損失ともに良好な結果が得られたが、いわゆる薄肉タイプの光ファイバテープ心線を製造したNo.2では、気泡数が多くかつ伝送損失の結果も不良であった。また、角度比が2/3を超えるNo.3の例でも同様に気泡数が多く、伝送損失の結果も不良であった。これに対し、角度比が2/3以下のNo.4〜No.6の例では、薄肉タイプの光ファイバテープ心線であるにもかかわらず、気泡数および伝送損失ともに良好な結果が得られた。また、角度比が2/3以下の角度変化部を2箇所設けたNo.7の例でも、結果は良好であった。
【0030】
なお、No.2およびNo.6の例において、樹脂被覆時のダイス内の光ファイバ素線に加わる圧力分布を測定した。結果を図3に示す。
図3から明らかなように、角度比(θ/θ)が2/3以下のNo.6の例では、光ファイバ素線に加わる圧力が、角度比(θ/θ)が1.0のNo.1の例に比べ、特に入口部分で急峻に上昇しており、かかる圧力の上昇により、上記のような特性上の差異が生じたものと推察される。
【0031】
【発明の効果】
以上説明したように、本発明の光ファイバテープ心線樹脂被覆用ダイスによれば、光ファイバ素線が挿通されるテーパ部に、光ファイバ素線の通線方向に対してテーパ角が2/3以下に変化する角度変化部を少なくとも1箇所設けたので、光ファイバ素線がダイス内の樹脂内に進入する際の光ファイバ素線間の空気の巻き込みが防止され、被覆内への気泡の混入を防止することができる。
【図面の簡単な説明】
【図1】本発明の光ファイバケーブルの第1の実施形態を示す断面図。
【図2】本発明の光ファイバケーブルの第2の実施形態を示す断面図。
【図3】ダイスの構造とダイス内の光ファイバ素線に加わる圧力の関係を示すグラフ。
【図4】従来の光ファイバテープ心線樹脂被覆用ダイスの一例を示す断面図。
【符号の説明】
12………ニップル
13………被覆用樹脂
14………光ファイバ素線挿通孔
15………光ファイバ素線
16………テーパ部
16a………第1のテーパ部
16b………第2のテーパ部
16c………第3のテーパ部
P、P、P………角度変化部
101、102………光ファイバテープ心線樹脂被覆用ダイス[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical fiber tape core resin coating die used when manufacturing an optical fiber core wire in which a resin is collectively coated on the outer periphery of a plurality of optical fiber wires arranged in parallel.
[0002]
[Prior art]
In general, an optical fiber ribbon is formed by arranging a plurality of optical fiber wires each having an outer diameter of 250 μm formed by coating an optical fiber with an ultraviolet-curable resin or the like, and arranging the plurality of optical fiber wires in parallel on the outer periphery thereof. It has a structure in which a thermoplastic resin or the like is coated at a time so that the thickness of the coated ribbon becomes 0.3 mm or 0.4 mm.
[0003]
Conventionally, in manufacturing such an optical fiber ribbon, as shown in FIG. 4, the cross-sectional area continuously decreases from the introduction side to the exit side of the optical fiber 1, for example, the taper angle θ is reduced. A coating apparatus provided with a die 4 provided with an optical fiber wire insertion hole 3 having a tapered portion 2 of 90 degrees is used, and a plurality of optical fiber wires 1 are arranged in parallel with the die 4 in a state of being arranged in parallel. The resin 5 such as an ultraviolet curable resin is collectively covered by being inserted (for example, see Patent Document 1). In FIG. 4, reference numeral 6 denotes a nipple for guiding a plurality of optical fiber wires 1 in a state of being arranged in parallel in a die 4, and reference numeral 7 denotes a die holder for holding the die 3 at the tip of the nipple 6. Is shown.
[0004]
However, in the above-described conventional die, as shown in FIG. 4, the taper angle θ of the tapered portion 2 is constant with respect to the direction in which the optical fiber 1 passes, so that the thickness is 0.3 mm. When a so-called thin-type optical fiber ribbon is manufactured, when the optical fiber 1 enters the resin 5 supplied into the die 4 from the nipple port 6a, air between the optical fibers 1 is entrained. As a result, air bubbles are mixed into the batch coating of the resin 5, and as a result, there is a problem that microbends are generated due to the air bubbles and transmission loss of the optical fiber increases.
[0005]
Therefore, in order to prevent such air entrapment between the optical fiber strands, a place where the optical fiber strand enters the resin in the die is purged with carbon dioxide gas or the like, or the optical fiber strand is passed through a decompression chamber. A method has been proposed in which the resin enters a resin in a die (for example, see Patent Document 2).
[0006]
However, these methods have a problem that a large-scale facility for supplying carbon dioxide gas and depressurizing the decompression chamber is required.
[0007]
[Patent Document 1]
Japanese Patent Application Laid-Open No. H10-227955 [Patent Document 2]
JP-A-5-203850
[Problems to be solved by the invention]
As described above, in the conventional dice, there is a possibility that air is entrapped in the resin covering the optical fiber, thereby causing microbend loss. For this reason, methods such as supplying carbon dioxide gas and depressurizing the decompression chamber have been proposed, but all have the problem that large-scale equipment is required.
[0009]
The present invention has been made to solve such a conventional technical problem, and it is possible to prevent the entrapment of air into the resin without requiring a large-scale facility, and thus, to prevent air bubbles from entering the coating. It is an object of the present invention to provide an optical fiber tape core resin coating die that can prevent the incorporation of a resin.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, an optical fiber ribbon resin coating die according to the present invention has an optical fiber ribbon insertion hole through which a plurality of optical fiber strands arranged in parallel are inserted. In the coating die, the optical fiber wire insertion hole is formed with a tapered portion whose cross-sectional area is continuously reduced along the direction of the optical fiber wire, and in this tapered portion, It is characterized in that at least one angle changing portion is provided at which the taper angle changes to 2/3 or less with respect to the direction of the optical fiber.
[0011]
In the optical fiber tape core resin coating die according to the present invention, the tapered portion through which the optical fiber is inserted has an angle change in which the taper angle changes to 2/3 or less with respect to the direction of the optical fiber. By providing at least one portion, the pressure inside the die rises, and as a result, the meniscus generated at the point where the optical fiber enters the resin in the die is pushed up, and as a result, the optical fiber Entrainment of air between the wires is prevented, and air bubbles are prevented from entering the coating.
[0012]
As described above, in the optical fiber tape core resin coating die of the present invention, it is possible to prevent the entrapment of air and the incorporation of air bubbles into the coating without requiring a large-scale facility as in the related art. .
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a sectional view showing a first embodiment of the optical fiber tape core resin coating die of the present invention.
[0014]
As shown in FIG. 1, an optical fiber tape core resin coating die 101 according to the present embodiment is attached to a tip of a nipple 12 by a die holder 11, and the center thereof is provided by a resin supply device (not shown) for coating. An optical fiber insertion hole 14 to which the resin 13 is supplied is provided. The plurality of optical fiber strands 15 are inserted in the optical fiber strand insertion hole 14 from the nipple port 12a provided at the tip of the nipple 12 in a state of being arranged in parallel and led out to the outside. The resin 13 supplied into the insertion hole 14 covers the outer periphery of the optical fiber 15.
[0015]
The optical fiber insertion hole 14 has a tapered portion 16 whose section is continuously reduced in diameter along the direction of the optical fiber 15, and the shape of the subsequent cross section is similar to the shape of the optical fiber ribbon. The tapered portion 16 includes a first tapered portion 16a located on the nipple side and having a taper angle of θ 1, and a taper angle of θ 1. And a second tapered portion 16b made of θ2 of or less of the second taper portion 16b. That is, the taper portion 16 has a taper angle changing from θ 1 to θ 2 which is not more than / of the taper angle at a substantially middle part in the direction of the optical fiber 15.
[0016]
In the optical fiber tape core resin coating die 101 configured as described above, the plurality of optical fiber strands 15 arranged in parallel are formed around the outer periphery thereof while passing through the optical fiber strand insertion hole 14. The resin 13 supplied from the supply device to the optical fiber insertion hole 14 is covered. In the present embodiment, since the taper angle of the tapered portion 16 is changed from θ 1 to θ 2 which is そ の or less of the tapered angle at a substantially middle portion of the optical fiber 15 in the line direction, the optical fiber The pressure of the resin 13 in the wire insertion hole 14 rises, thereby pushing up a meniscus 18 generated at a point where the optical fiber strand 15 enters the resin 13, and the air between the optical fiber strands 15 in this portion is pushed up. Is prevented, and air bubbles are prevented from entering the resin coating. As a result, the occurrence of microbending of the optical fiber due to the inclusion of bubbles is prevented.
[0017]
In FIG. 1, P indicates a portion where the taper angle changes in the tapered portion 16, and in the present embodiment, as described above, the tapered portion 16 is located substantially at the middle of the optical fiber 15 in the direction of the wire. Although it is provided, in the present invention, it may be provided on the nipple 12 side from the intermediate portion, or may be provided on the straight portion 17 side.
[0018]
Further, the taper angle theta 1 of the first taper portion 16a taper angle theta 2 of the second taper portion 16b, so long as satisfying the condition that theta 2 is less than 2/3 of theta 1, in particular its size Is not limited.
[0019]
Further, in the above-described embodiment, the taper angle changing portion P is provided at one position of the taper portion 16, but, for example, as shown in FIG. Is also good.
[0020]
That is, FIG. 2 is a cross-sectional view showing an optical fiber tape core resin coating die 102 according to another embodiment of the present invention. In the embodiment shown in FIG. This is an example in which two angle changing portions are provided at which the taper angle changes to 2/3 or less with respect to the direction of the traffic line. In FIG. 2, parts common to FIG. 1 are denoted by the same reference numerals.
[0021]
That is, in this embodiment, the tapered portion 16, first becomes a first taper portion 16a of the taper angle of the nipple 12 side is formed of theta 1, from subsequent taper angle theta 1 2/3 following theta 2 and a second taper portion 16b, which taper angle further subsequent is composed of a third taper portion 16c consisting of 2/3 or less of the theta 3 of theta 2. P 1 and P 2 show the angle change unit which changes from each of the first taper portion 16a second tapered portion 16b, and a second tapered portion 16b to the third tapered portion 16c.
[0022]
As described above, in the optical fiber tape core resin coating die 102 in which the angle changing portion is provided in two places of the tapered portion 16, the angle changing portion is provided in one portion of the tapered portion 16 as shown in FIG. Since the pressure of the resin 13 in the optical fiber insertion hole 14 can be further increased as compared with the above, it is possible to more effectively prevent the entrapment of air when the optical fiber 15 enters the resin 13. Thus, the incorporation of air bubbles into the resin coating can be more reliably prevented.
[0023]
Also in this embodiment, the positions of the angle change portions P 1 and P 2 of the taper angle in the taper portion 16 are not particularly limited, and the taper angle θ 1 and the second taper angle of the first taper portion 16a are not limited. provided that the taper angle theta 2 and the taper angle theta 3 of the third tapered portion 16c of the tapered portion 16b is, theta 2 is at 2/3 or less of the theta 1, theta 3 is 2/3 or less of theta 2 Is not particularly limited as long as the above is satisfied.
[0024]
Next, in order to confirm the effect of the present invention, a four-core optical fiber tape core was manufactured using the optical fiber tape core resin coating dies 101 and 102 as described above, and an experimental example in which the characteristics were examined. Describe. Except for the dice, an apparatus generally used conventionally was used.
[0025]
Experimental Example No. 1 to No. 6
Using an optical fiber tape core resin coating die shown in FIG. 1 under the conditions shown in Table 1 where θ 1 and θ 2 are as shown in Table 1, an ultraviolet curable type is provided around four optical fiber strands having a diameter of 250 μm arranged in parallel. Resin is collectively coated to form a 4-core optical fiber ribbon (No. 1) having a width of about 1.1 mm and a thickness of about 0.4 mm, and a 4-core optical fiber having a width of about 1.1 mm and a thickness of about 0.3 mm. Tape core wires (No. 2 to No. 6) were manufactured.
[0026]
Experimental Example No. 7
Using the optical fiber tape core resin coating die shown in FIG. 2 under the conditions shown in Table 1 where θ 1 , θ 2 , and θ 3 are as shown in FIG. A four-core optical fiber ribbon having a width of about 1.1 mm and a thickness of 0.3 mm was manufactured by simultaneously coating an ultraviolet curable resin.
[0027]
About the obtained optical fiber ribbon, the number of bubbles per 10 cm contained in the batch coating and the transmission loss were measured as described below.
That is, the number of bubbles was calculated by observing the number of bubbles for each optical fiber tape core wire 10 cm under a microscope, and calculating the average value. As for the transmission loss, the transmission loss at a wavelength of 1.55 μm was measured for each of the four optical fibers in each optical fiber ribbon, and the average value was calculated. Then, 0.22 dB / km or less was regarded as acceptable.
[0028]
The results are shown in Table 1.
[Table 1]
Figure 2004157226
[0029]
As is clear from Table 1, No. 1 using a dice having substantially the same θ 1 and θ 2 and a conventional structure was used. 1 and No. No. 2 produced the so-called thick-type optical fiber tape core wire. In No. 1, good results were obtained in both the number of bubbles and the transmission loss, but No. 1 produced a so-called thin-type optical fiber ribbon. In No. 2, the number of bubbles was large, and the result of transmission loss was poor. In addition, in the case of No. 2 in which the angle ratio exceeds 2/3, Similarly, in Example 3, the number of bubbles was also large, and the result of transmission loss was poor. On the other hand, No. 2 having an angle ratio of 2/3 or less. 4-No. In the example of No. 6, good results were obtained in both the number of bubbles and the transmission loss, despite being a thin-type optical fiber tape. No. 2 in which two angle changing portions having an angle ratio of 2/3 or less were provided. In the example of 7, the result was also good.
[0030]
In addition, No. 2 and No. In Example 6, the distribution of pressure applied to the optical fiber in the die at the time of resin coating was measured. The results are shown in FIG.
As apparent from FIG. 3, No. angular ratio (θ 2 / θ 1) is 2/3 or less In the example of No. 6, the pressure applied to the optical fiber strand is No. 6 with an angle ratio (θ 2 / θ 1 ) of 1.0. Compared with the example of FIG. 1, the temperature rises sharply, particularly at the entrance, and it is presumed that such a difference in characteristics has occurred due to the increase in the pressure.
[0031]
【The invention's effect】
As described above, according to the optical fiber tape core resin coating die of the present invention, the taper angle at which the optical fiber strand is inserted is 2 / Since at least one angle changing portion that changes to 3 or less is provided, air entrapment between the optical fiber strands when the optical fiber strands enter the resin in the die is prevented, and air bubbles in the coating are prevented. Mixing can be prevented.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a first embodiment of an optical fiber cable according to the present invention.
FIG. 2 is a sectional view showing a second embodiment of the optical fiber cable of the present invention.
FIG. 3 is a graph showing a relationship between a structure of a die and a pressure applied to an optical fiber in the die.
FIG. 4 is a sectional view showing an example of a conventional optical fiber tape core resin coating die.
[Explanation of symbols]
12 Nipple 13 Resin for coating 14 Optical fiber insertion hole 15 Optical fiber 16 Tapered portion 16a First tapered portion 16b 2 of the tapered portion 16c ......... third tapered portion P, P 1, P 2 ......... angle change unit 101 ......... optical fiber ribbon resin coating die

Claims (1)

平行に配列した複数本の光ファイバ素線が挿通される光ファイバ素線挿通孔を有する光ファイバテープ心線樹脂被覆用ダイスにおいて、
前記光ファイバ素線挿通孔には、光ファイバ素線の通線方向に沿って断面積が連続的に減少するテーパ部が形成されており、かつ、このテーパ部には、光ファイバ素線の通線方向に対してテーパ角が2/3以下に変化する角度変化部が少なくとも1箇所設けられていることを特徴とする光ファイバテープ心線樹脂被覆用ダイス。
In an optical fiber tape core resin coating die having an optical fiber wire insertion hole through which a plurality of optical fiber wires arranged in parallel are inserted,
In the optical fiber wire insertion hole, a tapered portion whose cross-sectional area is continuously reduced along the direction of the optical fiber wire is formed, and the tapered portion has an optical fiber wire. An optical fiber tape core resin coating die, wherein at least one angle changing portion whose taper angle changes to 2/3 or less with respect to the wire direction is provided.
JP2002320998A 2002-11-05 2002-11-05 Dies for optical fiber tape core resin coating Expired - Fee Related JP3926249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002320998A JP3926249B2 (en) 2002-11-05 2002-11-05 Dies for optical fiber tape core resin coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002320998A JP3926249B2 (en) 2002-11-05 2002-11-05 Dies for optical fiber tape core resin coating

Publications (2)

Publication Number Publication Date
JP2004157226A true JP2004157226A (en) 2004-06-03
JP3926249B2 JP3926249B2 (en) 2007-06-06

Family

ID=32801681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002320998A Expired - Fee Related JP3926249B2 (en) 2002-11-05 2002-11-05 Dies for optical fiber tape core resin coating

Country Status (1)

Country Link
JP (1) JP3926249B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019133033A (en) * 2018-01-31 2019-08-08 住友電気工業株式会社 Coating device for optical fiber ribbon, and method for manufacturing optical fiber ribbon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019133033A (en) * 2018-01-31 2019-08-08 住友電気工業株式会社 Coating device for optical fiber ribbon, and method for manufacturing optical fiber ribbon
JP7006324B2 (en) 2018-01-31 2022-01-24 住友電気工業株式会社 Covering device for optical fiber tape core wire and manufacturing method of optical fiber tape core wire

Also Published As

Publication number Publication date
JP3926249B2 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
CN100371754C (en) Optical fiber tape core
US10598888B2 (en) Intermittent connection type optical fiber ribbon having improved density, manufacturing method of the ribbon, optical fiber cable, and optical cable fiber code
EP3693775A1 (en) Intermittent connection-type optical fiber tape and manufacturing method therefor
JP2008511869A (en) Optical fiber ribbon with one or more preferential tearing portions and method of manufacturing
JP2016075746A (en) Intermittent type optical fiber tape core wire and manufacturing method thereof
WO2005101080A1 (en) Optical fiber tape unit and optical fiber cable
JP6362302B2 (en) Optical fiber ribbon and optical cable
KR100342503B1 (en) Ribbon optical fiber cable and coating die of ribbon optical fiber
JP4412040B2 (en) Optical fiber tape unit and optical fiber cable
JP3926249B2 (en) Dies for optical fiber tape core resin coating
JP2019074644A (en) Optical fiber ribbon, die, and method for manufacturing optical fiber ribbon
JP3065057B1 (en) Manufacturing method and manufacturing apparatus for optical fiber tape
JP2004325693A (en) Optical fiber cable and method for manufacturing the same
JP2005234361A (en) Optical fiber unit, optical fiber cable using the same, and manufacturing method therefor
JP4957502B2 (en) Optical cable
JP2006292802A (en) Method for manufacturing secondary coated optical fiber and manufacturing equipment
US20050034443A1 (en) Optical fibers twinning apparatus and process
JP2005222080A (en) Optical fiber ribbon and manufacturing method thereof
JP3282851B2 (en) Optical fiber ribbon manufacturing equipment
JP2005091616A (en) Optical fiber cable and method for manufacturing the same
JP2001264604A (en) Apparatus for manufacturing coated optical fiber ribbon
JP3346254B2 (en) Optical fiber
JPH07146428A (en) Coating head for coated fiber in optical fiber tape
JP2005321419A (en) Optical fiber tape unit and optical fiber cable
JP2002048955A (en) Coated optical fiber ribbon and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050119

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060424

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070227

R150 Certificate of patent or registration of utility model

Ref document number: 3926249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees