JP2004155622A - Process for manufacturing cuprous oxide particulate - Google Patents

Process for manufacturing cuprous oxide particulate Download PDF

Info

Publication number
JP2004155622A
JP2004155622A JP2002324639A JP2002324639A JP2004155622A JP 2004155622 A JP2004155622 A JP 2004155622A JP 2002324639 A JP2002324639 A JP 2002324639A JP 2002324639 A JP2002324639 A JP 2002324639A JP 2004155622 A JP2004155622 A JP 2004155622A
Authority
JP
Japan
Prior art keywords
cuprous oxide
copper acetate
fine particles
copper
oxide fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002324639A
Other languages
Japanese (ja)
Other versions
JP4236907B2 (en
Inventor
Mutsuhiro Maruyama
睦弘 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2002324639A priority Critical patent/JP4236907B2/en
Priority to TW92133891A priority patent/TWI275569B/en
Publication of JP2004155622A publication Critical patent/JP2004155622A/en
Application granted granted Critical
Publication of JP4236907B2 publication Critical patent/JP4236907B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process for manufacturing a cuprous oxide particulate having a particle size of &lt;100nm through an easy reaction process using an inexpensive raw material. <P>SOLUTION: In the process for manufacturing the cuprous oxide particulate, diethylene glycol containing 0.1-50mass% copper acetate is heated at &ge;160&deg;C to reduce the copper acetate contained therein. Preferably, diethylene glycol contains &le;30 mol water per 1 mol copper acetate. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、顔料、触媒、着色剤、導体ペースト等に用いる銅化合物の原料、汚損防止塗料等に利用可能な酸化第一銅微粒子の製造方法に関するものである。
【0002】
【従来の技術】
酸化第一銅微粒子の製造方法には、物理的方法、化学的方法等の方法がある。物理的方法としては、硝酸銅水溶液を1000℃程度の不活性雰囲気にある反応炉中に微小液滴として噴霧し、硝酸銅を酸化第一銅に還元する方法が知られている(非特許文献1)。この方法は、酸化第一銅の生産性が高いという利点があるが、得られる粒子の粒径は0.1〜1.5μmの広範囲に分布するという問題がある。
【0003】
溶液中での化学反応を利用する化学的方法としては、塩化銅食塩水溶液を、アルカリ中和後、熟成処理ことにより酸化第一銅を得る方法が知られている(特許文献1)。この方法は、不純物の少ない酸化第一銅が得られるという利点を有するが、得られる粒子の粒径は数μm以上になるという問題がある。
粒径が100nm未満の酸化第一銅微粒子の製造方法としては、有機銅化合物(銅−N−ニトロソフェニルヒドロキシルアミン錯体)を、ヘキサデシルアミン等の保護剤存在下で、不活性雰囲気中で、300℃程度の高温で加熱する方法が知られている(非特許文献2)。この方法によると、10nm程度の小さな粒径をもった酸化第一銅微粒子を製造することができるが、原料の有機銅化合物、保護剤、有機溶媒等が高価であるので、得られる酸化第一銅微粒子が高価なものになる上、不活性雰囲気中での反応のため、特別な反応装置が必要である。
【0004】
さらに、粒径が100nm未満の酸化第一銅微粒子の製造方法として、ポリオール溶媒中に水と銅塩を加えて加熱還元する方法が公知である(非特許文献3)。この方法は、保護剤を必要とせず、安価な媒体中で、大気雰囲気で酸化第一銅微粒子が得られるという利点がある。しかしながら、この方法では高価な有機銅化合物(銅アセチルアセトナト錯体)を原料とするために、得られる酸化第一銅微粒子が高価なものになる上、合成プロセスとしては、一旦、有機銅化合物を加熱溶解させたのち、反応に必要な水を後添加し、さらに昇温して有機銅の還元温度で加熱する必要があり、合成操作が煩雑であるという問題がある。
したがって、安価な原料を用いて、より容易な反応プロセスで100nm未満の酸化第一銅微粒子を得る製造方法の確立が望まれている。
【0005】
【非特許文献1】
ジャーナル オブ マテリアルリサーチ、11号、11巻、1996年、p.2861
【非特許文献2】
ジャーナル オブ アメリカン ケミカルソサイエティ 1999年121巻 p.11595
【非特許文献3】
アンゲバンテ ケミ インターナショナル エディション、40号、2巻、p.359、2001年
【特許文献1】
特許第1647911号明細書
【0006】
【発明が解決しようとする課題】
本発明の課題は、安価な原料を用いて、容易な反応プロセスにより粒径が100nm未満の酸化第一銅微粒子を製造する方法を提供することである。
【0007】
【課題を解決するための手段】
本発明者は、上記の課題を解決するために鋭意検討を進めた結果
本発明を完成させるにいたった。
すなわち、本発明は、以下のとおりである。
(1) 酢酸銅を0.1〜50質量%含むジエチレングリコール中で、160℃以上の温度で酢酸銅を加熱還元することを特徴とする酸化第一銅微粒子の製造方法。
(2) 酢酸銅を0.1〜50質量%含み、酢酸銅1モルに対して30モル以下の水を含むジエチレングリコール中で、160℃以上の温度で酢酸銅を加熱還元することを特徴とする酸化第一銅微粒子の製造方法。
【0008】
以下に本発明を詳細に説明する。
本発明に使用される銅原料は酢酸銅である。酢酸銅は、無水物および水和物のいずれも使用可能である。
本発明で用いられる反応媒体は、ジエチレングリコール、またはジエチレングリコールと水との混合物である。水を加える場合、水の量は、酢酸銅1モルに対して30モル以下、好ましくは0.1〜25モルである。酢酸銅1モルに対し、30モル以下の水を加えることによって、比較的短時間に酸化第一銅微粒子を得ることができるので好ましい。加える水の量が多すぎると、得られる生成物中の酸化第二銅の割合が増加する。水の効果を有効に発揮させるには、水の量は、酢酸銅1モルに対して0.1モル以上が好ましい。水を加える場合には、加熱開始前にジエチレングリコールに加えることが好ましい。
【0009】
反応媒体中の酢酸銅の濃度は0.1〜50質量%、好ましくは1〜20質量%である。酢酸銅の濃度が0.1質量%未満では、1回の反応で得られる酸化第一銅微粒子の収量が少なく、50質量%を越えると、酢酸銅のジエチレングリコールへの溶解性が充分でない。
酢酸銅を加熱還元する際の温度は160℃以上である。加熱温度が160℃未満では、反応が進まないか、反応に時間がかかりすぎる。反応温度の上限は、好ましくは200℃未満である。200℃以上の温度になると、反応が短時間に終わるという利点があるが、酸化第一銅微粒子間に再分散が不可能な凝集が生じないように、反応液を急冷するなどの操作が必要である。
【0010】
本発明の製造方法においては、ジエチレングリコールが、原料である酢酸銅の還元剤として働いていると考えられるが、2価の酢酸銅を1価の酸化第一銅まで選択的に一電子還元するメカニズムは明確ではない。
加熱処理の時間については、処理する銅原料の量に依存するが、100nm未満の酸化第一銅微粒子は黄色を示すので、色の変化をもって反応の終点を確認することが可能である。
得られる酸化第一銅微粒子をSEMで観察すると、大部分の粒子の1次粒径は100nm未満である。粒子の1次粒径が100nm以上の粒子も含むが、必要に応じ、遠心分離等の手法によりこれを分離除去して、実質的に100nm未満の酸化第一銅微粒子のみを取り出すことも可能である。
【0011】
得られる酸化第一銅微粒子の形状は大部分が球状である。XRDスペクトルには、36.5°、および42.4℃にそれぞれ(111)、(200)面に由来する強い回折ピークを示すことから、得られる酸化第一銅微粒子は結晶性の粒子である。
これらの酸化第一銅微粒子は、粒径が小さいので微細な回路形成のための導電性ペースト原料として有用であり、また表面積が高いので触媒としても有用である。
【0012】
【発明の実施の形態】
次に実施例により本発明を具体的に説明するが、本発明はこれらの例によってなんら限定されるものではない。
本発明における酸化第一銅粒子の粒径は、日立製作所製走査型電子顕微鏡(S−4700)を用いて表面を観察して測定する。
得られた粒子が酸化第一銅であることは、株式会社リガク製X線回折装置(Rigaku−RINT 2500)を用いて、36.5°、および42.4°に、それぞれ(111)、(200)面に由来する強い回折ピークを観測し、酸化第二銅のXRDパターンと一致することにより確認する。
【0013】
【実施例1】
酢酸銅(和光純薬工業株式会社製)0.3gをジエチレングリコール(和光純薬工業株式会社製)50mlに懸濁し、水0.5mlを加えて(水/酢酸銅モル比=17)190℃で3時間加熱反応させ、平均粒径80nmの酸化第一銅微粒子分散液を得た。
【0014】
【実施例2】
酢酸銅(和光純薬工業株式会社製)2.7gをジエチレングリコール(和光純薬工業株式会社製)90mlに懸濁し、水0.9mlを加えて(水/酢酸銅モル比=3)180℃で2時間加熱反応させ、平均粒径90nmの酸化第一銅微粒子分散液を得た。
【0015】
【比較例1】
水を0.5ml加える代わりに、水を1ml加える(水/酢酸銅モル比=33)以外は実施例1と同様の条件で反応を行なったが、得られた生成物は酸化第二銅であった。
【0016】
【比較例2】
ジエチレングリコールの代わりにエチレングリコールを用いる以外は実施例2と同様の条件で反応を行なったが、得られたものは金属銅であった。
【0017】
【比較例3】
反応温度が150℃以外である以外は、実施例1と同じ条件で反応を行なったが、5時間反応させても、酸化第一銅は得られなかった。
【0018】
【発明の効果】
本発明の製造方法により、安価な原料を用いて、100nm未満の酸化第一銅微粒子を簡便に合成できる。得られる粒子は粒径が小さいので、高密度配線の導電性フィラー原料等として用いることが可能である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing cuprous oxide fine particles that can be used as a raw material of a copper compound used for a pigment, a catalyst, a colorant, a conductor paste, and the like, a stain prevention paint, and the like.
[0002]
[Prior art]
Methods for producing cuprous oxide fine particles include physical methods and chemical methods. As a physical method, there is known a method in which an aqueous solution of copper nitrate is sprayed as fine droplets into a reaction furnace in an inert atmosphere at about 1000 ° C. to reduce copper nitrate to cuprous oxide (Non-Patent Document) 1). This method has the advantage that the productivity of cuprous oxide is high, but has the problem that the particle size of the obtained particles is distributed over a wide range of 0.1 to 1.5 μm.
[0003]
As a chemical method using a chemical reaction in a solution, there is known a method of obtaining cuprous oxide by neutralizing an aqueous solution of copper chloride salt with alkali and then aging (Patent Document 1). Although this method has an advantage that cuprous oxide having a small amount of impurities can be obtained, there is a problem that the particle size of the obtained particles is several μm or more.
As a method for producing cuprous oxide fine particles having a particle diameter of less than 100 nm, an organic copper compound (copper-N-nitrosophenylhydroxylamine complex) is prepared in an inert atmosphere in the presence of a protective agent such as hexadecylamine. A method of heating at a high temperature of about 300 ° C. is known (Non-Patent Document 2). According to this method, cuprous oxide fine particles having a small particle size of about 10 nm can be produced. However, since the raw materials, such as an organocopper compound, a protective agent, and an organic solvent, are expensive, the obtained oxidized cuprous oxide can be obtained. Copper fine particles are expensive, and special reaction equipment is required for the reaction in an inert atmosphere.
[0004]
Further, as a method for producing cuprous oxide fine particles having a particle diameter of less than 100 nm, a method of adding water and a copper salt to a polyol solvent and reducing by heating (Non-Patent Document 3) is known. This method has the advantage that cuprous oxide fine particles can be obtained in an inexpensive medium in an air atmosphere without the need for a protective agent. However, in this method, since an expensive organic copper compound (copper acetylacetonate complex) is used as a raw material, the obtained cuprous oxide fine particles are expensive, and as a synthesis process, the organic copper compound is once used. After heating and dissolving, it is necessary to add water necessary for the reaction later, further raise the temperature and heat at the reduction temperature of the organic copper, and there is a problem that the synthesis operation is complicated.
Therefore, it is desired to establish a production method for obtaining cuprous oxide fine particles of less than 100 nm by an easier reaction process using inexpensive raw materials.
[0005]
[Non-patent document 1]
Journal of Materials Research, No. 11, Volume 11, 1996, p. 2861
[Non-patent document 2]
Journal of American Chemical Society, 1999, 121, p. 11595
[Non-Patent Document 3]
Angevante Kemi International Edition, No. 40, Volume 2, p. 359, 2001 [Patent Document 1]
Patent No. 1647911 Specification
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing cuprous oxide fine particles having a particle size of less than 100 nm using an inexpensive raw material by an easy reaction process.
[0007]
[Means for Solving the Problems]
The present inventor has made intensive studies to solve the above-mentioned problems, and as a result, completed the present invention.
That is, the present invention is as follows.
(1) A method for producing cuprous oxide fine particles, wherein copper acetate is heated and reduced at a temperature of 160 ° C. or more in diethylene glycol containing 0.1 to 50% by mass of copper acetate.
(2) Copper acetate is reduced by heating at a temperature of 160 ° C. or more in diethylene glycol containing 0.1 to 50% by mass of copper acetate and 30 mol or less of water per 1 mol of copper acetate. A method for producing cuprous oxide fine particles.
[0008]
Hereinafter, the present invention will be described in detail.
The copper raw material used in the present invention is copper acetate. Copper acetate can be used either as an anhydride or a hydrate.
The reaction medium used in the present invention is diethylene glycol or a mixture of diethylene glycol and water. When water is added, the amount of water is 30 mol or less, preferably 0.1 to 25 mol, per 1 mol of copper acetate. It is preferable to add 30 mol or less of water to 1 mol of copper acetate since cuprous oxide fine particles can be obtained in a relatively short time. If too much water is added, the proportion of cupric oxide in the resulting product will increase. In order to effectively exert the effect of water, the amount of water is preferably 0.1 mol or more per 1 mol of copper acetate. When adding water, it is preferable to add it to diethylene glycol before starting heating.
[0009]
The concentration of copper acetate in the reaction medium is 0.1 to 50% by mass, preferably 1 to 20% by mass. If the concentration of copper acetate is less than 0.1% by mass, the yield of cuprous oxide fine particles obtained in one reaction is small, and if it exceeds 50% by mass, the solubility of copper acetate in diethylene glycol is not sufficient.
The temperature at the time of heat-reducing copper acetate is 160 ° C. or higher. When the heating temperature is lower than 160 ° C., the reaction does not proceed or the reaction takes too long. The upper limit of the reaction temperature is preferably lower than 200 ° C. At a temperature of 200 ° C. or higher, the reaction is advantageously completed in a short time, but an operation such as quenching the reaction solution is required so that coagulation that cannot be re-dispersed between the cuprous oxide fine particles does not occur. It is.
[0010]
In the production method of the present invention, it is considered that diethylene glycol acts as a reducing agent for copper acetate as a raw material, but a mechanism for selectively performing one-electron reduction of divalent copper acetate to monovalent cuprous oxide. Is not clear.
The time of the heat treatment depends on the amount of the copper raw material to be treated, but the cuprous oxide fine particles of less than 100 nm show yellow, so that the end point of the reaction can be confirmed by a change in color.
Observation of the obtained cuprous oxide fine particles by SEM reveals that the primary particles of most of the particles are less than 100 nm. Although particles having a primary particle diameter of 100 nm or more are included, if necessary, it is also possible to separate and remove the particles by a method such as centrifugation, and to take out only cuprous oxide fine particles having a particle diameter of substantially less than 100 nm. is there.
[0011]
The shape of the obtained cuprous oxide fine particles is mostly spherical. Since the XRD spectrum shows strong diffraction peaks derived from the (111) and (200) planes at 36.5 ° and 42.4 ° C., respectively, the obtained cuprous oxide fine particles are crystalline particles. .
These cuprous oxide fine particles are useful as a conductive paste raw material for forming fine circuits because of their small particle size, and are also useful as catalysts because of their high surface area.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
The particle size of the cuprous oxide particles in the present invention is measured by observing the surface using a scanning electron microscope (S-4700) manufactured by Hitachi, Ltd.
The fact that the obtained particles are cuprous oxide can be confirmed by using an X-ray diffractometer (Rigaku-RINT 2500) manufactured by Rigaku Corporation at 36.5 ° and 42.4 ° respectively at (111) and (111). A strong diffraction peak derived from the (200) plane is observed, and it is confirmed by agreement with the XRD pattern of cupric oxide.
[0013]
Embodiment 1
0.3 g of copper acetate (manufactured by Wako Pure Chemical Industries, Ltd.) is suspended in 50 ml of diethylene glycol (manufactured by Wako Pure Chemical Industries, Ltd.), and 0.5 ml of water is added (molar ratio of water / copper acetate = 17) at 190 ° C. The mixture was heated and reacted for 3 hours to obtain a dispersion of cuprous oxide fine particles having an average particle size of 80 nm.
[0014]
Embodiment 2
2.7 g of copper acetate (manufactured by Wako Pure Chemical Industries, Ltd.) is suspended in 90 ml of diethylene glycol (manufactured by Wako Pure Chemical Industries, Ltd.), and 0.9 ml of water is added (molar ratio of water / copper acetate = 3) at 180 ° C. The mixture was heated and reacted for 2 hours to obtain a cuprous oxide fine particle dispersion having an average particle size of 90 nm.
[0015]
[Comparative Example 1]
Instead of adding 0.5 ml of water, the reaction was carried out under the same conditions as in Example 1 except that 1 ml of water was added (molar ratio of water / copper acetate = 33), but the obtained product was cupric oxide. there were.
[0016]
[Comparative Example 2]
The reaction was carried out under the same conditions as in Example 2 except that ethylene glycol was used instead of diethylene glycol, but the obtained product was metallic copper.
[0017]
[Comparative Example 3]
The reaction was performed under the same conditions as in Example 1 except that the reaction temperature was other than 150 ° C., but cuprous oxide was not obtained even after the reaction for 5 hours.
[0018]
【The invention's effect】
By the production method of the present invention, cuprous oxide fine particles of less than 100 nm can be easily synthesized using inexpensive raw materials. Since the obtained particles have a small particle size, they can be used as a raw material of a conductive filler for high-density wiring.

Claims (2)

酢酸銅を0.1〜50質量%含むジエチレングリコール中で、160℃以上の温度で酢酸銅を加熱還元することを特徴とする酸化第一銅微粒子の製造方法。A method for producing cuprous oxide fine particles, wherein copper acetate is reduced by heating at a temperature of 160 ° C. or more in diethylene glycol containing 0.1 to 50% by mass of copper acetate. 酢酸銅を0.1〜50質量%含み、酢酸銅1モルに対して30モル以下の水を含むジエチレングリコール中で、160℃以上の温度で酢酸銅を加熱還元することを特徴とする酸化第一銅微粒子の製造方法。A first oxidation method comprising reducing copper acetate by heating at 160 ° C. or more in diethylene glycol containing 0.1 to 50% by mass of copper acetate and 30 mol or less of water per mol of copper acetate. A method for producing copper fine particles.
JP2002324639A 2002-11-08 2002-11-08 Method for producing cuprous oxide fine particles Expired - Fee Related JP4236907B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002324639A JP4236907B2 (en) 2002-11-08 2002-11-08 Method for producing cuprous oxide fine particles
TW92133891A TWI275569B (en) 2002-11-08 2003-12-02 Copper oxide super-fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002324639A JP4236907B2 (en) 2002-11-08 2002-11-08 Method for producing cuprous oxide fine particles

Publications (2)

Publication Number Publication Date
JP2004155622A true JP2004155622A (en) 2004-06-03
JP4236907B2 JP4236907B2 (en) 2009-03-11

Family

ID=32804118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002324639A Expired - Fee Related JP4236907B2 (en) 2002-11-08 2002-11-08 Method for producing cuprous oxide fine particles

Country Status (1)

Country Link
JP (1) JP4236907B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321874A (en) * 2005-05-18 2006-11-30 Kaneka Corp Copper ion-containing resin composition
JP2021121577A (en) * 2016-03-28 2021-08-26 東洋製罐グループホールディングス株式会社 Production method of copper compound fine particle-containing dispersion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321874A (en) * 2005-05-18 2006-11-30 Kaneka Corp Copper ion-containing resin composition
JP2021121577A (en) * 2016-03-28 2021-08-26 東洋製罐グループホールディングス株式会社 Production method of copper compound fine particle-containing dispersion
JP7120382B2 (en) 2016-03-28 2022-08-17 東洋製罐グループホールディングス株式会社 Method for producing copper compound fine particle-containing dispersion

Also Published As

Publication number Publication date
JP4236907B2 (en) 2009-03-11

Similar Documents

Publication Publication Date Title
JP4978242B2 (en) Method for producing silver ultrafine particles
KR100836659B1 (en) Method for manufacturing metal nanoparticles
EP1934384A1 (en) Coating method of metal oxide superfine particles on the surface of metal oxide and coating produced therefrom
JP5836472B2 (en) Crystalline cerium oxide and method for producing the same
JP2009270146A (en) Method for producing silver hyperfine particle
KR101286108B1 (en) Manufacturing method of Te and bismuth telluride nano wire by solvothermal synthesis
JP2010534186A (en) Spherical cuprous oxide aggregate particle composition and method for producing the same
KR20110112717A (en) Novel method of preparing vanadosilicate molecular sieves and novel vanadosilicate molecular sieves
Lastovina et al. Copper-based nanoparticles prepared from copper (II) acetate bipyridine complex
CN107673318B (en) Boron nitride nanotubes and batch preparation method thereof
Abdelouhab et al. Structural and morphological characterizations of pure and Ce-doped ZnO nanorods hydrothermally synthesized with different caustic bases
JP6587070B2 (en) Process for producing β-eucryptite fine particles
JP2011184725A (en) Method for synthesizing cobalt nanoparticle by hydrothermal reduction process
JP4236907B2 (en) Method for producing cuprous oxide fine particles
JP6190964B2 (en) Method for producing platinum alloy powder
Jeevanandam et al. Sonochemical synthesis of lead hydroxy bromide needles
Deepak et al. Crystalline silica nanowires
KR101599602B1 (en) Preparation method of tungsten trioxide fine particle
JP4343183B2 (en) Method for producing nanoscale θ-phase alumina fine particles
RU2442751C1 (en) Way to get nanosized particles of copper oxide
RU2569535C1 (en) Production of superdispersed powders of various oxides with narrow separation of particles by sizes
JP2013023419A (en) BOEHMITE NANOROD AND METHOD FOR PRODUCING THE SAME, ALUMINA NANOROD AND METHOD FOR PRODUCING THE SAME, AND CuAlO2 FILM AND METHOD FOR PRODUCING THE SAME
ul Haq et al. Synthesis and characterization of uniform fine particles of copper oxalate
JP6933897B2 (en) Manufacturing method of metal particles and metal particles
JP6886979B2 (en) A method for producing an alumina gel having high dispersibility and a specific crystallite size.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081217

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees