JP2004157041A - Water leakage detection electrode, water leakage detection system, and water leakage detection method using electrode - Google Patents

Water leakage detection electrode, water leakage detection system, and water leakage detection method using electrode Download PDF

Info

Publication number
JP2004157041A
JP2004157041A JP2002324019A JP2002324019A JP2004157041A JP 2004157041 A JP2004157041 A JP 2004157041A JP 2002324019 A JP2002324019 A JP 2002324019A JP 2002324019 A JP2002324019 A JP 2002324019A JP 2004157041 A JP2004157041 A JP 2004157041A
Authority
JP
Japan
Prior art keywords
current
water
electrode
conductive materials
water leakage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002324019A
Other languages
Japanese (ja)
Other versions
JP4053864B2 (en
Inventor
Hiroaki Hiraoka
博明 平岡
Keiichi Miyazaki
啓一 宮崎
Tsutomu Tanaka
田中  勉
Yukio Sakai
幸雄 酒井
Shigeru Miki
茂 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishimatsu Construction Co Ltd
Kiso Jiban Consultants Co Ltd
Original Assignee
Nishimatsu Construction Co Ltd
Kiso Jiban Consultants Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishimatsu Construction Co Ltd, Kiso Jiban Consultants Co Ltd filed Critical Nishimatsu Construction Co Ltd
Priority to JP2002324019A priority Critical patent/JP4053864B2/en
Publication of JP2004157041A publication Critical patent/JP2004157041A/en
Application granted granted Critical
Publication of JP4053864B2 publication Critical patent/JP4053864B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water leakage detection electrode and a system and a method using the electrode capable of specifying a water leakage spot on an impervious sheet highly accurately by performing correction for adding information characteristic to the electrode which is different according to the installation state. <P>SOLUTION: This water leakage detection electrode 15 includes a plurality of conductive materials 17 provided separately respectively, mountable adjacently on the installation surface respectively, and an insulating material 16 provided between the conductive materials. A current is made to flow between each conductive material 17, and a voltage and the current between each conductive material 17 are measured, to thereby acquire a correction coefficient of the current flowing in the electrode 15 corresponding to the installation state of the electrode 15. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、漏水検知用電極、漏水検知システムおよび漏水検知方法に関し、より詳細には、点電極を用いて電流測定を行うことにより遮水シートの漏水箇所の有無および漏水箇所の位置を特定するために使用される電極、その電極を用いる漏水検知システムおよび漏水検知方法に関する。
【0002】
【従来の技術】
地下水や河川を汚染する恐れのある排水基準に満たない浸出水が発生する可能性がある処分場は、近年、自然環境や生活圏への影響に対する関心の高まりから、安全で確実なものが求められている。通常、処分場は、遮水シートを敷設し、砂層または覆土を設置した後に使用される。この遮水シート敷設時、砂層または覆土の設置時、または処分場として使用する操業時には、汚染された水が周辺環境に流れ出すのを検出するべく、遮水シートの破損の有無やその位置を精度良く検知する漏水検知装置や漏水検知方法が数多く提案されている。
【0003】
従来、上述した漏水検知システムや漏水検知方法としては、遮水シートと遮水シートを敷設する地盤との間に下部電極を設置し、上部電極を用いて遮水シート上から電圧を印加させながら上部電極と下部電極との間の電流、電位または電気抵抗を測定することにより漏水箇所を検出するシステムや方法が用いられている。
【0004】
図1に、従来使用されている点電極を用いて電流を測定することにより遮水シートの漏水箇所の有無や位置を特定するシステムにおいて、処分場エリアに複数の電極を設置した図を示す。図1(a)は、矩形とされた処分場エリア1に、12個の電極2が設置されているところを示した図であり、図示しない印加電極が処分場エリア1に敷設された遮水シートの下部または遮水シートの外部の地盤に設置されている。図1(a)に示す実施の形態では、導線などにより図示しない電流測定手段に接続され、遮水シートの損傷により流れる電流を検出することで漏水箇所の有無を検知することができるようになっている。また、図1(a)に示すシステムでは、複数設置された電極2に流れる電流の大小により、漏水箇所を特定することができる。図1(b)は、従来の漏水検知システムに使用する漏水検知用電極2を示した図である。図1(b)に示す電極2は、所定の大きさの正方形または円形などとされ、単一の導電材から形成されている。通常、図1(b)に示す電極2には、導線が接続され、遮水シートの漏水箇所から漏洩した電流を受け取り、電源に向けて戻すことができるようになっている。
【0005】
図1(a)に示すシステムでは、遮水シートの漏水箇所から電極2までの距離に応じて電流の大小が決定されることを基本としている。しかしながら、現実には、電極2の設置状態によっては、漏水箇所から電極2までの距離に応じて電流の大小が決定されるとは限らず、上述したようにして得た電流分布から特定した漏水箇所が大きくずれている場合も多い。このような場合において、通常、設置された電極間の抵抗といった電気特性を別に測定し、測定した電気特性を用いて電極設置状態のバラツキによる補正が行われている。しかしながら、上記補正では、電極2の周辺の比抵抗の変化も加味されており、電極2の固有の補正がされているとは言えず、測定結果に対して有効な補正ではなかった。したがって、設置される個々の電極2に対して固有の情報を加味する補正を行い、より高い精度で遮水シートの漏水箇所を特定することを可能にする電極、その電極を用いた漏水検知システムおよび方法が望まれている。
【0006】
【発明が解決しようとする課題】
従って、本発明は、上述した問題に鑑み、設置される個々の電極に対して固有の情報を加味する補正を行い、より高い精度で遮水シートの漏水箇所を特定することを可能にする電極、その電極を用いた漏水検知システムおよび方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
すなわち、上記目的は、本発明の漏水検知用電極、該電極を用いる漏水検知システムおよび漏水検知方法を用いることで解決される。
【0008】
本発明の請求項1の発明によれば、地盤の凹所と該凹所に沿った該地盤上に敷設され遮水構造が設けられた遮水部とを備える遮水構造物の漏水を検知するために用いられる電極であって、該電極は、
それぞれが離間して設けられ、それぞれが設置面に隣接させて設置可能な複数の導電材と、
それぞれの前記導電材間に設けられる絶縁材と、
を含み、前記それぞれの導電材間に電流を流し、前記それぞれの導電材間の電圧および電流を計測することにより、前記電極の設置状態に応じた該電極に流れる電流の補正係数を得ることを特徴とする、電極が提供される。
【0009】
本発明の請求項2の発明によれば、前記複数の導電材は、4つの導電板であり、前記導電材間の間隔が等間隔である電極が提供される。
【0010】
本発明の請求項3の発明によれば、地盤の凹所と該凹所に沿った該地盤上に敷設され遮水構造が設けられた遮水部とを備える遮水構造物の漏水を検知するための漏水検知システムであって、該システムは、
前記地盤または前記遮水部に敷設された遮水シートの上部または下部に設置される基準電極と、
前記基準電極が前記地盤または前記遮水シートの下部に設置された場合には該遮水シートの上部に、前記基準電極が前記遮水シートの上部に設置された場合には該遮水シートの下部に設置される、それぞれが離間して設けられ、それぞれが設置面に隣接させて設置可能な複数の導電材とそれぞれの該導電材間に設けられる絶縁材とを含む複数の検知電極と、
前記基準電極に電流を供給する電源と、
前記検知電極を通して流れた電流を測定する電流測定手段と、
前記それぞれの導電材間に電流を流し、前記それぞれの導電材間の電圧および電流を計測することにより前記電極の設置状態に応じた補正係数を得、前記電流測定手段により測定した各検知電極に流れる電流を得、前記補正係数を用いて前記測定した電流を補正し、前記補正した電流から得られた電流分布により前記遮水シートの漏水検知を可能にするコンピュータシステムとを含む、漏水検知システムが提供される。
【0011】
本発明の請求項4の発明によれば、前記複数の導電材は、4つの導電板であり、前記導電材間の間隔が等間隔である漏水検知システムが提供される。
【0012】
本発明の請求項5の発明によれば、前記漏水検知システムは、前記導電材間の電圧および電流を測定するために、前記各導電材に前記電流を供給するとともに前記電流測定手段により前記電流の測定を可能にする複数のスイッチと、電圧測定手段とを含む漏水検知システムが提供される。
【0013】
本発明の請求項6の発明によれば、地盤の凹所と該凹所に沿った該地盤上に敷設され遮水構造が設けられた遮水部とを備える遮水構造物の漏水を検知するための漏水検知方法であって、該方法は、
前記遮水部に敷設された遮水シートの上部または下部に、それぞれが離間して設けられた複数の導電材と該導電材間に設けられる絶縁材とを含む複数の検知電極を配置する段階と、
前記それぞれの導電材間に電流を流し、前記それぞれの導電材間の電圧および電流を計測することにより前記電極の設置状態に応じた補正係数を得る段階と、前記複数の検知電極が前記遮水シートの上部に設置される場合には前記地盤または該遮水シートの下部に、前記複数の検知電極が前記遮水シートの下部に設置される場合には該遮水シートの上部に基準電極を設置して電源から該基準電極に電流を流す段階と、
前記電流測定手段により測定した各検知電極に流れる電流を得る段階と、
前記補正係数を用いて前記測定した電流を補正し、前記補正した電流から得られた電流分布により前記遮水シートの漏水箇所を検知する段階とを含む、漏水検知方法が提供される。
【0014】
本発明の請求項7の発明によれば、前記複数の導電材は、4つの導電板であり、前記導電材間の間隔が等間隔である漏水検知方法が提供される。
【0015】
本発明の請求項8の発明によれば、前記4つの導電板において、第1の導電板に電流を供給し、第2の導電板において流れる電流を測定し、第3の導電板と第4の導電板とを用いて該第3の導電板と該第4の導電板との間の電圧を測定することにより前記検知電極の比抵抗を得る段階をさらに含む漏水検知方法が提供される。
【0016】
【発明の実施の形態】
以下、図面をもって本発明の漏水検知用電極、漏水検知システムおよび漏水検知方法について詳細に説明する。図2は、廃棄物処分場の概略的な断面を示すとともに、本発明の漏水検知システムを設置したところを示した図である。本発明が適用される廃棄物処分場は、地盤3の凹所と、この凹所に沿って地盤3上に設置された遮水部4とから構成されている。地盤3の凹所は、地表から基礎地盤に向かって掘りこんで人工的に形成されていても良く、また、山間部等の沢や谷間を用いる場合には、その地形を用いることもできる。このような凹所内には、遮水部4が設けられ、遮水部4内に廃棄物5が投棄される。雨水等により発生する汚水は、遮水部4により遮水部4の外部へ浸出しないようにされている。
【0017】
図2に示す遮水部4は、廃棄物5に隣接する保護層6と、この保護層6に隣接する遮水シート7と、遮水シート7の下側に設けられた遮水層8とから構成されている。砂層または覆工といった保護層6は、廃棄物5が投棄される際、遮水シート7を保護するために設置される。この保護層6は、必要とされる高さまで砂または土を設置することができる。遮水シート7としては、合成ゴムまたはプラスチック製のシート、具体的にはメタロセン系触媒で製造された線状低密度ポリエチレン(LLDPE)、中密度ポリエチレン(MDPE)、またはチーグラー・ナッタ系触媒で製造された線状低密度ポリエチレン(LLDPE)、中密度ポリエチレン(MDPE)などのオレフィン系樹脂などから形成される遮水シートが用いられる。また、その厚さや材質などは、必要な遮水性、耐久性が得られるものであればいかなるものであっても良い。
【0018】
上述した遮水層8は、敷設する遮水シート7の保護に加えて低透水性構造とされ、この低透水性構造を土質材料からなる土質遮水層またはアスファルトのほか、粘土質、アスファルト、コンクリートといった透水性の低い材料、またはこれらを適宜組み合わせて用いることができる。本発明では、遮水シート7の保護のために、遮水層8の上に保護土を必要に応じて設けることができる。
【0019】
本発明の漏水検知システムは、保護層6上の凹所内の底面部9に配置される複数の検知電極10と、遮水部4の外部の地盤3に基準電極11と、基準電極11に電流を供給する電源12と、検知電極10を通して流れた電流を測定する電流測定手段13と、測定した電流値を取得し、予めそれぞれの検知電極10に流れる電流および検知電極間の電圧を測定し、各検知電極10に固有の補正係数を算出することを可能にするコンピュータシステム14とを含んでいる。本発明の漏水検知システムは、さらに各検知電極10に流れる電流をそれぞれについて計測することを可能にするための複数のスイッチと、検知電極間の電圧を測定するための電圧測定手段とを含んでいる。本発明においては、複数の検知電極10を遮水シート7の上部に設置する場合には基準電極11は、遮水シート7の下部または地盤3に、複数の検知電極10を遮水シート7の下部に設置する場合には基準電極11は、遮水シート7の上部に設置される。
【0020】
本発明に用いることができる基準電極11としては、導電性ものであればいかなる材質でも良く、例えば、鉄、銅、鉛、アルミニウム、パラジウムなどの金属、ポリアニリン、ポリアセチレン、ポリピロール、ポリチオフェン、ポリアセン、ポリパラフェニレンといった導電性ポリマー、カーボンブラック、グラファイトなどのものを用いることができる。ただし、遮水シート7の下部に設置する場合や、遮水シート7の上部に設置する場合において、腐蝕しても交換が容易でない場合には耐腐蝕性の材料を用いることができる。また、本発明に用いることができる基準電極11は、平板、円柱状などいかなる形状であっても良い。さらに、本発明に用いることができる基準電極11は、保持性を向上させるために地盤3に向く側に突起などが設けられていても良い。
【0021】
本発明において基準電極11からの電流は、地盤3を通り、遮水シート7の漏水箇所を通して検知電極10に向けて流れる。遮水シート7は、漏水箇所が存在しない場合には絶縁物であるため、電流は流れない。また、漏水箇所を通して流れた電流は、漏水箇所からの距離により、漏水箇所に近い検知電極10では大きい電流が検出され、遠い検知電極10では小さい電流が検出される。しかしながら、検知電極10が、保護層6に検知電極10の面すべてが接しているか、一部のみしか接しておらず一部が浮いているといったように設置状態によって、検出される電流が異なり、上述したように漏水箇所からの距離だけでは正確に漏水箇所を特定することができない。したがって、電流測定の結果が、検知電極10の設置状態によるバラツキをも考慮したものとなるように、補正することを可能にする本発明の検知電極10を用いる。本発明の検知電極10は、いかなる数でも設けることができる。また、検知電極10は、保持性を向上させるために保護層6に向く側に突起などが設けられた構造とすることができる。本発明の検知電極10の詳細については、以下に説明する。
【0022】
図2に示す検知電極10および基準電極11は、各検知電極10に流れる電流を測定するために電流測定手段13および電流を供給するための電源12にそれぞれ接続されている。本発明においては、直流電流および交流電流のいずれも使用することができる。交流電流を用いる場合には、漏水箇所が存在しない絶縁体である遮水シート7を通して電流が流れるため、予めその電流値を測定しておく必要がある。交流電流を使用して漏水箇所を検知する場合、予め測定しておいた電流値よりも大きい電流値を測定することで漏水箇所が存在することを検知することができる。以下、直流電流を用いて漏水検知を行うものとして説明する。図2においては、電源12から基準電極11に電流を流し、漏水箇所が存在する場合には各検知電極10に電流が流れる。この場合、電流測定手段13において電流が検出され、電流値を測定することができる。本発明においては、電流測定手段13を1つとし、複数のスイッチを用いて検知電極10をそれぞれ切り替えて各検知電極10に流れる電流を測定することができる。また、本発明においては、各検知電極10のそれぞれに電流測定手段13を設けることもできる。
【0023】
本発明においては、個々の検知電極10において比抵抗を得ることができ、この比抵抗から検知電極10の設置状態に応じた補正係数を得ることができる。本発明において補正係数は、供給する電流値、電源12での電圧、測定した個々の電流値、電圧を用いて計算することができる今まで知られたいかなる計算式でも使用することができる。上記比抵抗、これらの計算は、コンピュータシステム14によって行うことができる。本発明においてコンピュータシステム14は、上記計算を行うことができ、電流分布を表示し、各検知電極10に流れる電流の有無の監視、電源12からの電流量および電圧の監視や変更操作、複数のスイッチを用いる場合にはスイッチの開閉操作やその監視などを行うことができる。また、コンピュータシステム14は、上記操作および監視、計算を行うために今まで知られたいかなるプログラムを使用して実行することができる。本発明においてコンピュータシステムは、パーソナルコンピュータ、ワークステーションなどいかなるコンピュータでも用いることができる。
【0024】
図3は、本発明の漏水検知用電極を例示した図である。図3に示す電極15は、図2に示す検知電極10として使用することができるものである。図3(a)は、電極15の上面図、図3(b)は、電極15の正面図、図3(c)は、電極15底面図を示す。なお、側面図および背面図は、図3(b)に示す正面図と同じである。図3(a)の上面図で示す電極15は、正方形の平板である絶縁板16に、4つの導電板17を備えた構造とされている。また、各導電板17は、正方形の平板とされ、絶縁板16の4隅に等間隔に離間して配設されている。図3(c)の底面図に示す構造も、図3(a)の上面図に示す構造と同じとされ、設置面となる保護層6に隣接させて設置することができるようになっている。図3に示す電極15は、正方形の絶縁板16の4隅を所定の大きさにくり抜き、くり抜いた部分に接着剤などを用いて導電板17を配設することができる。また、十字状の絶縁部材に矩形の導電板17を接着または接合したものを用いることもできる。本発明では、上記方法以外のいかなる方法を使用して電極15を作製することができる。本発明において導電板17は、4つ以外にいかなる数設けられていても良い。また、正方形でなくてもいかなる形状であっても良い。さらには、導電板17でなくても、導電材であればいかなる立体形状であっても良い。また、各導電板17が離間して配設されていれば、その間隔はいかなる間隔であっても良い。本発明に用いることができる導電板17としては、保護層6上の凹所内の底面部9に設置され、上部に廃棄物5が投棄される場合や、遮水シート7の下部に設置する場合には、耐腐食性の材料から製造されたものを用いることもできるが、竣工検査を目的とするような場合や腐食したとしても交換が容易であれば、耐腐食性の材料に限らず、導電性を有するものであればいかなる材料であっても良い。本発明において絶縁板16は、上述した正方形に限らず、いかなる形状、いかなる立体形状であっても良い。ただし、導電材が保護層6に接することができるように露出した構造とされることが好ましい。本発明において絶縁材は、セラミック、ガラス、アクリル樹脂、ポリスチレン、ゴムといった材料を用いて形成することができる。
【0025】
図4は、図3に示す電極を検知電極として使用し、補正係数を求めるために回路を形成したところを示した図である。図4に示す検知電極10は、図3に示したように絶縁板16に4つの導電板17a〜17dが離間して配設されていて、導電板17a〜17dには、それぞれ導線が接続されていて、個別に電流を流すことができるようにスイッチS1〜S8が接続されている。図4に示す実施の形態では、スイッチS3とスイッチS8とがONにされ、その他のスイッチS1、S2、S4〜S7がOFFとされている。また、印加電圧を測定するために電圧測定手段18が設けられている。これにより、電源12から供給される電流は、スイッチS3を通して導電板17aに流れ、導電板17aが隣接する設置面(図2に示す保護層6)を通して導電板17bへと流れ、スイッチS8を介し、電流測定手段13を通して電源12に戻る回路を形成している。また、導電板17aと導電板17bとの間の電圧を電圧測定手段18により測定する。測定した電圧および電流を使用して、導電板17aから検知電極10の設置面を介して導電層17bに電流が流れる場合の導電板間の抵抗を得ることができる。また、スイッチS1〜S8を切り替えることにより、各導電板17a〜17dのそれぞれの間の抵抗を得ることができる。各導電板17a〜17dが等間隔で離間し、図2に示す保護層6に導電板17a〜17dの全面が適切に接しているといったように設置状態が導電板17a〜17dにおいて等しい状態であれば、各導電板間において同じ抵抗を得ることができる。本発明においては、すべての検知電極10に対して導電板間の抵抗を得、得られた抵抗を用いて、電極固有の補正係数を求めることができる。
【0026】
具体的に図5を用いて補正係数について説明する。図5は、凹所内の処分場エリアに遮水シートが敷設され、図2に示した保護層6が設置された後、底面部9に複数の検知電極10a〜10cが設置されている。図5においては、3つの検知電極10a〜10cのみが示されていて、それぞれの検知電極10a〜10cには、4つずつ導電板17a〜17lが設けられている。各検知電極10a〜10cにおいて上述したようにして、それぞれ導電板間の抵抗が得られ、この抵抗の大きさにより設置状態を検知することができる。図5には、各検知電極10a〜10cにおいて得られた抵抗値が例示されている。例えば、導電板17aと導電板17bとの間の抵抗は、0.5Ωである。電流は、導電板17aに接続された図示しない導線を通して供給され、図2に示した保護層6を通して導電板17bに流れる。導電板17bに流れた電流が図2に示す電流測定手段13で測定され、また導電板17a、17b間の電圧も測定される。この測定結果を使用して抵抗を得ることができる。その抵抗は、それぞれの導電板17a〜17lに同じ量の電流を流し、上述したようにしてそれぞれの導電板間について得ることができる。
【0027】
また、図5において検知電極10aでは、抵抗の合計値が3Ω、検知電極10bでは、5Ω、検知電極10cでは、3.5Ωとなっている。検知電極10aが最も接地抵抗が低く、電流が流れやすいということができる。このように、検知電極10a〜10cによって異なる接地抵抗を示すことから、補正をしない場合は、検知電極10aが検知電極10cよりも、漏水箇所から遠い位置に設置されているにもかかわらず、より多くの電流を検出する可能性がある。この場合、正確な電流分布を得ることができず、正確な漏水箇所を検出することができない。本発明では、例えば、検知電極10aを基準にすると、検知電極10bでは、3/5倍となっており、検知電極10cでは、3/3.5倍とになっている。これは、検知電極10aと同じ設置状態であれば同じ値が得られるにもかかわらず、設置状態が異なっているために電流がながれにくくなっていることを示す。このように、3/5および3/3.5を補正係数として測定した電流値の補正に使用することで、各検知電極10a〜10cにおける正確な電流分布を得ることができる。本発明において補正係数は、上記抵抗の合計値に限らず、各導電板間に流れる電流量、各検知電極10a〜10cにおいて測定された各導電板間の抵抗の平均値や電流の平均値などを用いて求めることができる。また、本発明においては、検知電極間の抵抗といった電気特性を加味した補正とすることもできる。さらに、本発明においては、図5に示すように4つの導電板17a〜17lから構成されている検知電極10a〜10cの場合、各検知電極10a〜10cにおいて2つを1組にし、一対の導電板において導電板間に電流を流して電流を測定し、もう一対の導電板において導電板間の電圧を測定する。このようにすることで、検知電極における比抵抗を得ることができ、この比抵抗を上記補正に加え、二次的な補正に使用することができる。本発明においては、上述した抵抗、比抵抗を計算するために、今まで知られたいかなる計算式を使用して計算することができる。
【0028】
図6は、本発明に用いられる検知電極10を所定位置に配置したところを示した図である。図6に示す実施の形態では、地表から基礎地盤に向かって掘りこむなどして形成された廃棄物処分場に、図6に示す遮水層8を構築した後、凹所内に遮水シート7が敷設され、遮水シート7上に保護層6が設置されている。また、保護層6を設置した凹所内の矩形の底面部9に所定間隔で複数の検知電極10が設置されている。これらの検知電極10は、図2に示す電流測定手段13に接続されていて、それぞれの電流が測定できるようになっている。また、遮水シート7の外部の地盤3に基準電極11が設置され、図2に示す電源12から基準電極11に電流が供給されている。
【0029】
本発明においては、予め上述したように各検知電極10において電極固有の補正係数が求められる。遮水シート7に破損などがない場合、基準電極11から供給される電流は、遮水シート7を通して流れない。電流測定手段13で各検知電極10に流れる電流を検出した場合には、遮水シート7に漏水箇所が存在することがわかる。これは、基準電極11から供給された電流が遮水シート7の漏水箇所を通して流れていることを示す。各検知電極10において検出される電流値は、通常、検知電極10と漏水箇所との間の距離に関係するが、上述したように検知電極10の設置状態によって異なるため、上述した補正が行われる。補正された電流を使用して電流分布が作成され、電流分布を用いて最も電流値が高くなる箇所を漏水箇所として特定することができる。特定された漏水箇所は、保護層6を掘削して遮水シート7の補修を行うことができる。本発明においては、上述した補正および電流分布の作成は、図2に示すコンピュータシステム14を使用して行うことができ、電流分布はコンピュータシステム14に設けられるモニタに表示させることができる。また、電流測定は、所定期間ごとに行うことができ、電流測定により取得されるごとに電流分布を作成し、遮水シート7の損傷を監視することができる。
【0030】
図7は、測定した電流により作成された電流分布と、予め求められた補正係数を用いて補正された電流を使用して作成された電流分布とを示した図である。図2に示す本発明の漏水検知システムを使用して一定の電流を流し、各検知電極10に流れる電流を電流測定手段13で測定する。この場合、漏水箇所が存在し、その漏水箇所を通して各検知電極19に電流が流れる。図7(a)は、従来の単一の導電材から形成されている検知電極19を用い、各検知電極19に流れた電流を測定した結果を電流分布として示した図である。また、実際に存在する漏水箇所をXで示す。なお、図7(a)に示す実線は、測定して得られた電流値の同じ値のものを滑らかにつないだものである。この測定結果から得られた漏水箇所は、最も電流値が高くなる箇所であり、電流分布から特定される漏水箇所をBで示す。また、予め各検知電極10において測定された導電板間の抵抗から得られた補正係数を使用して各電流値について補正を行い、補正電流を得る。この結果を電流分布として図7(b)に示す。図7(a)と同様に、補正により得られた電流値の同じ値をのものを滑らかにつないで実線で示す。図7(a)に示された補正を行わない電流分布と、図7(b)に示された補正を行った電流分布とは、互いに相違しており、補正を行った電流分布から特定された漏水箇所Cは、漏水箇所Bの位置とは異なった箇所であることが示されている。また、補正を行った電流分布から得られた漏水箇所Cは、実際の漏水箇所Xに近い位置を示している。このように、本発明の漏水検知用電極を使用して予め電極固有の補正係数を求めておき、漏水箇所が存在する場合において検出された電流に補正係数を加味することで、より正確な漏水箇所を特定することができる。
【0031】
【発明の効果】
上述したように、本発明の漏水検知用電極は、設置状態によって異なる電極固有の情報を加味する補正を行い、より高い精度で遮水シートの漏水箇所を特定することを可能にする。本発明の漏水検知システムおよび漏水検知方法は、本発明の漏水検知用電極を用いることで、設置状態による測定誤差を少なくすることができ、測定結果の電流分布がより正確となり、遮水シートの漏水箇所の特定精度を向上させることができる。
【図面の簡単な説明】
【図1】従来の検知用電極を処分場エリアに設置したところ示した図。
【図2】廃棄物処分場の概略的な断面を示すとともに、本発明の漏水検知システムを設置したところを示した図。
【図3】本発明の漏水検知用電極を例示した図。
【図4】図3に示す電極を使用して補正係数を求めるために回路を形成したところを示した図。
【図5】本発明の漏水検知用電極を設置し、各導電板間の抵抗を測定した結果を示した図。
【図6】本発明の漏水検知用電極を設置して遮水シートの漏水箇所を検知しているところを示した図。
【図7】従来の測定結果を示す電流分布と、本発明の測定結果を示す電流分布とを示した図。
【符号の説明】
1…処分場エリア
2…電極
3…地盤
4…遮水部
5…廃棄物
6…保護層
7…遮水シート
8…遮水層
9…底面部
10、10a〜10c…検知電極
11…基準電極
12…電源
13…電流測定手段
14…コンピュータシステム
15…電極
16…絶縁板
17、17a〜17l…導電板
18…電圧測定手段
19…検知電極
B、C、X…漏水箇所
S1〜S8…スイッチ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a water leakage detection electrode, a water leakage detection system, and a water leakage detection method, and more specifically, specifies the presence / absence of a water leakage point and the position of a water leakage point of a water impermeable sheet by performing current measurement using a point electrode. The present invention relates to an electrode used for this, a water leak detection system using the electrode, and a water leak detection method.
[0002]
[Prior art]
In recent years, there has been growing interest in the impact on the natural environment and living spheres of disposal sites that may generate leachate that does not meet drainage standards that may contaminate groundwater and rivers. Have been. Usually, a disposal site is used after laying a seepage control sheet and installing a sand layer or earth covering. When laying the impermeable sheet, setting sand layer or earth covering, or operating as a disposal site, the accuracy of the impermeable sheet is checked to determine whether or not the impermeable sheet flows out to the surrounding environment. Many leak detecting devices and leak detecting methods for detecting well have been proposed.
[0003]
Conventionally, as the above-described water leakage detection system and water leakage detection method, a lower electrode is installed between the water-impervious sheet and the ground on which the water-impervious sheet is laid, and a voltage is applied from above the water-impervious sheet using the upper electrode. Systems and methods for detecting a leak location by measuring current, potential or electrical resistance between an upper electrode and a lower electrode have been used.
[0004]
FIG. 1 shows a diagram in which a plurality of electrodes are installed in a disposal site area in a conventionally used system for measuring the current using a point electrode to specify the presence / absence and position of a water leakage sheet leakage point. FIG. 1A is a diagram showing that 12 electrodes 2 are installed in a disposal area 1 having a rectangular shape, and a non-illustrated application electrode is laid in the disposal area 1. It is installed below the sheet or on the ground outside the impermeable sheet. In the embodiment shown in FIG. 1A, the presence or absence of a water leaking portion can be detected by detecting a current flowing due to damage to the impermeable sheet, which is connected to a current measuring unit (not shown) by a conducting wire or the like. ing. In the system shown in FIG. 1A, the location of the water leakage can be specified based on the magnitude of the current flowing through the plurality of electrodes 2 installed. FIG. 1B is a diagram showing a water leak detection electrode 2 used in a conventional water leak detection system. The electrode 2 shown in FIG. 1B has a square or circular shape having a predetermined size and is formed of a single conductive material. Normally, a conductive wire is connected to the electrode 2 shown in FIG. 1 (b), so that it can receive the current leaked from the water leakage portion of the impermeable sheet and return it to the power supply.
[0005]
The system shown in FIG. 1A is based on the fact that the magnitude of the current is determined according to the distance from the water leakage point of the impermeable sheet to the electrode 2. However, in reality, depending on the installation state of the electrode 2, the magnitude of the current is not always determined according to the distance from the leak location to the electrode 2, and the water leakage specified from the current distribution obtained as described above is not always determined. In many cases, the locations are greatly shifted. In such a case, usually, electrical characteristics such as resistance between the installed electrodes are separately measured, and correction is performed by using the measured electrical characteristics due to variations in the electrode installation state. However, in the above correction, a change in the specific resistance around the electrode 2 is also taken into account, and it cannot be said that the correction unique to the electrode 2 is performed, and the correction is not effective for the measurement result. Therefore, an electrode that performs correction that takes into account unique information for each installed electrode 2 and can specify a leak location of the impermeable sheet with higher accuracy, a leak detection system using the electrode And methods are desired.
[0006]
[Problems to be solved by the invention]
Accordingly, the present invention has been made in view of the above-described problems, and has been made an electrode capable of performing a correction in consideration of information unique to each installed electrode, and specifying a water leakage portion of the impermeable sheet with higher accuracy. And a water leak detection system and method using the electrode.
[0007]
[Means for Solving the Problems]
That is, the above-mentioned object is solved by using the water leakage detection electrode, the water leakage detection system and the water leakage detection method using the electrode according to the present invention.
[0008]
According to the invention of claim 1 of the present invention, water leakage of a water-blocking structure including a recess in the ground and a water-blocking portion provided on the ground along the recess and provided with a water-blocking structure is detected. An electrode that is used to
A plurality of conductive materials, each of which is spaced apart and each can be installed adjacent to the installation surface,
An insulating material provided between each of the conductive materials,
Including passing a current between the respective conductive materials, and measuring a voltage and a current between the respective conductive materials, thereby obtaining a correction coefficient of a current flowing through the electrode according to the installation state of the electrode. An electrode is provided, characterized in that:
[0009]
According to the invention of claim 2 of the present invention, an electrode is provided in which the plurality of conductive materials are four conductive plates, and the intervals between the conductive materials are equal.
[0010]
According to the invention of claim 3 of the present invention, water leakage of a water-blocking structure including a recess in the ground and a water-blocking portion provided on the ground along the recess and provided with a water-blocking structure is detected. A water leak detection system, comprising:
A reference electrode installed above or below the impermeable sheet laid on the ground or the impermeable section,
When the reference electrode is installed under the ground or the water-impervious sheet, on the upper part of the water-impervious sheet, when the reference electrode is installed on the upper part of the water-impervious sheet, A plurality of sensing electrodes provided at a lower portion, each including a plurality of conductive materials that can be installed adjacent to the installation surface and an insulating material provided between the conductive materials, respectively.
A power supply for supplying a current to the reference electrode;
Current measuring means for measuring a current flowing through the sensing electrode,
A current flows between the respective conductive materials, and a voltage and a current between the respective conductive materials are measured to obtain a correction coefficient corresponding to the installation state of the electrode, and the detection electrode is measured by the current measuring unit. A computer system that obtains a flowing current, corrects the measured current using the correction coefficient, and enables water leak detection of the impermeable sheet by a current distribution obtained from the corrected current. Is provided.
[0011]
According to the invention of claim 4 of the present invention, there is provided a water leakage detection system in which the plurality of conductive materials are four conductive plates, and the intervals between the conductive materials are equal.
[0012]
According to the invention of claim 5 of the present invention, the water leakage detection system supplies the current to each of the conductive materials and measures the current by the current measuring means in order to measure a voltage and a current between the conductive materials. A water leakage detection system is provided that includes a plurality of switches that enable measurement of the voltage and a voltage measurement unit.
[0013]
According to the invention of claim 6 of the present invention, water leakage of a water-blocking structure including a concave portion of the ground and a water-blocking portion provided on the ground along the concave portion and provided with a water-blocking structure is detected. A method for detecting water leakage, the method comprising:
Arranging a plurality of sensing electrodes including a plurality of conductive materials provided separately from each other and an insulating material provided between the conductive materials on an upper portion or a lower portion of the water-impervious sheet laid on the water-impervious portion; When,
Passing a current between the respective conductive materials and obtaining a correction coefficient according to the installation state of the electrodes by measuring a voltage and a current between the respective conductive materials; and When installed above the sheet, a reference electrode is provided above the ground or below the seepage control sheet, and when the plurality of detection electrodes are installed below the seepage control sheet, above the seepage control sheet. Installing and passing a current from the power supply to the reference electrode;
Obtaining a current flowing through each detection electrode measured by the current measuring means,
Correcting the measured current using the correction coefficient, and detecting a leak location of the impermeable sheet based on a current distribution obtained from the corrected current.
[0014]
According to the invention of claim 7 of the present invention, there is provided a water leakage detection method in which the plurality of conductive members are four conductive plates, and the intervals between the conductive members are equal.
[0015]
According to the invention of claim 8 of the present invention, in the four conductive plates, a current is supplied to the first conductive plate, a current flowing in the second conductive plate is measured, and the fourth conductive plate is connected to the fourth conductive plate. A method for detecting water leakage is provided, further comprising the step of measuring a voltage between the third conductive plate and the fourth conductive plate using the conductive plate of (a) and (b) to obtain a specific resistance of the detection electrode.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the water leakage detection electrode, the water leakage detection system, and the water leakage detection method of the present invention will be described in detail with reference to the drawings. FIG. 2 is a diagram showing a schematic cross section of a waste disposal site and a place where the water leakage detection system of the present invention is installed. The waste disposal site to which the present invention is applied is composed of a concave portion of the ground 3 and a water shielding portion 4 installed on the ground 3 along the concave portion. The recess of the ground 3 may be dug from the surface of the ground toward the foundation ground to be artificially formed, and when a swamp or a valley such as a mountain area is used, its topography can be used. A water-blocking part 4 is provided in such a recess, and waste 5 is dumped in the water-blocking part 4. Dirty water generated by rainwater or the like is prevented from leaking out of the water blocking section 4 by the water blocking section 4.
[0017]
2 includes a protective layer 6 adjacent to the waste 5, a waterproof sheet 7 adjacent to the protective layer 6, and a waterproof layer 8 provided below the waterproof sheet 7. It is composed of A protective layer 6 such as a sand layer or a lining is provided to protect the water-impervious sheet 7 when the waste 5 is dumped. This protective layer 6 can be laid with sand or earth to the required height. As the water-blocking sheet 7, a sheet made of a synthetic rubber or a plastic, specifically, a linear low-density polyethylene (LLDPE), a medium-density polyethylene (MDPE), or a Ziegler-Natta catalyst manufactured by a metallocene catalyst is used. A water-blocking sheet formed from an olefin-based resin such as a linear low-density polyethylene (LLDPE) or a medium-density polyethylene (MDPE) is used. The thickness, material, and the like may be any as long as necessary water shielding and durability can be obtained.
[0018]
The above-described water-impervious layer 8 has a low water-permeability structure in addition to protecting the water-impervious sheet 7 to be laid, and this low water-permeability structure is made of clay, asphalt, A material having low water permeability such as concrete, or a combination thereof can be used as appropriate. In the present invention, a protective soil can be provided on the water-impervious layer 8 as needed to protect the water-impervious sheet 7.
[0019]
The water leakage detection system according to the present invention includes a plurality of detection electrodes 10 arranged on a bottom surface 9 in a recess on the protective layer 6, a reference electrode 11 on the ground 3 outside the water shielding section 4, and a current supply on the reference electrode 11. , A current measuring means 13 for measuring a current flowing through the detection electrodes 10, and a measured current value is obtained, and a current flowing to each of the detection electrodes 10 and a voltage between the detection electrodes are measured in advance. And a computer system 14 that allows the calculation of a correction factor specific to each sensing electrode 10. The water leakage detection system of the present invention further includes a plurality of switches for enabling the current flowing through each of the detection electrodes 10 to be measured for each of them, and voltage measurement means for measuring the voltage between the detection electrodes. I have. In the present invention, when a plurality of detection electrodes 10 are installed above the water-impervious sheet 7, the reference electrode 11 connects the plurality of detection electrodes 10 to the lower part of the water-impervious sheet 7 or the ground 3. When installed at the lower part, the reference electrode 11 is installed at the upper part of the impermeable sheet 7.
[0020]
As the reference electrode 11 that can be used in the present invention, any material may be used as long as it is a conductive material. Conductive polymers such as paraphenylene, carbon black, graphite and the like can be used. However, in the case where it is installed below the water impermeable sheet 7 or when it is installed above the water impermeable sheet 7, if it is not easy to replace even if it is corroded, a corrosion resistant material can be used. Further, the reference electrode 11 that can be used in the present invention may have any shape such as a flat plate and a columnar shape. Further, the reference electrode 11 that can be used in the present invention may be provided with a projection or the like on the side facing the ground 3 in order to improve the holding property.
[0021]
In the present invention, the electric current from the reference electrode 11 passes through the ground 3 and flows toward the detection electrode 10 through the water leakage portion of the impermeable sheet 7. The water impermeable sheet 7 is an insulator when there is no water leakage point, so that no current flows. As for the current flowing through the water leakage point, a large current is detected by the detection electrode 10 near the water leakage point, and a small current is detected by the detection electrode 10 far from the water leakage point, depending on the distance from the water leakage point. However, the current detected differs depending on the installation state such that the entire surface of the detection electrode 10 is in contact with the protective layer 6 or only a part of the surface is in contact with the protective layer 6, and a part is floating. As described above, it is not possible to accurately specify a water leakage point only by a distance from the water leakage point. Therefore, the detection electrode 10 of the present invention that can be corrected so that the result of the current measurement takes into account the variation due to the installation state of the detection electrode 10 is used. Any number of the sensing electrodes 10 of the present invention can be provided. Further, the detection electrode 10 may have a structure in which a projection or the like is provided on the side facing the protective layer 6 in order to improve the retention. Details of the sensing electrode 10 of the present invention will be described below.
[0022]
The detection electrode 10 and the reference electrode 11 shown in FIG. 2 are respectively connected to a current measuring means 13 for measuring a current flowing through each detection electrode 10 and a power supply 12 for supplying the current. In the present invention, both direct current and alternating current can be used. When an alternating current is used, since the current flows through the water-blocking sheet 7 which is an insulator having no water leakage point, the current value needs to be measured in advance. In the case of detecting a water leakage point using an alternating current, the presence of a water leakage point can be detected by measuring a current value larger than a current value measured in advance. Hereinafter, a description will be given assuming that water leak detection is performed using a direct current. In FIG. 2, a current flows from the power supply 12 to the reference electrode 11, and a current flows to each detection electrode 10 when there is a leak location. In this case, the current is detected by the current measuring means 13 and the current value can be measured. In the present invention, a single current measuring unit 13 is used, and the detection electrodes 10 are switched using a plurality of switches, respectively, so that the current flowing through each of the detection electrodes 10 can be measured. Further, in the present invention, the current measuring means 13 can be provided for each of the detection electrodes 10.
[0023]
In the present invention, a specific resistance can be obtained for each detection electrode 10, and a correction coefficient according to the installation state of the detection electrode 10 can be obtained from the specific resistance. In the present invention, the correction coefficient can be any formula known so far that can be calculated using the supplied current value, the voltage at the power supply 12, the measured individual current value, and the voltage. The above-mentioned specific resistances and their calculations can be performed by the computer system 14. In the present invention, the computer system 14 can perform the above calculation, display the current distribution, monitor the presence / absence of the current flowing through each detection electrode 10, monitor and change the amount of current and voltage from the power supply 12, and perform a plurality of operations. When a switch is used, opening and closing operations of the switch and monitoring thereof can be performed. In addition, the computer system 14 can be implemented using any of the programs known to date for performing the operations, monitoring, and calculations. In the present invention, any computer such as a personal computer and a workstation can be used as the computer system.
[0024]
FIG. 3 is a diagram exemplifying a water leakage detection electrode of the present invention. The electrode 15 shown in FIG. 3 can be used as the detection electrode 10 shown in FIG. 3A is a top view of the electrode 15, FIG. 3B is a front view of the electrode 15, and FIG. 3C is a bottom view of the electrode 15. The side view and the rear view are the same as the front view shown in FIG. The electrode 15 shown in the top view of FIG. 3A has a structure in which an insulating plate 16 which is a square flat plate is provided with four conductive plates 17. Each conductive plate 17 is a square flat plate, and is disposed at four corners of the insulating plate 16 at regular intervals. The structure shown in the bottom view of FIG. 3 (c) is the same as the structure shown in the top view of FIG. 3 (a), and can be installed adjacent to the protective layer 6 which is the installation surface. . In the electrode 15 shown in FIG. 3, four corners of a square insulating plate 16 are cut out to a predetermined size, and a conductive plate 17 can be provided in the cut-out portion using an adhesive or the like. Further, a material obtained by bonding or joining a rectangular conductive plate 17 to a cross-shaped insulating member can also be used. In the present invention, the electrode 15 can be manufactured using any method other than the above method. In the present invention, any number of conductive plates 17 other than four may be provided. Further, the shape may be any shape other than the square. Furthermore, any three-dimensional shape may be used instead of the conductive plate 17 as long as it is a conductive material. Further, as long as the respective conductive plates 17 are arranged apart from each other, the intervals may be any intervals. The conductive plate 17 that can be used in the present invention is installed on the bottom surface 9 in the recess on the protective layer 6, and when the waste 5 is dumped on the upper part, or when it is installed on the lower part of the impermeable sheet 7. Can be made of corrosion-resistant materials, but it is not limited to corrosion-resistant materials, as long as it is intended for completion inspection or if it is easy to replace even if it is corroded. Any material may be used as long as it has conductivity. In the present invention, the insulating plate 16 is not limited to the above-described square, but may have any shape or any three-dimensional shape. However, it is preferable that the conductive material has an exposed structure so as to be able to come into contact with the protective layer 6. In the present invention, the insulating material can be formed using a material such as ceramic, glass, acrylic resin, polystyrene, or rubber.
[0025]
FIG. 4 is a diagram showing that a circuit is formed for obtaining a correction coefficient using the electrode shown in FIG. 3 as a detection electrode. In the detection electrode 10 shown in FIG. 4, as shown in FIG. 3, four conductive plates 17a to 17d are arranged at a distance from each other on the insulating plate 16, and a conductive wire is connected to each of the conductive plates 17a to 17d. Switches S1 to S8 are connected so that currents can be individually passed. In the embodiment shown in FIG. 4, the switch S3 and the switch S8 are turned on, and the other switches S1, S2, S4 to S7 are turned off. Further, a voltage measuring means 18 is provided for measuring the applied voltage. As a result, the current supplied from the power supply 12 flows to the conductive plate 17a through the switch S3, the conductive plate 17a flows to the conductive plate 17b through the adjacent installation surface (the protective layer 6 shown in FIG. 2), and passes through the switch S8. And a circuit for returning to the power supply 12 through the current measuring means 13. The voltage between the conductive plate 17a and the conductive plate 17b is measured by the voltage measuring means 18. Using the measured voltage and current, the resistance between the conductive plates when the current flows from the conductive plate 17a to the conductive layer 17b through the installation surface of the detection electrode 10 can be obtained. Further, by switching the switches S1 to S8, the resistance between the conductive plates 17a to 17d can be obtained. The conductive plates 17a to 17d are equally spaced from each other, and the installation state is the same in the conductive plates 17a to 17d such that the entire surface of the conductive plates 17a to 17d is appropriately in contact with the protective layer 6 shown in FIG. If so, the same resistance can be obtained between the conductive plates. In the present invention, the resistance between the conductive plates can be obtained for all of the detection electrodes 10, and the correction coefficient specific to the electrode can be obtained using the obtained resistance.
[0026]
The correction coefficient will be specifically described with reference to FIG. In FIG. 5, after a water-impervious sheet is laid in the disposal site area in the recess and the protective layer 6 shown in FIG. 2 is installed, a plurality of detection electrodes 10 a to 10 c are installed on the bottom surface 9. FIG. 5 shows only three detection electrodes 10a to 10c, and each of the detection electrodes 10a to 10c is provided with four conductive plates 17a to 17l. As described above, the resistance between the conductive plates is obtained in each of the detection electrodes 10a to 10c, and the installation state can be detected based on the magnitude of the resistance. FIG. 5 exemplifies the resistance values obtained at the respective detection electrodes 10a to 10c. For example, the resistance between conductive plate 17a and conductive plate 17b is 0.5Ω. The current is supplied through a conductor (not shown) connected to the conductive plate 17a, and flows to the conductive plate 17b through the protective layer 6 shown in FIG. The current flowing through the conductive plate 17b is measured by the current measuring means 13 shown in FIG. 2, and the voltage between the conductive plates 17a and 17b is also measured. The resistance can be obtained using this measurement result. The resistance can be obtained between the respective conductive plates as described above by applying the same amount of current to the respective conductive plates 17a to 17l.
[0027]
Further, in FIG. 5, the total value of the resistance is 3Ω for the detection electrode 10a, 5Ω for the detection electrode 10b, and 3.5Ω for the detection electrode 10c. It can be said that the detection electrode 10a has the lowest ground resistance and the current easily flows. As described above, since the detection electrodes 10a to 10c show different ground resistances, when the correction is not performed, even though the detection electrode 10a is installed at a position farther from the water leakage point than the detection electrode 10c, it is more likely that the correction is performed. There is a possibility to detect a lot of current. In this case, an accurate current distribution cannot be obtained, and an accurate leak location cannot be detected. In the present invention, for example, when the detection electrode 10a is used as a reference, the detection electrode 10b has a 3/5 time, and the detection electrode 10c has a 3/5 time. This indicates that even if the same installation state as that of the detection electrode 10a is obtained, the same value can be obtained, but the installation state is different, so that it is difficult for the current to flow. As described above, by using 3/5 and 3 / 3.5 as the correction coefficient to correct the current value measured, an accurate current distribution in each of the detection electrodes 10a to 10c can be obtained. In the present invention, the correction coefficient is not limited to the total value of the above resistances, but the amount of current flowing between each conductive plate, the average value of the resistance between each conductive plate measured at each of the detection electrodes 10a to 10c, the average value of the current, and the like. Can be obtained by using Further, in the present invention, correction may be made in consideration of electrical characteristics such as resistance between the detection electrodes. Further, in the present invention, as shown in FIG. 5, in the case of the sensing electrodes 10a to 10c composed of four conductive plates 17a to 17l, two of each of the sensing electrodes 10a to 10c are made into one set, and a pair of conductive electrodes is formed. The current is measured by flowing a current between the conductive plates on the plate, and the voltage between the conductive plates is measured on the other pair of conductive plates. By doing so, the specific resistance of the detection electrode can be obtained, and this specific resistance can be used for secondary correction in addition to the above correction. In the present invention, in order to calculate the above-described resistance and specific resistance, it can be calculated by using any known formula.
[0028]
FIG. 6 is a diagram showing a state where the detection electrodes 10 used in the present invention are arranged at predetermined positions. In the embodiment shown in FIG. 6, after constructing a water-impervious layer 8 shown in FIG. 6 in a waste disposal site formed by excavating from the ground surface toward the foundation ground, a water-impervious sheet 7 is provided in the recess. Is laid, and the protective layer 6 is provided on the water-impervious sheet 7. Further, a plurality of detection electrodes 10 are provided at predetermined intervals on a rectangular bottom portion 9 in the recess where the protective layer 6 is provided. These detecting electrodes 10 are connected to current measuring means 13 shown in FIG. 2 so that each current can be measured. Further, a reference electrode 11 is provided on the ground 3 outside the impermeable sheet 7, and a current is supplied to the reference electrode 11 from a power supply 12 shown in FIG. 2.
[0029]
In the present invention, a correction coefficient unique to each electrode is obtained in each detection electrode 10 as described above in advance. When there is no breakage in the water impermeable sheet 7, the current supplied from the reference electrode 11 does not flow through the water impermeable sheet 7. When the current flowing through each of the detection electrodes 10 is detected by the current measuring unit 13, it can be understood that the water impermeable sheet 7 has a leak location. This indicates that the electric current supplied from the reference electrode 11 is flowing through the water leaking portion of the impermeable sheet 7. The current value detected at each detection electrode 10 is usually related to the distance between the detection electrode 10 and the water leakage point. However, since the current value differs depending on the installation state of the detection electrode 10 as described above, the above-described correction is performed. . A current distribution is created using the corrected current, and a location having the highest current value can be specified as a water leakage location using the current distribution. At the specified leak location, the protective layer 6 can be excavated to repair the impermeable sheet 7. In the present invention, the above-described correction and creation of the current distribution can be performed using the computer system 14 shown in FIG. 2, and the current distribution can be displayed on a monitor provided in the computer system 14. In addition, the current measurement can be performed at predetermined intervals, and a current distribution can be created each time the current is acquired by the current measurement, and the damage of the impermeable sheet 7 can be monitored.
[0030]
FIG. 7 is a diagram illustrating a current distribution created using the measured current and a current distribution created using the current corrected using the correction coefficient obtained in advance. Using the water leakage detection system of the present invention shown in FIG. 2, a constant current is passed, and the current flowing through each detection electrode 10 is measured by the current measuring means 13. In this case, there is a water leakage point, and current flows to each detection electrode 19 through the water leakage point. FIG. 7A is a diagram showing, as a current distribution, a result of measuring a current flowing through each of the detection electrodes 19 using a conventional detection electrode 19 formed of a single conductive material. In addition, an actually existing water leakage point is indicated by X. Note that the solid line shown in FIG. 7A is a line obtained by smoothly connecting current values having the same value obtained by measurement. The leak location obtained from this measurement result is the location where the current value is highest, and the leak location identified from the current distribution is indicated by B. Further, each current value is corrected using a correction coefficient obtained from the resistance between the conductive plates measured in advance at each detection electrode 10 to obtain a corrected current. FIG. 7B shows the result as a current distribution. As in FIG. 7A, the current values obtained by the correction are the same and are indicated by solid lines by smoothly connecting them. The current distribution without correction shown in FIG. 7A and the current distribution with correction shown in FIG. 7B are different from each other, and are specified from the corrected current distribution. It is shown that the leaked point C is different from the position of the leaked point B. The leak location C obtained from the corrected current distribution indicates a position close to the actual leak location X. As described above, the correction coefficient specific to the electrode is obtained in advance using the water leakage detection electrode of the present invention, and by adding the correction coefficient to the current detected when a water leakage point exists, more accurate water leakage can be achieved. The location can be specified.
[0031]
【The invention's effect】
As described above, the water leakage detection electrode of the present invention performs correction in consideration of electrode-specific information that varies depending on the installation state, and can specify a water leakage portion of the water impermeable sheet with higher accuracy. The water leakage detection system and the water leakage detection method of the present invention can reduce the measurement error due to the installation state by using the water leakage detection electrode of the present invention, the current distribution of the measurement result becomes more accurate, and The accuracy of specifying the location of the leak can be improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing a conventional detection electrode installed in a disposal site area.
FIG. 2 is a diagram showing a schematic cross section of a waste disposal site and a place where a water leakage detection system of the present invention is installed.
FIG. 3 is a diagram illustrating a water leakage detection electrode of the present invention.
FIG. 4 is a diagram showing a circuit formed for obtaining a correction coefficient using the electrode shown in FIG. 3;
FIG. 5 is a view showing the result of measuring the resistance between each conductive plate, in which the water leakage detection electrode of the present invention is installed.
FIG. 6 is a view showing a state in which a water leakage detection electrode of the present invention is installed to detect a water leakage point of a water impermeable sheet.
FIG. 7 is a diagram showing a current distribution showing a conventional measurement result and a current distribution showing a measurement result of the present invention.
[Explanation of symbols]
1. Disposal site area
2 ... electrode
3 ... ground
4 ... impermeable part
5 ... Waste
6 ... Protective layer
7 ... impermeable sheet
8 ... impermeable layer
9 ... Bottom part
10, 10a to 10c ... Detection electrode
11 Reference electrode
12. Power supply
13 Current measuring means
14. Computer system
15 ... electrodes
16 ... insulating plate
17, 17a to 17l: conductive plate
18 Voltage measuring means
19 ... Detection electrode
B, C, X ... leak points
S1-S8 ... Switch

Claims (8)

地盤の凹所と該凹所に沿った該地盤上に敷設され遮水構造が設けられた遮水部とを備える遮水構造物の漏水を検知するために用いられる電極であって、該電極は、
それぞれが離間して設けられ、それぞれが設置面に隣接させて設置可能な複数の導電材と、
それぞれの前記導電材間に設けられる絶縁材と、
を含み、前記それぞれの導電材間に電流を流し、前記それぞれの導電材間の電圧および電流を測定することにより、前記電極の設置状態に応じた該電極に流れる電流の補正係数を得ることを可能とする、電極。
An electrode used for detecting leakage of a water-blocking structure including a concave portion of the ground and a water-blocking portion provided on the ground along the concave portion and provided with a water-blocking structure, Is
A plurality of conductive materials, each of which is spaced apart and each can be installed adjacent to the installation surface,
An insulating material provided between each of the conductive materials,
Including flowing a current between the respective conductive materials, and measuring a voltage and a current between the respective conductive materials, thereby obtaining a correction coefficient of the current flowing through the electrodes according to the installation state of the electrodes. Enable electrode.
前記複数の導電材は、4つの導電板であり、前記導電材間の間隔が等間隔である、請求項1に記載の電極。The electrode according to claim 1, wherein the plurality of conductive materials are four conductive plates, and the intervals between the conductive materials are equal. 地盤の凹所と該凹所に沿った該地盤上に敷設され遮水構造が設けられた遮水部とを備える遮水構造物の漏水を検知するための漏水検知システムであって、該システムは、
前記地盤または前記遮水部に敷設された遮水シートの上部または下部に設置される基準電極と、
前記基準電極が前記地盤または前記遮水シートの下部に設置された場合には該遮水シートの上部に、前記基準電極が前記遮水シートの上部に設置された場合には該遮水シートの下部に設置される、それぞれが離間して設けられ、それぞれが設置面に隣接させて設置可能な複数の導電材とそれぞれの該導電材間に設けられる絶縁材とを含む複数の検知電極と、
前記基準電極に電流を供給する電源と、
前記検知電極を通して流れた電流を測定する電流測定手段と、
前記それぞれの導電材間に電流を流し、前記それぞれの導電材間の電圧および電流を計測することにより、前記電極の設置状態に応じた補正係数を得、前記電流測定手段により測定した各検知電極に流れる電流を得、前記補正係数を用いて前記測定した電流を補正し、前記補正した電流から得られた電流分布により前記遮水シートの漏水検知を可能にするコンピュータシステムとを含む、漏水検知システム。
A water leakage detection system for detecting water leakage in a water-impervious structure comprising a concave part of the ground and a water-impervious part laid on the ground along the concave part and provided with a water-impervious structure, the system comprising: Is
A reference electrode installed above or below the impermeable sheet laid on the ground or the impermeable section,
When the reference electrode is installed under the ground or the water-impervious sheet, on the upper part of the water-impervious sheet, when the reference electrode is installed on the upper part of the water-impervious sheet, A plurality of sensing electrodes provided at a lower portion, each including a plurality of conductive materials that can be installed adjacent to the installation surface and an insulating material provided between the conductive materials, respectively.
A power supply for supplying a current to the reference electrode;
Current measuring means for measuring a current flowing through the sensing electrode,
By passing a current between the respective conductive materials and measuring a voltage and a current between the respective conductive materials, a correction coefficient according to the installation state of the electrode is obtained, and each of the detection electrodes measured by the current measuring means is measured. And a computer system that obtains a current flowing through the current control device, corrects the measured current using the correction coefficient, and enables water leak detection of the impermeable sheet based on a current distribution obtained from the corrected current. system.
前記複数の導電材は、4つの導電板であり、前記導電材間の間隔が等間隔である、請求項3に記載の漏水検知システム。4. The water leakage detection system according to claim 3, wherein the plurality of conductive materials are four conductive plates, and the intervals between the conductive materials are equal. 前記漏水検知システムは、前記導電材間の電圧および電流を測定するために、前記各導電材に前記電流を供給するとともに前記電流測定手段により前記電流の測定を可能にする複数のスイッチと、電圧測定手段とを含む、請求項3または4に記載の漏水検知システム。The water leakage detection system includes a plurality of switches that supply the current to each of the conductive materials and enable the current to be measured by the current measuring unit, in order to measure a voltage and a current between the conductive materials. The water leak detection system according to claim 3, further comprising a measuring unit. 地盤の凹所と該凹所に沿った該地盤上に敷設され遮水構造が設けられた遮水部とを備える遮水構造物の漏水を検知するための漏水検知方法であって、該方法は、
前記遮水部に敷設された遮水シートの上部または下部に、それぞれが離間して設けられ、それぞれが設置面に隣接させて設置可能な複数の導電材とそれぞれの該導電材間に設けられる絶縁材とを含む複数の検知電極を配置する段階と、
前記それぞれの導電材間に電流を流し、前記それぞれの導電材間の電圧および電流を計測することにより前記電極の設置状態に応じた補正係数を得る段階と、
前記複数の検知電極が前記遮水シートの上部に設置される場合には前記地盤または該遮水シートの下部に、前記複数の検知電極が前記遮水シートの下部に設置される場合には該遮水シートの上部に基準電極を設置して電源から該基準電極に電流を流す段階と、
前記電流測定手段により測定した各検知電極に流れる電流を得る段階と、
前記補正係数を用いて前記測定した電流を補正し、前記補正した電流から得られた電流分布により前記遮水シートの漏水箇所を検知する段階とを含む、漏水検知方法。
A water leakage detection method for detecting water leakage in a water-blocking structure comprising a recess in the ground and a water-blocking portion laid on the ground along the recess and provided with a water-blocking structure, the method comprising: Is
On the upper or lower part of the water-impervious sheet laid on the water-impervious portion, each is provided separately, and each is provided between a plurality of conductive materials that can be installed adjacent to the installation surface and each of the conductive materials. Arranging a plurality of sensing electrodes including an insulating material;
Flowing a current between the respective conductive materials, obtaining a correction coefficient according to the installation state of the electrode by measuring the voltage and current between the respective conductive materials,
When the plurality of sensing electrodes are installed above the impermeable sheet, the ground or below the impermeable sheet, and when the plurality of sensing electrodes are installed below the impermeable sheet, Installing a reference electrode on top of the impermeable sheet and flowing a current from the power supply to the reference electrode;
Obtaining a current flowing through each detection electrode measured by the current measuring means,
Correcting the measured current using the correction coefficient, and detecting a leak location of the impermeable sheet based on a current distribution obtained from the corrected current.
前記複数の導電材は、4つの導電板であり、前記導電材間の間隔が等間隔である、請求項6に記載の漏水検知方法。The method according to claim 6, wherein the plurality of conductive materials are four conductive plates, and the intervals between the conductive materials are equal. 前記4つの導電板において、第1の導電板に電流を供給し、第2の導電板において流れる電流を測定し、第3の導電板と第4の導電板とを用いて該第3の導電板と該第4の導電板との間の電圧を測定することにより前記検知電極の比抵抗を得る段階をさらに含む、請求項6または7に記載の漏水検知方法。In the four conductive plates, a current is supplied to a first conductive plate, a current flowing in a second conductive plate is measured, and the third conductive plate and the fourth conductive plate are used for the third conductive plate. The method according to claim 6, further comprising obtaining a specific resistance of the detection electrode by measuring a voltage between the plate and the fourth conductive plate.
JP2002324019A 2002-11-07 2002-11-07 Water leakage detection system and water leakage detection method Expired - Fee Related JP4053864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002324019A JP4053864B2 (en) 2002-11-07 2002-11-07 Water leakage detection system and water leakage detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002324019A JP4053864B2 (en) 2002-11-07 2002-11-07 Water leakage detection system and water leakage detection method

Publications (2)

Publication Number Publication Date
JP2004157041A true JP2004157041A (en) 2004-06-03
JP4053864B2 JP4053864B2 (en) 2008-02-27

Family

ID=32803732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002324019A Expired - Fee Related JP4053864B2 (en) 2002-11-07 2002-11-07 Water leakage detection system and water leakage detection method

Country Status (1)

Country Link
JP (1) JP4053864B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016001639A1 (en) * 2014-07-01 2016-01-07 Sensor Spol. S.R.O A sensor and system for monitoring integrity of a waterproofing system or membrane

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016001639A1 (en) * 2014-07-01 2016-01-07 Sensor Spol. S.R.O A sensor and system for monitoring integrity of a waterproofing system or membrane
JP2017528730A (en) * 2014-07-01 2017-09-28 センサー・スポレチノスト・エス・ルチェニーム・オブメドゼニームSENSOR spol.s.r.o. Sensors and systems for monitoring the integrity of waterproof systems or membranes
AU2015282458B2 (en) * 2014-07-01 2020-07-16 SENSOR spol. s r.o. A sensor and system for monitoring integrity of a waterproofing system or membrane
US10809145B2 (en) 2014-07-01 2020-10-20 Sensor Spol. S.R.O Sensor and system for monitoring integrity of a waterproofing system or membrane

Also Published As

Publication number Publication date
JP4053864B2 (en) 2008-02-27

Similar Documents

Publication Publication Date Title
JP3622172B2 (en) Water leak occurrence position detection method
JP6826495B2 (en) Leakage position detection system
JP2004157041A (en) Water leakage detection electrode, water leakage detection system, and water leakage detection method using electrode
JP3716250B2 (en) Water leakage detection device and water leakage detection method
JP3236965B2 (en) Method and apparatus for detecting damaged portion of impermeable sheet in waste disposal site
JP3259912B2 (en) Leakage location detector for waste disposal sites
JP2002257668A (en) Method and system for detecting water leakage
JP4321679B2 (en) Impermeable structure and water leakage detection method
JP3384849B2 (en) Leakage location detection system for impermeable structures
JP3899257B2 (en) Water leakage detection method and water leakage detection system
JP4660720B2 (en) Water leakage detection method and water leakage detection device
JP4377800B2 (en) Water leakage detection method
JP4092216B2 (en) Water leakage detection device and water leakage detection method
JP4375896B2 (en) Leakage occurrence position detection device and method
JP3212294B2 (en) Water leak detection device and water leak detection method by potential method
JP2007178252A (en) Water leakage outbreak position-detecting device
JP3668958B2 (en) Impermeable sheet inspection method
JP3380386B2 (en) Water leakage detection method and water leakage detection laminated sheet
JP3024505B2 (en) Water leakage sheet leak detection device at waste disposal site
JPH07119662B2 (en) Leakage occurrence position detection method
JP2003075283A (en) System and method for detecting water leakage
JPH04359130A (en) Water leak position detecting method based on electric current ratio
JP3895575B2 (en) Water leakage detection method and water leakage detection system
JPH0881885A (en) Sensor for breakage of water barrier sheet and method for sensing breakage
JP2001330531A (en) Water leakage detection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050829

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070725

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees