JP2004156942A - Method for measuring linear expansion coefficient - Google Patents

Method for measuring linear expansion coefficient Download PDF

Info

Publication number
JP2004156942A
JP2004156942A JP2002320852A JP2002320852A JP2004156942A JP 2004156942 A JP2004156942 A JP 2004156942A JP 2002320852 A JP2002320852 A JP 2002320852A JP 2002320852 A JP2002320852 A JP 2002320852A JP 2004156942 A JP2004156942 A JP 2004156942A
Authority
JP
Japan
Prior art keywords
sample
linear expansion
expansion coefficient
measuring
physical property
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002320852A
Other languages
Japanese (ja)
Inventor
Ikumi Haneda
育美 羽田
Jun Tsukamoto
遵 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2002320852A priority Critical patent/JP2004156942A/en
Publication of JP2004156942A publication Critical patent/JP2004156942A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measuring a linear expansion coefficient specific to a material, not affected by a substrate made of the material wherein it is impossible or hard to mold a sample sized on the order of microns out of a sample material only. <P>SOLUTION: According to this method for measuring the linear expansion coefficient of a sample formed on the substrate, physical properties found by performing a temperature-up test are compared with physical properties calculated by a finite element method calculation using a computer based on the shape and kinetic properties of the substrate and sample, thereby calculating the expansion coefficient specific to the material constituting the sample. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、基板上に形成したサンプル材料の線膨張係数の測定に関するものである。
【0002】
【従来の技術】
従来、線膨張係数などといった材料の物性値の測定には、JISやISOなどによって試験片の形状や測定方法が規定されている。この場合、測定に用いられるサンプルの寸法はミリオーダーである場合が多い。
【0003】
また、従来の樹脂組成物などの線膨張係数の測定で用いられている試験片のサイズは、長さ5mm×幅5mm、厚み3mmとミリオーダーの試験片であり、その試験片の作成方法は、射出成形と切削加工を用いている場合が多い(例えば、特許文献1参照)。
【0004】
測定材料単体でミリオーダーの寸法のサンプルが成形できる場合は、サンプル材料固有の物性値の測定が可能である。しかしながら、ミリオーダーさらにはミクロンオーダーのサンプルが成形できない材料については、サンプル材料固有の線膨張係数を測定することは難しかった。また、サンプルは、射出、圧縮またはトランスファー成形、または成形した板、棒および管材から機械加工によって切り取ることよって成形されるが、前記のような方法は、特定の大型装置が必要であったり、作業が繁雑であったりするため、サンプルの成形が容易でない場合もあった。
【0005】
そこで、材料のみでサンプルを作成できない材料に対しては、基板上や基板間に薄膜などを形成し、熱分析試験を行い、その結果から線膨張係数を測定する方法が考えられるが、この方法では、基板の影響を強く受けるため、基板に影響されないサンプル材料固有の線膨張係数を測定することができないという問題があった。
【0006】
【特許文献1】
特開2002−212400号公報(第12〜13欄)
【0007】
【発明が解決しようとする課題】
本発明は、前記の問題に鑑み、サンプル材料のみでミクロンオーダーの寸法のサンプルを成形することができない、または困難である材料の基板に影響されない材料固有の線膨張係数を測定することができる線膨張係数の測定方法を提供することを課題とするものである。
【0008】
【課題を解決するための手段】
本発明者らは、従来技術の課題を解決するために鋭意検討した結果、以下の線膨張係数の測定方法によって基板状に形成したサンプルの材料固有の線膨張係数を測定することが可能であることを見いだした。
【0009】
本発明のは、線膨張係数の測定方法は以下の構成を有するものである。
【0010】
すなわち、
(1)基板上に形成したサンプルの線膨張係数の測定方法において、サンプルに昇温試験を行って求めた物性値と、コンピューターを用いた基板およびサンプルの形状と力学特性に基づいた有限要素法計算から算出される物性値との比較により、サンプルを構成する材料固有の線膨張係数を算出することを特徴とする線膨張係数の測定方法。
(2)計算によって得られた物性値と昇温試験によって得られた物性値との差が、昇温試験によって得られた物性値の±40%以内となるまで数値計算を繰り返し行うことを特徴とする(1)に記載の線膨張係数の測定方法。
(3)昇温試験によって得られた物性値、および計算によって得られた物性値が、サンプルの応力値であることを特徴とする(1)または(2)のいずれかに記載の線膨張係数の測定方法。
(4)サンプルが有機材料をマトリックスとし、マトリックスとは異なる1種類以上の第2の成分がマトリックス中に分散されていることを特徴とする(1)〜(3)のいずれかにに記載の線膨張係数の測定方法。
である。
本発明を以下に詳細に説明する。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
【0012】
図1は、本発明の線膨張係数測定方法の一例を示す構成図である。本測定方法は、試験と数値計算からなる。
【0013】
試験には、基板上、または基板間のいずれかに測定材料を形成したサンプルを用いることが好ましい。特に、基板上に測定材料の薄膜を形成したサンプルが、形成、測定の容易さからより好ましく用いられる。サンプルに用いる基板は、弾性率、線膨張係数が公知であればガラス基板、シリコンウェハー、金属基板などいずれを用いてもよい。測定機、測定方法についても、特に限定はなく、昇温時に、サンプルに生じる応力が測定可能であればいずれでもよい。測定温度範囲についても、特に限定はないが、基板および測定材料の成分などが変化しない温度範囲とすることが好ましい。例えば、ポリイミド樹脂であれば、300℃以上の温度では膜に変化が生じ、物性が変わってしまうので測定温度は300℃以下で行うことが好ましい。また、測定の簡便性を考えると、室温から測定を開始するのが好ましい。
【0014】
薄膜の厚みには、特に限定はないが、測定や基板上へのサンプルの塗布が容易となるため0.5〜50μm程度であることが好ましい。薄膜が有機材料単体である場合は、基板上への塗布の容易さから0.5〜5μm程度であることがより好ましい。薄膜の種類としては有機材料単体であることが好ましいが、有機材料をマトリックスとし、マトリックスとは異なる1種類以上の第2の成分がマトリックス中に分散されていてもよい。分散されている第2の成分は、有機材料、無機材料などどれでもよく、特に限定はない。薄膜の物性値データとしては、圧縮弾性率、ポアッソン比、引張り弾性率、引張り強度、公称ひずみ、降伏値等があるが、これらの中でも圧縮弾性率とポアッソン比を用いることが好ましい。これらの値は予め測定しておく必要がある。
【0015】
有限要素法を用いた計算はコンピューターやサーバーを用いる。コンピュータとは、CPUやメモリーや外部記憶装置や表示装置や入力装置を備えた一般的な電子計算機のことである。また、サーバーとは大型計算機のことである。サンプルの下地基板、塗布膜の有限要素モデルをコンピューターを用いて作成する。物性値として下地基板、塗布膜の圧縮弾性率、ポアッソン比、線膨張係数を与えて、測定温度範囲での熱力学解析を行う。このとき、塗布膜の線膨張係数は未確定パラメータであるため、仮の線膨張係数を与える。数値計算結果として、温度−応力の関係が出力される。仮の線膨張係数を与えて計算した計算結果と試験結果とを比較し、数値計算結果と試験結果との誤差が試験結果の±40%以内となるまで繰り返し計算を行う。誤差の範囲は、試験結果の±20%以内であれば、計算精度が高くなるため、より好ましい。誤差が±40%以内、より好ましくは±20%以内となったとき、数値計算が試験結果に一致したとみなし、その時の線膨張係数がサンプル材料固有の線膨張係数となる。
【0016】
また、本測定方法では、数値計算により基板の影響を取り除くことができるので、2種以上の材料を積層したサンプルについても線膨張係数を測定することができる。
【0017】
【実施例】
以下、実施例に基づいて本発明を具体的に説明するが、本発明はこれらに限定されない。
【0018】
実施例1
(サンプル作製)
信越化学(株)製の直径4インチ、板厚50μmの円盤状のシリコンウェハー上にシロキサンポリイミド/エポキシ樹脂を膜厚2.4μmで塗布し、120℃のオーブンで10分間乾燥した。次に、290℃で12分間キュアした。
(昇温試験)
作成したサンプルに昇温試験を行い、温度上昇に対する応力を以下の方法で測定した。
<測定方法>
測定機:ケーエルエー・テンコール(株)製薄膜ストレス測定装置F2300
測定温度:20℃〜120℃
昇温速度:4℃/分
(有限要素計算)
コンピューターを用いて、サンプル形状に即した有限要素モデルを作成した。
【0019】
熱力学解析のパラメータには、シリコンウェハーと塗布膜の圧縮弾性率、ポアッソン比、線膨張係数を用いた。シリコンウェハーの圧縮弾性率を180GPa、ポアッソン比を0.33、線膨張係数を3.1×10−6とした。この物性値は、信越化学(株)により開示されている値である。塗布膜の圧縮弾性率を4.2GPa、ポアッソン比は0.33とした。塗布膜の圧縮弾性率は、(株)フィッシャー・インストルメンツ製フィッシャースコープH−100を用いて測定した。
【0020】
塗布膜の仮の線膨張係数に適当な数値を代入し、有限要素計算を行った。有限要素計算結果と試験結果を比較し、その差が誤差範囲(試験結果の±20%)以上であった場合は、塗布膜の仮の弾性率を変更し計算を行った。前記のように数値計算結果と試験結果の差が誤差範囲(試験結果の±20%)になるまで、繰り返し計算を行った結果、ペースト膜の線膨張係数が2.8×10−5のとき、表1に示すように有限要素計算結果と試験結果がよく一致した。従って、2.8×10−5がサンプル材料固有の線膨張係数であるといえる。
【0021】
【表1】

Figure 2004156942
【0022】
実施例2
(サンプル作成)
γ−ブチロラクトン180gと感光性ポリマーである日本油脂(株)製”マープルーフ”X−4007 120gを60℃のオイルバスで加熱しながら2時間撹拌し、40%ポリマー溶液(A)を調整した。
【0023】
40%ポリマー溶液(A)37.5g、チバ・スペシャルティ・ケミカルズ(株)製の2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタノン3.6g、サンノプコ(株)製の”ノプコスパース”092 0.5g、フタル酸ジ−n−ブチル2.0g、ベンゾトリアゾール3.15g、γ−ブチロラクトン7.5gを50℃のオイルバス中で加熱しながら2時間撹拌し、均一な溶液(B)とした。
【0024】
日本山村硝子(株)製328−28ガラスを400℃で2時間乾燥した後、溶液(B)とガラス70gを混練し、ペースト(C)を作成した。
【0025】
4インチのシリコンウェハー上にペースト(C)を膜厚20μmで塗布した。大日本スクリーン製造(株)製両面平行光露光装置55580−1040を用いて露光した。露光後、タバイエスペック製通風オーブンを用いて、80℃で10分間乾燥した。
【0026】
測定温度とペース塗膜の圧縮弾性率、ポアッソン比以外は実施例1と同様に昇温試験、数値計算を行った。
【0027】
測定温度:100℃〜200℃
ペースト膜の圧縮弾性率:3.0GPa、ポアッソン比:0.33
繰り返し計算を行った結果、ペースト膜の線膨張係数が1.7×10−5のとき、表2に示すように有限要素計算結果と試験結果がよく一致した。従って、1.7×10−5がサンプル材料固有の線膨張係数であるといえる。
【0028】
【表2】
Figure 2004156942
【0029】
比較例1
実施例2と同様に昇温試験と有限要素計算を行った。有限要素計算においては、計算結果と試験結果の誤差が±20%以内となる前に、繰り返し計算を終了した。
ペース膜の線膨張係数は、8.0×10−4であった。これは、樹脂材料の一般的な線膨張係数の範囲(10−5程度のオーダー)外と考えられ、精度の低い計算結果であるといえる。
【0030】
【表3】
Figure 2004156942
【0031】
【発明の効果】
本発明の線膨張係数の測定方法を用いることにより、サンプル材料のみでミクロンオーダーの寸法のサンプルを成形することができない、または困難である材料の基板に影響されない材料固有の線膨張係数の測定することが可能となる。
【図面の簡単な説明】
【図1】本発明の線膨張係数の測定方法の1例を示す模式図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to measurement of a coefficient of linear expansion of a sample material formed on a substrate.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, for measurement of a physical property value of a material such as a coefficient of linear expansion, a shape and a measuring method of a test piece are defined by JIS, ISO, or the like. In this case, the size of the sample used for the measurement is often on the order of millimeters.
[0003]
The size of a test piece used for measuring the coefficient of linear expansion of a conventional resin composition and the like is a test piece having a length of 5 mm × a width of 5 mm and a thickness of 3 mm, which is a millimeter order. In many cases, injection molding and cutting are used (for example, see Patent Document 1).
[0004]
When a sample having a dimension on the order of millimeters can be molded with a single measurement material, it is possible to measure the physical properties of the sample material. However, it has been difficult to measure the linear expansion coefficient of a sample material that cannot be formed into a sample on the order of millimeters or even on the order of microns. Samples are also formed by injection, compression or transfer molding, or by cutting from molded plates, rods, and tubing by machining, but such methods require certain large equipment or work. In some cases, the molding of the sample was not easy because of the complexity of the sample.
[0005]
Therefore, for materials for which a sample cannot be prepared using only the material, a method of forming a thin film on the substrate or between the substrates, performing a thermal analysis test, and measuring the linear expansion coefficient from the results is considered. In this case, there is a problem that the linear expansion coefficient inherent to the sample material which is not affected by the substrate cannot be measured because the substrate is strongly affected by the substrate.
[0006]
[Patent Document 1]
JP-A-2002-212400 (columns 12 and 13)
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described problems, and it is difficult to form a sample having a micron-order size using only a sample material. It is an object to provide a method for measuring an expansion coefficient.
[0008]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to solve the problems of the related art, and as a result, it is possible to measure the material-specific linear expansion coefficient of a sample formed on a substrate by the following method of measuring the linear expansion coefficient. I found something.
[0009]
According to the present invention, a method for measuring a linear expansion coefficient has the following configuration.
[0010]
That is,
(1) In a method of measuring a coefficient of linear expansion of a sample formed on a substrate, a finite element method based on physical properties obtained by performing a temperature rise test on the sample, and shapes and mechanical properties of the substrate and the sample using a computer. A method for measuring a coefficient of linear expansion, wherein a coefficient of linear expansion specific to a material constituting a sample is calculated by comparing with a physical property value calculated from the calculation.
(2) Numerical calculations are repeated until the difference between the physical property value obtained by the calculation and the physical property value obtained by the temperature rise test is within ± 40% of the physical property value obtained by the temperature rise test. (1) The method for measuring a linear expansion coefficient according to (1).
(3) The coefficient of linear expansion according to any one of (1) and (2), wherein the physical property value obtained by the temperature rise test and the physical property value obtained by calculation are stress values of the sample. Measurement method.
(4) The sample according to any one of (1) to (3), wherein the sample comprises an organic material as a matrix, and one or more second components different from the matrix are dispersed in the matrix. A method for measuring the coefficient of linear expansion.
It is.
The present invention will be described in detail below.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0012]
FIG. 1 is a configuration diagram showing an example of the linear expansion coefficient measuring method of the present invention. This measurement method consists of tests and numerical calculations.
[0013]
For the test, it is preferable to use a sample in which the measurement material is formed either on the substrate or between the substrates. In particular, a sample in which a thin film of a measurement material is formed on a substrate is more preferably used because of ease of formation and measurement. As the substrate used for the sample, any of a glass substrate, a silicon wafer, a metal substrate, and the like may be used as long as the elastic modulus and the coefficient of linear expansion are known. The measuring machine and the measuring method are not particularly limited either, and may be any as long as the stress generated in the sample at the time of temperature rise can be measured. The measurement temperature range is also not particularly limited, but is preferably a temperature range in which the components of the substrate and the measurement material do not change. For example, in the case of a polyimide resin, if the temperature is higher than 300 ° C., the film changes, and the physical properties are changed. Considering the simplicity of the measurement, it is preferable to start the measurement at room temperature.
[0014]
The thickness of the thin film is not particularly limited, but is preferably about 0.5 to 50 μm to facilitate the measurement and the application of the sample on the substrate. When the thin film is a single organic material, the thickness is more preferably about 0.5 to 5 μm from the viewpoint of ease of application on a substrate. The type of the thin film is preferably an organic material alone, but the organic material may be used as a matrix, and one or more second components different from the matrix may be dispersed in the matrix. The dispersed second component may be any of an organic material and an inorganic material, and is not particularly limited. As the physical property value data of the thin film, there are a compression modulus, a Poisson's ratio, a tensile modulus, a tensile strength, a nominal strain, a yield value, and the like. Among these, it is preferable to use the compression modulus and the Poisson's ratio. These values need to be measured in advance.
[0015]
Computers and servers are used for calculations using the finite element method. The computer is a general computer including a CPU, a memory, an external storage device, a display device, and an input device. The server is a large computer. A finite element model of the sample base substrate and coating film is created using a computer. The thermodynamic analysis in the measurement temperature range is performed by giving the compression elastic modulus, Poisson's ratio, and linear expansion coefficient of the base substrate and the coating film as the physical property values. At this time, since the linear expansion coefficient of the coating film is an undetermined parameter, a provisional linear expansion coefficient is given. A temperature-stress relationship is output as a result of the numerical calculation. The calculation result calculated by giving the provisional coefficient of linear expansion is compared with the test result, and the calculation is repeated until the error between the numerical calculation result and the test result is within ± 40% of the test result. It is more preferable that the range of the error be within ± 20% of the test result, because the calculation accuracy will be high. When the error is within ± 40%, more preferably within ± 20%, it is considered that the numerical calculation matches the test result, and the linear expansion coefficient at that time becomes the linear expansion coefficient specific to the sample material.
[0016]
In addition, in the present measurement method, the influence of the substrate can be removed by numerical calculation, so that the coefficient of linear expansion can be measured even for a sample in which two or more materials are laminated.
[0017]
【Example】
Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited thereto.
[0018]
Example 1
(Sample preparation)
A siloxane polyimide / epoxy resin having a thickness of 2.4 μm was coated on a disk-shaped silicon wafer having a diameter of 4 inches and a thickness of 50 μm manufactured by Shin-Etsu Chemical Co., Ltd., and dried in an oven at 120 ° C. for 10 minutes. Next, it was cured at 290 ° C. for 12 minutes.
(Heating test)
The prepared sample was subjected to a temperature rise test, and the stress with respect to the temperature rise was measured by the following method.
<Measurement method>
Measuring machine: KLA-Tencor Co., Ltd. thin film stress measuring device F2300
Measurement temperature: 20 ° C to 120 ° C
Heating rate: 4 ° C / min (finite element calculation)
Using a computer, a finite element model based on the sample shape was created.
[0019]
As parameters for the thermodynamic analysis, the compression elastic modulus, Poisson's ratio, and linear expansion coefficient of the silicon wafer and the coating film were used. The compression elastic modulus of the silicon wafer was 180 GPa, the Poisson's ratio was 0.33, and the linear expansion coefficient was 3.1 × 10 −6 . These physical property values are the values disclosed by Shin-Etsu Chemical Co., Ltd. The compression elastic modulus of the coating film was 4.2 GPa, and the Poisson's ratio was 0.33. The compression elastic modulus of the coating film was measured using Fisher Scope H-100 manufactured by Fisher Instruments.
[0020]
An appropriate numerical value was substituted for the temporary linear expansion coefficient of the coating film, and a finite element calculation was performed. The finite element calculation results were compared with the test results. If the difference was more than the error range (± 20% of the test results), the calculation was performed by changing the temporary elastic modulus of the coating film. When the coefficient of linear expansion of the paste film is 2.8 × 10 −5 as a result of repeated calculations until the difference between the numerical calculation result and the test result falls within the error range (± 20% of the test result) as described above. As shown in Table 1, the finite element calculation results and the test results were in good agreement. Therefore, it can be said that 2.8 × 10 −5 is a linear expansion coefficient inherent to the sample material.
[0021]
[Table 1]
Figure 2004156942
[0022]
Example 2
(Sample creation)
180 g of γ-butyrolactone and 120 g of a photosensitive polymer “MARPROOF” X-4007 manufactured by NOF Corporation were stirred for 2 hours while heating in a 60 ° C. oil bath to prepare a 40% polymer solution (A).
[0023]
37.5 g of 40% polymer solution (A), 3.6 g of 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone manufactured by Ciba Specialty Chemicals Co., Ltd., manufactured by San Nopco Co., Ltd. "NOPCOSPARSE" 092 0.5 g, di-n-butyl phthalate 2.0 g, benzotriazole 3.15 g, γ-butyrolactone 7.5 g were stirred for 2 hours while heating in a 50 ° C. oil bath for 2 hours. (B).
[0024]
After drying 328-28 glass manufactured by Nihon Yamamura Glass Co., Ltd. at 400 ° C. for 2 hours, the solution (B) and 70 g of glass were kneaded to prepare a paste (C).
[0025]
The paste (C) was applied on a 4-inch silicon wafer with a film thickness of 20 μm. Exposure was performed using a double-sided parallel light exposure device 55580-1040 manufactured by Dainippon Screen Mfg. Co., Ltd. After the exposure, the film was dried at 80 ° C. for 10 minutes using a ventilation oven manufactured by Tabai Espec.
[0026]
Except for the measurement temperature, the compression modulus of the pace coating film, and the Poisson's ratio, a temperature rise test and numerical calculation were performed in the same manner as in Example 1.
[0027]
Measurement temperature: 100 ° C to 200 ° C
Compression modulus of paste film: 3.0 GPa, Poisson's ratio: 0.33
As a result of repeated calculation, when the linear expansion coefficient of the paste film was 1.7 × 10 −5 , the finite element calculation result and the test result were in good agreement as shown in Table 2. Therefore, it can be said that 1.7 × 10 −5 is the coefficient of linear expansion specific to the sample material.
[0028]
[Table 2]
Figure 2004156942
[0029]
Comparative Example 1
A temperature rise test and finite element calculation were performed in the same manner as in Example 2. In the finite element calculation, the calculation was repeated before the error between the calculation result and the test result was within ± 20%.
The linear expansion coefficient of the pace membrane was 8.0 × 10 −4 . This is considered to be out of the range of the general linear expansion coefficient of the resin material (on the order of 10 −5 ), and can be said to be a calculation result with low accuracy.
[0030]
[Table 3]
Figure 2004156942
[0031]
【The invention's effect】
By using the method for measuring the coefficient of linear expansion of the present invention, it is impossible to form a sample having a micron-order size using only the sample material, or it is difficult to measure a material-specific linear expansion coefficient that is not affected by the substrate of the material. It becomes possible.
[Brief description of the drawings]
FIG. 1 is a schematic view showing one example of a method for measuring a linear expansion coefficient of the present invention.

Claims (4)

基板上に形成したサンプルの線膨張係数の測定方法において、サンプルに昇温試験を行って求めた物性値と、コンピューターを用いた基板およびサンプルの形状と力学特性に基づいた有限要素法計算から算出される物性値との比較により、サンプルを構成する材料固有の線膨張係数を算出することを特徴とする線膨張係数の測定方法。In the method of measuring the coefficient of linear expansion of the sample formed on the substrate, calculated from the physical property values obtained by performing a temperature rise test on the sample and the finite element method calculation based on the shape and mechanical characteristics of the substrate and the sample using a computer A method for measuring a coefficient of linear expansion, wherein a coefficient of linear expansion specific to a material constituting a sample is calculated by comparison with a physical property value to be obtained. 計算によって得られた物性値と昇温試験によって得られた物性値との差が、昇温試験によって得られた物性値の±20%以内となるまで数値計算を繰り返し行うことを特徴とする請求項1に記載の線膨張係数の測定方法。The numerical calculation is repeated until the difference between the physical property value obtained by the calculation and the physical property value obtained by the temperature rise test is within ± 20% of the physical property value obtained by the temperature rise test. Item 4. The method for measuring a linear expansion coefficient according to Item 1. 昇温試験によって得られた物性値、および計算によって得られた物性値が、サンプルの応力値であることを特徴とする請求項1または2のいずれかに記載の線膨張係数の測定方法。3. The method for measuring a linear expansion coefficient according to claim 1, wherein the physical property value obtained by the temperature rise test and the physical property value obtained by calculation are stress values of the sample. サンプルが有機材料をマトリックスとし、マトリックスとは異なる1種類以上の第2の成分がマトリックス中に分散されていることを特徴とする請求項1〜3のいずれかに記載の線膨張係数の測定方法。The method according to any one of claims 1 to 3, wherein the sample has an organic material as a matrix, and one or more second components different from the matrix are dispersed in the matrix. .
JP2002320852A 2002-11-05 2002-11-05 Method for measuring linear expansion coefficient Pending JP2004156942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002320852A JP2004156942A (en) 2002-11-05 2002-11-05 Method for measuring linear expansion coefficient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002320852A JP2004156942A (en) 2002-11-05 2002-11-05 Method for measuring linear expansion coefficient

Publications (1)

Publication Number Publication Date
JP2004156942A true JP2004156942A (en) 2004-06-03

Family

ID=32801574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002320852A Pending JP2004156942A (en) 2002-11-05 2002-11-05 Method for measuring linear expansion coefficient

Country Status (1)

Country Link
JP (1) JP2004156942A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100425977C (en) * 2004-11-22 2008-10-15 中国科学院理化技术研究所 Method for measuring linear expansion coefficient of polymer-based foam material by using displacement sensor
EP3964824A1 (en) * 2020-09-02 2022-03-09 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Expansion coefficient determination with deformation measurement and simulation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100425977C (en) * 2004-11-22 2008-10-15 中国科学院理化技术研究所 Method for measuring linear expansion coefficient of polymer-based foam material by using displacement sensor
EP3964824A1 (en) * 2020-09-02 2022-03-09 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Expansion coefficient determination with deformation measurement and simulation
US12067709B2 (en) 2020-09-02 2024-08-20 At&S Austria Technologie & Systemtechnik Ag Expansion coefficient determination with deformation measurement and simulation

Similar Documents

Publication Publication Date Title
Guan et al. Kirigami‐inspired nanoconfined polymer conducting nanosheets with 2000% stretchability
Zhao et al. High sensitivity and broad range flexible pressure sensor using multilayered porous PDMS/AgNP sponge
Alzoubi et al. Bending fatigue study of sputtered ITO on flexible substrate
Jian et al. Flexible and highly sensitive pressure sensors based on bionic hierarchical structures
Zhang et al. Experimental and theoretical studies of serpentine microstructures bonded to prestrained elastomers for stretchable electronics
Baëtens et al. Cracking effects in squashable and stretchable thin metal films on PDMS for flexible microsystems and electronics
Su et al. Elasticity of fractal inspired interconnects
Stafford et al. Elastic moduli of ultrathin amorphous polymer films
Zakaria et al. Post curing as an effective means of ensuring the long-term reliability of PDMS thin films for dielectric elastomer applications
Josse et al. Measuring interfacial adhesion between a soft viscoelastic layer and a rigid surface using a probe method
Robinson et al. Hybrid stretchable circuits on silicone substrate
Shekhani et al. Characterization of mechanical loss in piezoelectric materials using temperature and vibration measurements
CN111967120B (en) Nano silver sintered body shear deformation modeling method based on variable-order fractional derivative
Jo et al. Controlling neutral plane of flexible substrates by asymmetric impregnation of glass fabric for protecting brittle films on foldable electronics
Lei et al. Stress development in drying coatings
Zhou et al. Metal mesh as a transparent omnidirectional strain sensor
Pozarycki et al. Tough bonding of liquid metal‐elastomer composites for multifunctional adhesives
Mohamed et al. Influence of graphene nanoplatelets (GNPs) on mode I fracture toughness of an epoxy adhesive under thermal fatigue
KR102219619B1 (en) Standard gas barrier film
Wu et al. Enhanced performance of a soft strain sensor by combining microcracks with wrinkled structures
JP2004156942A (en) Method for measuring linear expansion coefficient
Rusakova et al. Low-temperature features of the micromechanical properties of polystyrene
Greiner et al. Experimental parameters controlling adhesion of biomimetic fibrillar surfaces
Hagan et al. The effects of strain rate and temperature on commercial acrylic artist paints aged one year to decades
JP6125303B2 (en) Thermally conductive sheet