JP2004155208A - Decorative material - Google Patents

Decorative material Download PDF

Info

Publication number
JP2004155208A
JP2004155208A JP2004045645A JP2004045645A JP2004155208A JP 2004155208 A JP2004155208 A JP 2004155208A JP 2004045645 A JP2004045645 A JP 2004045645A JP 2004045645 A JP2004045645 A JP 2004045645A JP 2004155208 A JP2004155208 A JP 2004155208A
Authority
JP
Japan
Prior art keywords
resin
layer
room temperature
resin layer
intermediate resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004045645A
Other languages
Japanese (ja)
Other versions
JP4440669B2 (en
Inventor
Gen Takeuchi
玄 竹内
Keisuke Endo
圭介 遠藤
Shoichi Kitagawa
彰一 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2004045645A priority Critical patent/JP4440669B2/en
Publication of JP2004155208A publication Critical patent/JP2004155208A/en
Application granted granted Critical
Publication of JP4440669B2 publication Critical patent/JP4440669B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a decorative material excellent in abrasion resistance due to an intermediate resin layer having specific dynamic viscoelasticity property (it has a peak of a loss elastic modulus below room temperature). <P>SOLUTION: The decorative material D includes the intermediate resin layer 2 composed of a coating liquid or ink, and a surface protective layer 3 composed of a crosslinked resin on a substrate 1. The temperature dependence property of the loss elastic modulus E" (measuring frequency of 10 Hz) in a dynamic viscoelasticity method of the intermediate resin layer has a peak Pa at least below room temperature Tr, and also the intermediate resin layer is arranged so as to come in contact with the surface protective layer. Further, room temperature is temperatures having width defined as 10°C to 50°C. It is preferable that a value of a storage elastic modulus E' of the intermediate resin layer is in the range of 1 x 10<SP>7</SP>to 2 x 10<SP>9</SP>Pa at the region of room temperature. It is preferable that the loss elastic modulus E" has a peak Pb at temperatures above room temperature. Paper is typically used for the substrate. <P>COPYRIGHT: (C)2004,JPO

Description

本発明は、壁等の建築物内装材、扉等の建具や家具等の表面材、車両内装材等に用いる化粧材に関する。特に、架橋した樹脂からなる表面保護層を有する構成にて、優れた耐摩耗性が得られる化粧材に関する。   The present invention relates to a decorative material used for a building interior material such as a wall, a surface material such as a fitting such as a door and furniture, a vehicle interior material, and the like. In particular, the present invention relates to a cosmetic material having a structure having a surface protective layer made of a cross-linked resin and having excellent wear resistance.

従来より、上記の様な用途に用いる化粧シート等の化粧材としては、通常、耐摩耗性が要求される。この為、表面保護層を2液硬化型ウレタン樹脂塗料、電離放射線硬化性樹脂塗料等で形成した化粧材等が使用されている。
(特許文献1)。
2. Description of the Related Art Conventionally, a decorative material such as a decorative sheet used for the above applications usually requires abrasion resistance. For this reason, a cosmetic material or the like in which the surface protective layer is formed of a two-component curable urethane resin paint, an ionizing radiation-curable resin paint, or the like is used.
(Patent Document 1).

(1)例えば、特許文献1、特許文献2、等では、基材上に絵柄層を印刷形成後、更に表面保護層として、不飽和ポリエステル系やアクリレート系等の電離放射線硬化性樹脂塗料を塗布して塗膜を形成し、その塗膜を電子線で架橋硬化させて架橋した樹脂からなる表面保護層を形成した化粧材を開示している。 (1) For example, in Patent Literature 1 and Patent Literature 2, etc., after forming a pattern layer on a substrate by printing, an ionizing radiation-curable resin paint such as an unsaturated polyester or acrylate is further applied as a surface protective layer. The present invention discloses a decorative material in which a coating film is formed, and the coating film is cross-linked and cured by an electron beam to form a surface protective layer made of a cross-linked resin.

(2)また、更なる耐摩耗性が要求される様な場合に対しては、特許文献3では、表面保護層を形成する電離放射線硬化性樹脂中に減摩剤として球形α−アルミナ等の球状粒子を添加する事を開示している。 (2) Further, in a case where further wear resistance is required, Patent Document 3 discloses that a spherical α-alumina or the like is used as a lubricant in an ionizing radiation curable resin forming a surface protective layer. It discloses adding spherical particles.

特公昭49−31033号公報Japanese Patent Publication No. 49-31033 特公平4−22694号公報Japanese Patent Publication No. Hei 4-22694 特許第2740943号公報Japanese Patent No. 2740943

しかしながら、上記(1)の様に、表面保護層を架橋した樹脂で形成しても、或る限界以上には耐摩耗性は向上せず、耐摩耗性が不足する事があった。この為、上記(2)の様に、表面保護層の樹脂中に減摩剤として硬質の無機質粒子を添加すれば、耐摩耗性は向上するが、表面保護層の表面にザラツキ感が生じたりする問題があった。また、上記(2)は、減摩剤添加によって、表面保護層形成時に版やドクタブレードが減摩剤で摩耗され易くなる問題を、減摩剤に球状粒子を使用する事で解決するものであるが、この様な特殊な減摩剤を使用すれば、コスト高になるといった問題もあった。   However, even when the surface protective layer is formed of a crosslinked resin as in the above (1), the wear resistance does not improve beyond a certain limit, and the wear resistance may be insufficient. For this reason, if hard inorganic particles are added as a lubricant to the resin of the surface protective layer as in (2) above, the abrasion resistance is improved, but the surface of the surface protective layer may have a rough feeling. There was a problem to do. The above (2) solves the problem that the plate and the doctor blade are easily worn by the lubricant when the surface protective layer is formed by adding the lubricant by using spherical particles as the lubricant. However, there is a problem that the use of such a special lubricant increases costs.

すなわち、本発明の課題は、優れた耐摩耗性を化粧材に付与する事である。   That is, an object of the present invention is to impart excellent wear resistance to a decorative material.

上記課題を解決するために、本発明の化粧材では、基材上に、塗液或いはインキからなる中間樹脂層、及び架橋した樹脂からなる表面保護層をこの順に有する化粧材において、中間樹脂層の動的粘弾性法に於ける損失弾性率の測定周波数10Hzでの温度依存性特性が、少なくとも室温(但し、室温とは10℃〜50℃で定義される幅を持った温度)未満の温度に於いてピークを有し且つ該中間樹脂層は前記表面保護層に接している構成とした。   In order to solve the above problems, in the decorative material of the present invention, an intermediate resin layer comprising a coating liquid or an ink on a substrate, and a surface protective layer comprising a cross-linked resin in this order, the intermediate resin layer The temperature-dependent characteristic at a measurement frequency of 10 Hz of the loss elastic modulus in the dynamic viscoelasticity method is at least a temperature lower than room temperature (however, room temperature is a temperature having a width defined by 10 ° C. to 50 ° C.) And the intermediate resin layer was in contact with the surface protective layer.

この様に、室温よりも低温側に損失弾性率のピークを有するものとして動的粘弾性特性を規定した塗液或いはインキからなる中間樹脂層を表面樹脂層に接して設けると、表面保護層に無機質粒子等の減摩剤を添加せずに、優れた耐摩耗性が得られる。これは、おそらく、摩耗応力の加わる室温に於いて適度に柔らかくなった中間樹脂層がクッションとして作用する事による。すなわち、適度な弾性復元力が作用すると共に、表面を摩耗させる外部応力(摩耗応力)が表面保護層に加わったときに、その下の中間樹脂層が前記外部応力を広い面積(体積)に分散させて低下させ、更に熱に変換し散逸さる事で吸収緩和する結果、表面保護層が摩耗し難くなり耐摩耗性が向上するものと思われる。この為、要求される耐摩耗性の程度次第では、表面保護層中に無機質粒子等の減摩剤を添加する必要が無く、添加した際に起きた表面のザラツキ感や表面保護層形成時の版の摩耗を、回避する事も可能となる。   As described above, when an intermediate resin layer made of a coating liquid or ink having dynamic viscoelastic properties defined as having a peak of the loss elastic modulus on the lower temperature side than room temperature is provided in contact with the surface resin layer, the surface protective layer is provided. Excellent abrasion resistance can be obtained without adding a lubricant such as inorganic particles. This is probably because the moderately softened intermediate resin layer acts as a cushion at room temperature where wear stress is applied. That is, when an appropriate elastic restoring force acts and an external stress (wear stress) that wears the surface is applied to the surface protective layer, the intermediate resin layer thereunder disperses the external stress over a wide area (volume). As a result, it is considered that the surface protective layer is hardly abraded and the abrasion resistance is improved as a result of absorbing and relaxing by converting the heat to heat and dissipating the heat. For this reason, depending on the required degree of wear resistance, it is not necessary to add a lubricant such as inorganic particles to the surface protective layer. It is also possible to avoid plate wear.

また、本発明の化粧材は、上記構成に対して更に、中間樹脂層の動的粘弾性法に於ける貯蔵弾性率の測定周波数10Hzでの値が、室温領域に於いて1×107〜2×109Paである構成とした。 Further, in the decorative material of the present invention, the storage elastic modulus of the intermediate resin layer at the measurement frequency of 10 Hz in the dynamic viscoelasticity method is 1 × 10 7 to 10 × 10 at room temperature region. The configuration was 2 × 10 9 Pa.

更にこの様に、貯蔵弾性率の方でも中間樹脂層の動的粘弾性特性を規定した構成とすることで、表面保護層に無機質粒子等の減摩剤を添加せずに、優れた耐摩耗性をより確実に得ることができる。それは、化粧材の実使用温度域(すなわち、室温領域)において、外部応力(摩耗応力)による表面保護層の過度の変形を防止し且つ変形を復元でき、その表面硬度を維持できる様な適度な弾性復元力を、中間樹脂層に付与できる為と思われる。   Furthermore, by adopting a configuration in which the dynamic viscoelastic properties of the intermediate resin layer are specified in the storage elastic modulus as well, excellent wear resistance can be obtained without adding a lubricant such as inorganic particles to the surface protective layer. Sex can be obtained more reliably. That is, in the actual use temperature range (that is, room temperature range) of the decorative material, it is possible to prevent excessive deformation of the surface protective layer due to external stress (abrasion stress), restore the deformation, and maintain a proper surface hardness. It is considered that the elastic restoring force can be applied to the intermediate resin layer.

また、本発明の化粧材は、上記いずれかの構成に対して更に、中間樹脂層の動的粘弾性法に於ける損失弾性率の測定周波数10Hzでの温度依存性特性が、更に、室温超過の温度にもピークを有する構成とした。   Further, the decorative material of the present invention further has a temperature-dependent characteristic at a measurement frequency of 10 Hz of a loss elastic modulus in the dynamic viscoelasticity method of the intermediate resin layer which is higher than the room temperature in any one of the above constitutions. The temperature also has a peak.

また、更にこの様に、化粧材の実使用温度域の上側でも損失弾性率にピーク有りと規定した構成とすることで、表面保護層に無機質粒子等の減摩剤を添加せずに、優れた耐摩耗性をより確実に得ることができる。それは、室温未満と室温超過の両温度に於ける、損失弾性率の温度依存特性の各ピークによって、結果として、室温での貯蔵弾性率を適度な値範囲に収まり易くして、外部応力(摩耗応力)による表面保護層の過度の変形を防止し且つ変形を復元でき、その表面硬度を維持できる様な適度な弾性復元力を、中間樹脂層に付与できる為と思われる。   Further, as described above, by adopting a configuration in which the loss elastic modulus has a peak even above the actual use temperature range of the decorative material, the surface protective layer is excellent without adding a lubricant such as inorganic particles to the surface protective layer. Wear resistance can be obtained more reliably. It is because the peaks of the temperature dependence of the loss modulus at both below and above room temperature tend to keep the storage modulus at room temperature within a reasonable value range, and to reduce the external stress (wear). It is considered that the intermediate resin layer can be given an appropriate elastic restoring force that can prevent excessive deformation of the surface protective layer due to stress), restore the deformation, and maintain its surface hardness.

また、本発明の化粧材は、上記いずれかの構成に対して更に、基材が紙からなる構成とした。基材が紙の構成では、化粧材は化粧紙となる。   Further, the decorative material of the present invention has a configuration in which the substrate is made of paper in addition to any one of the above-described configurations. When the base material is a paper, the decorative material is a decorative paper.

(1)本発明の化粧材によれば、(室温未満に損失弾性率のピークを有するという)特定の動的粘弾性特性を持った中間樹脂層によって、優れた耐摩耗性が得られる。この為、要求される耐摩耗性次第では、表面保護層中に無機質粒子等の減摩剤を添加する必要が無く、添加した際に起きた表面のザラツキ感や表面保護層形成時の版の摩耗を、回避する事も可能となる。
(2)更に、中間樹脂層の動的粘弾性特性を、貯蔵弾性率でも特定のものに規定する事で、耐摩耗性向上と表面硬さの維持に必要な適度な弾性復元力が得られる為、上記(1)の効果をより確実に得る事ができる。
(3)更に、上記(1)或いは(2)に加えて、中間樹脂層の損失弾性率について、室温超過にもピークを有する動的粘弾性特性として規定する事でも、耐摩耗性向上と表面硬さの維持に必要な適度な弾性復元力が得易くなる為、上記(1)で述べた効果をより確実に得る事ができる。
(4)更に、基材が紙の形態では、化粧材は化粧紙となる。
(1) According to the decorative material of the present invention, an excellent abrasion resistance is obtained by an intermediate resin layer having a specific dynamic viscoelastic property (having a peak of a loss modulus below room temperature). For this reason, depending on the required abrasion resistance, it is not necessary to add a lubricant such as inorganic particles to the surface protective layer. Wear can also be avoided.
(2) Further, by defining the dynamic viscoelastic properties of the intermediate resin layer to a specific storage elastic modulus, an appropriate elastic restoring force required for improving abrasion resistance and maintaining surface hardness can be obtained. Therefore, the effect (1) can be more reliably obtained.
(3) In addition to the above (1) or (2), the loss elastic modulus of the intermediate resin layer can be specified as a dynamic viscoelastic characteristic having a peak even at a temperature exceeding room temperature, so that the wear resistance is improved and the surface is improved. Since an appropriate elastic restoring force required for maintaining the hardness is easily obtained, the effect described in the above (1) can be more reliably obtained.
(4) Further, when the base material is in the form of paper, the decorative material is a decorative paper.

以下、本発明の化粧材について、実施の形態を説明する。   Hereinafter, embodiments of the cosmetic material of the present invention will be described.

先ず、図1(A)は、本発明の化粧材の基本的構成を示す断面図であり、本発明の化粧材Dは、基材1の上に、表面保護層3に接する中間樹脂層2、架橋した樹脂からなる表面保護層3がこの順に積層された構成である。中間樹脂層2は、基材1と表面保護層3間に存在させる樹脂層であり、中間樹脂層は、化粧材の用途、各種要求物性等に応じ、異なる機能を有する複数の層からなる多層構成としても良い。
例えば、図2の断面図で例示する化粧材Dの如く、基材1の上に、上記特定の動的粘弾性特性の中間樹脂層2、架橋した樹脂からなる表面保護層3が積層された構成にて、中間樹脂層2を、基材1側から順に、シーラ層4、絵柄層5、及びプライマー層6の3層で構成する等である。
First, FIG. 1 (A) is a cross-sectional view showing a basic configuration of a decorative material of the present invention. The decorative material D of the present invention comprises an intermediate resin layer 2 on a substrate 1 and in contact with a surface protective layer 3. The surface protective layer 3 made of a cross-linked resin is laminated in this order. The intermediate resin layer 2 is a resin layer that is present between the base material 1 and the surface protective layer 3. The intermediate resin layer is a multilayer composed of a plurality of layers having different functions according to the application of the decorative material, various required physical properties, and the like. It is good also as composition.
For example, as in a decorative material D illustrated in the cross-sectional view of FIG. 2, an intermediate resin layer 2 having the above specific dynamic viscoelastic properties and a surface protective layer 3 made of a cross-linked resin are laminated on a substrate 1. In the configuration, the intermediate resin layer 2 is composed of three layers of a sealer layer 4, a picture layer 5, and a primer layer 6 in order from the substrate 1 side.

そして、中間樹脂層の前記特定の動的粘弾性特性を概念的に示す説明図が図1(B)である。図1(B)は、中間樹脂層を、測定周波数10Hzの動的粘弾性法によって、損失弾性率E″と貯蔵弾性率E′の各温度依存性特性を測定する事で得られる図である。本発明では、動的粘弾性特性として、少なくとも、損失弾性率E″の温度依存性特性が、室温Tr未満にピークPaを有する様にする。更に同図は該損失弾性率E″の温度依存性特性が、室温Tr超過の温度にピークPbも有する好ましい場合でもある。また、同図には、同一条件で測定した貯蔵弾性率E′の温度依存性特性も示してあり、貯蔵弾性率E′に於いても、室温Trの領域での値が1×107〜2×109Paとなる最適領域R内に納まっている好ましい場合でもある。
この様に、上記中間樹脂層の損失弾性率E″或いは更に貯蔵弾性率E′を特定条件に規定する事で、該中間樹脂層の粘弾性挙動により化粧材(表面保護層)の耐摩耗性を向上させる事ができる。なお、この耐摩耗性向上は、表面保護層に減摩剤を添加していない構成にて享受できるが、更なる耐摩耗性向上が要求される場合には、表面保護層に減摩剤等を添加しても良い。
FIG. 1B is an explanatory view conceptually showing the specific dynamic viscoelastic property of the intermediate resin layer. FIG. 1B is a diagram obtained by measuring the temperature-dependent characteristics of the loss elastic modulus E ″ and the storage elastic modulus E ′ of the intermediate resin layer by a dynamic viscoelasticity method at a measurement frequency of 10 Hz. In the present invention, the dynamic viscoelastic property is such that at least the temperature-dependent property of the loss elastic modulus E ″ has a peak Pa below the room temperature Tr. The figure also shows the case where the temperature dependence of the loss elastic modulus E ″ preferably has a peak Pb at a temperature exceeding the room temperature Tr. In the same figure, the storage elastic modulus E ′ measured under the same conditions is shown. The temperature-dependent characteristics are also shown, and the storage elastic modulus E 'is preferably within the optimum range R where the value in the range of room temperature Tr is 1 × 10 7 to 2 × 10 9 Pa even in a preferable case. is there.
In this way, by specifying the loss elastic modulus E ″ or the storage elastic modulus E ′ of the intermediate resin layer under specific conditions, the viscoelastic behavior of the intermediate resin layer allows the abrasion resistance of the decorative material (surface protective layer). This improvement in wear resistance can be enjoyed in a configuration in which a lubricant is not added to the surface protective layer. However, if further improvement in wear resistance is required, the surface resistance can be improved. A lubricant or the like may be added to the protective layer.

以下、基材から順に、各層について更に詳述する。   Hereinafter, each layer will be described in more detail in order from the substrate.

〔基材〕
基材1としては、特に制限は無い。例えば、形状は化粧材の用途に応じて、シート、板、立体物等任意であり、材質も任意である。例えばシートとしては、紙、樹脂シート、不織布、金属箔等が挙げられる。
〔Base material〕
The substrate 1 is not particularly limited. For example, the shape is arbitrary, such as a sheet, a plate, and a three-dimensional object, depending on the use of the decorative material, and the material is also arbitrary. For example, examples of the sheet include paper, a resin sheet, a nonwoven fabric, and a metal foil.

具体的には、紙としては、薄葉紙、クラフト紙、チタン紙、上質紙、リンター紙、バライタ紙、硫酸紙、グラシン紙、パーチメント紙、パラフィン紙、板紙、コート紙、アート紙、和紙、或いはこれらに、アクリル樹脂、ウレタン樹脂、スチレン−ブタジエンゴム等の樹脂を含浸したものが挙げられる。   Specifically, as paper, tissue paper, kraft paper, titanium paper, woodfree paper, linter paper, baryta paper, parchment paper, glassine paper, parchment paper, paraffin paper, paperboard, coated paper, art paper, Japanese paper, or these And those impregnated with a resin such as an acrylic resin, a urethane resin, and styrene-butadiene rubber.

また、不織布としては、ポリエステル樹脂、アクリル樹脂等の樹脂繊維、硝子、炭素、石綿等の無機繊維等から成るものが挙げられる。また、樹脂シートとしては、ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテン、エチレン−プロピレン共重合体、エチレン−プロピレン−ブテン共重合体、オレフィン系熱可塑性エラストマー等のポリオフレィン系樹脂、ポリメチル(メタ)アクリレート、ポリブチル(メタ)アクリレート、メチル(メタ)アクリレート−スチレン共重合体、メチル(メタ)アクリレート−ブチル(メタ)アクリレート共重合体等のアクリル樹脂〔但し、(メタ)アクリレートとはアクリレート又はメタクリレートの意味である〕、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリアリレート、エチレンテレフタレート−イソフタレート共重合体、ポリエステル系熱可塑性エラストマー等のポリエステル樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール等のビニル系樹脂、ポリスチレン、アクリロニトリル−ブタジエン−スチレン共重合体(ABS樹脂)等のスチレン系樹脂、三酢酸セルロース、セロハン、ポリカーボネート等の樹脂からなる樹脂シート(フィルム)等が挙げられる。また、金属箔としては、アルミニウム、鉄、ステンレス鋼、銅等からなる金属箔が挙げられる。或いは上記列記した各種シートのうちの同種のもの同士、又は異種のもの同士の2層以上の積層体を用いても良い。   Examples of the nonwoven fabric include those made of resin fibers such as polyester resin and acrylic resin, and inorganic fibers such as glass, carbon, and asbestos. Further, as the resin sheet, polyethylene, polypropylene, polybutene, polymethylpentene, ethylene-propylene copolymer, ethylene-propylene-butene copolymer, polyolefin resin such as olefin-based thermoplastic elastomer, polymethyl (meth) acrylate, Acrylic resin such as polybutyl (meth) acrylate, methyl (meth) acrylate-styrene copolymer, methyl (meth) acrylate-butyl (meth) acrylate copolymer [however, (meth) acrylate means acrylate or methacrylate Such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyarylate, ethylene terephthalate-isophthalate copolymer, polyester thermoplastic elastomer, etc. From vinyl resins such as ester resins, polyvinyl chloride, polyvinylidene chloride, and polyvinyl alcohol; styrene resins such as polystyrene and acrylonitrile-butadiene-styrene copolymer (ABS resin); and resins such as cellulose triacetate, cellophane, and polycarbonate. Resin sheet (film). Examples of the metal foil include a metal foil made of aluminum, iron, stainless steel, copper, or the like. Alternatively, a laminate of two or more layers of the same type or different types of sheets among the various sheets listed above may be used.

また、板としては、木質板、無機窯業系板、樹脂板、金属板等が挙げられる。具体的には、木質板としては、杉、松、欅、樫、ラワン、チーク、メラピー、竹等の木(竹も包含)材から成る木材単板、木材合板、集成材、パーティクルボード、中密度繊維板(MDF)等が挙げられる。また、無機窯業系板としては、石膏板、石膏スラグ板、ケイ酸カルシウム板、石綿スレート板、ALC(軽量気泡コンクリート)板、中空押出セメント板等のセメント板、パルプセメント板、石綿セメント板、木片セメント板、GRC(硝子繊維強化コンクリート)板、或いは陶器、磁器、セッ器、土器、硝子、琺瑯等からなるセラミックス板等の無機非金属板、等が挙げられる。また、樹脂板としては、上記樹脂シートの材質として述べた各種の熱可塑性樹脂他に、フェノール樹脂、尿素樹脂、不飽和ポリエステル樹脂、ウレタン樹脂、エポキシ樹脂、メラミン樹脂等の熱硬化性樹脂からなる樹脂板、或いは、フェノール樹脂、尿素樹脂、不飽和ポリエステル樹脂、ウレタン樹脂、エポキシ樹脂、メラミン樹脂、ジアリルフタレート樹脂等の樹脂を、硝子繊維不織布、布帛、紙、その他各種繊維質基材に含浸硬化させて複合化した所謂FRP(繊維強化プラスチック)板等の樹脂板等である。また、金属板としては、鉄板、亜鉛メッキ鋼板、ポリ塩化ビニルゾル塗工鋼板、アルミニウム板、銅板等が挙げられる。   Examples of the board include a wood board, an inorganic ceramic board, a resin board, and a metal board. Specifically, as the wood board, there are wood veneer, wood plywood, laminated wood, particle board, and the like made of wood (including bamboo) such as cedar, pine, zelkova, oak, lauan, teak, melapy, and bamboo. Density fiberboard (MDF) and the like. In addition, examples of the inorganic ceramics-based plates include gypsum plates, gypsum slag plates, calcium silicate plates, asbestos slate plates, ALC (lightweight cellular concrete) plates, cement plates such as hollow extruded cement plates, pulp cement plates, asbestos cement plates, An inorganic non-metallic plate such as a wood chip cement plate, a glass fiber reinforced concrete (GRC) plate, or a ceramic plate made of pottery, porcelain, setware, earthenware, glass, enamel, or the like can be used. Further, the resin plate is made of a thermosetting resin such as a phenol resin, a urea resin, an unsaturated polyester resin, a urethane resin, an epoxy resin, and a melamine resin, in addition to the various thermoplastic resins described as the material of the resin sheet. Resin such as phenolic resin, urea resin, unsaturated polyester resin, urethane resin, epoxy resin, melamine resin, diallyl phthalate resin, etc. impregnated and cured into glass fiber non-woven fabric, cloth, paper and other various fibrous base materials It is a resin plate such as a so-called FRP (fiber reinforced plastic) plate or the like, which is composited. Examples of the metal plate include an iron plate, a galvanized steel plate, a polyvinyl chloride sol-coated steel plate, an aluminum plate, and a copper plate.

また、立体物では、上記板で列記の各種材質からなる柱状物やその他形状の立体物等が挙げられる。例えば、柱状の木材、三次元立体物の樹脂成形品等である。   Examples of the three-dimensional object include columnar objects made of various materials listed in the above-mentioned plate, and three-dimensional objects having other shapes. For example, it is a pillar-shaped wood, a three-dimensional three-dimensional resin molded product, or the like.

なお、化粧材は、基材がシートの場合には化粧シートとなり、さらにこの内、基材のシートが紙の場合には化粧紙となる。また、化粧材は、基材が板の場合には化粧板となり、立体物の場合には化粧部材や化粧製品となる。   The decorative material becomes a decorative sheet when the base material is a sheet, and further becomes a decorative paper when the base material sheet is paper. Further, the decorative material becomes a decorative plate when the base material is a plate, and becomes a decorative member or a cosmetic product when the base material is a three-dimensional object.

〔中間樹脂層〕
中間樹脂層2は、基材1と表面保護層3との間に介在させ、なお且つ本発明ではその動的粘弾性特性を特定した樹脂層である。又本発明では、塗液或いはインキからなる中間樹脂層は表面樹脂層に接して設けられる。中間樹脂層に用いる樹脂としては、本発明で規定する前述した動的粘弾性特性を満足するものであれば、特に制限は無く、例えば、熱可塑性樹脂でも良いし、硬化性樹脂でも良い。従って、中間樹脂層の樹脂は、公知の樹脂材料のなかから、用途、要求物性等に応じて、該特定の動的粘弾性特性を満足する樹脂を適宜選択使用すれば良い。
(Intermediate resin layer)
The intermediate resin layer 2 is a resin layer interposed between the base material 1 and the surface protective layer 3 and having a specified dynamic viscoelastic property in the present invention. In the present invention, the intermediate resin layer made of a coating liquid or ink is provided in contact with the surface resin layer. The resin used for the intermediate resin layer is not particularly limited as long as it satisfies the above-mentioned dynamic viscoelastic properties defined in the present invention, and may be, for example, a thermoplastic resin or a curable resin. Therefore, as the resin of the intermediate resin layer, a resin that satisfies the specific dynamic viscoelastic property may be appropriately selected and used from known resin materials according to the application, required physical properties, and the like.

そして、中間樹脂層の動的粘弾性特性としては、最低限、損失弾性率E″(の温度依存特性)に室温未満のピークを持たせれば、表面保護層による化粧材の耐摩耗性を強化できる。一方、化粧材表面に通常要求される表面硬さは、架橋した樹脂を使用する表面保護層自身で或る程度効果を奏する。但し、耐摩耗性向上の為に、損失弾性率E″に室温未満のピークを持たせた結果、室温領域で中間樹脂層が柔らかくなり過ぎて表面硬さに影響し低下させるならば、その不足分は、中間樹脂層の動的粘弾性特性として、更に貯蔵弾性率E′の室温での値を特定範囲内に規定する事で補える。更にこれに加えて、損失弾性率E″に室温超過のピーク持たせる事で、室温での貯蔵弾性率E′値を特定範囲に収め易くもできる。或いは、貯蔵弾性率E′は規定せずに、損失弾性率E″に(室温未満のピークと共に)室温超過のピーク持たせる事で、結果として、室温での貯蔵弾性率E′の値を好ましい範囲内に収めても良い。   As for the dynamic viscoelastic properties of the intermediate resin layer, if the loss elastic modulus E ″ (temperature-dependent property) has a peak below room temperature, the wear resistance of the decorative material by the surface protective layer is enhanced. On the other hand, the surface hardness normally required for the surface of the decorative material has a certain effect by the surface protective layer itself using the crosslinked resin, except that the loss elastic modulus E ″ is required to improve the abrasion resistance. As a result of having a peak below room temperature, if the intermediate resin layer becomes too soft in the room temperature region and affects and reduces the surface hardness, the shortage is further reduced as the dynamic viscoelastic properties of the intermediate resin layer. It can be supplemented by defining the value of the storage modulus E 'at room temperature within a specific range. In addition, by giving the loss modulus E ″ a peak exceeding room temperature, the storage modulus E ′ at room temperature can be easily kept in a specific range. Alternatively, the storage modulus E ′ is not specified. Furthermore, by giving the loss modulus E ″ a peak above room temperature (along with the peak below room temperature), the value of the storage modulus E ′ at room temperature may fall within a preferable range.

なお、貯蔵弾性率E′は、1×107〜2×109Paとするのが良いが、より好ましい範囲2×107〜2×109Paとするのが良い。貯蔵弾性率E′が1×107未満では、中間樹脂層の変形が大きくなる為に、表面保護層による表面硬さが低下し耐摩耗性の向上効果が低減する場合があるからである。
なお、この様な動的粘弾性特性は、中間樹脂層にゴム弾性的要素を導入するものであるが、完全なゴム弾性にするものでは無い。一般にゴムといわれている物質の貯蔵弾性率E′は、オーダ的に上記範囲未満であり、いわゆるゴムの様に柔らか過ぎると、変形が大きくなり過ぎて耐摩耗性向上効果が得られない。
The storage modulus E 'is preferably 1 × 10 7 to 2 × 10 9 Pa, but is more preferably in the range of 2 × 10 7 to 2 × 10 9 Pa. If the storage elastic modulus E ′ is less than 1 × 10 7 , the deformation of the intermediate resin layer becomes large, so that the surface hardness of the surface protective layer may be reduced and the effect of improving the wear resistance may be reduced.
Note that such dynamic viscoelastic properties are to introduce a rubber elastic element into the intermediate resin layer, but do not make the rubber elasticity perfect. The storage elastic modulus E 'of a substance generally called rubber is on the order of less than the above range. If the material is too soft like a rubber, the deformation becomes too large and the effect of improving wear resistance cannot be obtained.

ところで、中間樹脂層の損失弾性率E″及び貯蔵弾性率E′の動的粘弾性法に於ける測定周波数10Hzでの温度依存性特性は、市販の動的粘弾性測定装置を用いて測定する事ができる。例えば、株式会社ユービーエム(UBM)製の動的粘弾性測定装置「Rheogel−E4000」である。動的粘弾性測定には、一般に、測定試料への力の加え方による試料変形モードとして、曲げモード、引張モード、ねじりモード、剪断モードがあるが、本発明では測定試料形状(膜状)の点で引張モードである。また、実際の測定は、与えた振動は10Hzの正弦波で、歪み5μm、昇温速度は3℃/min、取り込み温度2℃毎、測定温度範囲−50℃から120℃とした。なお、測定試料は、中間樹脂層を形成する為の塗液を、ポリプロピレン製で平坦な底面の秤量皿に流し込んで乾燥させて中間樹脂層単独の塗膜として成膜したものを用いた。測定試料サイズは、例えば、厚さ約100μmで、長さ20mm、幅5mmの長方形である。測定周波数は、耐摩耗性と損失弾性率の温度依存性のピークの有無、及び貯蔵弾性率の数値との相関関係が明確化出来、且つ測定が容易であれば、本来いずれの周波数で測定しても良い。但し、一般に有機高分子の分野では周波数10Hzの測定が普及し、測定機も入手容易であること、また、10Hzの周波数で、実際に耐摩耗性との相関も明確となる為、本発明では測定周波数10Hzを採用している。   By the way, the temperature dependence of the loss elastic modulus E ″ and the storage elastic modulus E ′ of the intermediate resin layer at a measurement frequency of 10 Hz in the dynamic viscoelasticity method is measured using a commercially available dynamic viscoelasticity measuring device. For example, there is a dynamic viscoelasticity measurement device “Rheogel-E4000” manufactured by UBM Corporation (UBM). In the dynamic viscoelasticity measurement, generally, there are a bending mode, a tensile mode, a torsion mode, and a shear mode as sample deformation modes depending on how a force is applied to a measurement sample. The point is the tensile mode. In the actual measurement, the applied vibration was a sine wave of 10 Hz, the strain was 5 μm, the heating rate was 3 ° C./min, the capturing temperature was 2 ° C., and the measuring temperature range was −50 ° C. to 120 ° C. The measurement sample used was one in which a coating liquid for forming an intermediate resin layer was poured into a weighing dish made of polypropylene and having a flat bottom surface and dried to form a film of the intermediate resin layer alone. The measurement sample size is, for example, a rectangle having a thickness of about 100 μm, a length of 20 mm, and a width of 5 mm. The measurement frequency should be measured at any frequency as long as the correlation between the wear resistance and the temperature dependence of the loss modulus and the storage modulus can be clarified and the measurement is easy. May be. However, in general, in the field of organic polymers, measurement at a frequency of 10 Hz is widespread and a measuring instrument is easily available. At a frequency of 10 Hz, the correlation with the wear resistance is actually clear. A measurement frequency of 10 Hz is employed.

なお、樹脂の室温(領域)での硬軟の指標としては、いわゆるガラス転移温度Tgと室温Trとの関係(Tg≦Tr)を採用する事も考えられるが、これでは的確な製品設計が出来ない。それは、各種試験研究した結果、本発明が採用する動的粘弾性法による損失弾性率E″及び貯蔵弾性率E′の方が、動的な時間の函数としての外部応力を与えて測定している関係上、外部応力によって発生する摩耗現象に対して、より実使用条件に近い(化粧材の)状況を反映しており、的確な製品設計が可能となるからである。これに対して、ガラス転移温度は、通常は、外部応力を加えないで測定するDSC(示差走査熱量計)によって得る為に、動的な外部応力による挙動が測定結果に反映されない。また、損失弾性率のピーク温度とガラス転移温度とは一般には数値も一致しない。例えば、具体的には或る樹脂は、ガラス転移温度は18℃を示すが、損失弾性率E″の室温未満のピークの温度は67℃である。そして、仮に室温の下限温度を20℃とした場合に、ガラス転移温度が室温未満で良いとするならば、この樹脂は採用可能であるが、現実にはこの樹脂では耐摩耗性は向上しない。該樹脂の損失弾性率E″の室温未満のピークPaの温度が67℃と、室温未満で無い事が現実には反映しているのである。   In addition, as an index of the hardness of the resin at room temperature (region), it is conceivable to adopt a relationship between the so-called glass transition temperature Tg and the room temperature Tr (Tg ≦ Tr), but this does not allow an accurate product design. . As a result of various tests and studies, the loss elastic modulus E ″ and the storage elastic modulus E ′ according to the dynamic viscoelasticity method adopted by the present invention were measured by giving external stress as a function of dynamic time. The reason for this is that the abrasion phenomenon caused by external stress reflects the condition (of the cosmetic material) closer to the actual use conditions, and enables accurate product design. Since the glass transition temperature is usually obtained by a DSC (differential scanning calorimeter) measured without applying an external stress, the behavior due to dynamic external stress is not reflected in the measurement result. For example, specifically, some resins have a glass transition temperature of 18 ° C., but the peak of the loss modulus E ″ below room temperature is 67 ° C. is there. If the lower limit temperature of the room temperature is set to 20 ° C. and the glass transition temperature is lower than the room temperature, this resin can be used, but in reality, this resin does not improve the wear resistance. The fact that the temperature of the peak Pa below room temperature of the loss elastic modulus E ″ of the resin is 67 ° C., which is not lower than room temperature, is actually reflected.

なお、本発明でいうところの「室温」とは、化粧材が使用される温度を意味し、幅を持った温度である。例えば、0℃から70℃である。それは、化粧材が使用される環境温度は、日中の温度変化、季節変動、また使用される地域(寒冷地、亜熱帯地等)等によって、様々だからである。また、化粧材は、通常、最終的には室内、車内等の構造物内部で使用されるが、施工前では、運搬車両、倉庫等に於ける温度変化にも晒され、この様な場合も含めて、化粧材が使用される環境温度を意味する。従って、ここでは、室温は一意の只一つの温度(例えば25℃等)として定義すべきものでは無く、幅を持った温度領域として定義される。但し、その温度領域は、ありとあらゆる全ての温度変化に対応したものとする必要も無い。目的とする化粧材が使用される環境下で考慮すべき温度の下限及び上限から室温の温度範囲を決めれば良い。そして、本発明の中間樹脂層の樹脂の選択も、その決定された温度範囲の設計目標値に応じて選択する。従って、化粧材の用途によって、室温の下限温度と上限温度は異なり得る。例えば、自動車の内装材として使用するのであれば、家屋室内用途に比べて、特に上限側は高めにした室温として、中間樹脂層の特性を決めた方がより良好な結果が得られる。もちろん、中間樹脂層に使用する樹脂やそのコスト等が許せば、各種用途を幅広く考慮して広めの温度範囲となる様な室温として、中間樹脂層の特性を決めてもよい。また、実際の製品設計上ではコスト等との兼ね合いで、使用環境下で下限及び上限となる温度の発生頻度(確率)とその時に加わる摩耗応力の強さ及び発生頻度との兼ね合い次第では、下限や上限の両端は温度領域の幅が狭まる方向で切り捨てる事もあり得る。例えば、1例として通常の日本に於ける室内用途で設計する場合は、標準的には、室温の下限は10℃、上限は50℃にすると良い。後述の実施例は、この室温設定で設計された例を示す。   The "room temperature" in the present invention means a temperature at which the decorative material is used, and has a certain temperature. For example, the temperature is from 0 ° C to 70 ° C. The reason for this is that the environmental temperature at which the cosmetic material is used varies depending on the temperature change during the day, seasonal variation, and the region where the cosmetic material is used (a cold region, a subtropical region, etc.). In addition, the cosmetic material is usually used eventually in the interior of a structure such as a room or a car, but before construction, it is also exposed to temperature changes in a transport vehicle, a warehouse, and the like. Including, means the environmental temperature at which the cosmetic material is used. Therefore, here, the room temperature should not be defined as a unique single temperature (for example, 25 ° C.) but is defined as a temperature region having a width. However, the temperature range does not need to correspond to any and all temperature changes. The temperature range of the room temperature may be determined from the lower limit and the upper limit of the temperature to be considered in the environment where the target cosmetic material is used. The resin for the intermediate resin layer of the present invention is also selected according to the design target value in the determined temperature range. Therefore, the lower limit temperature and the upper limit temperature of room temperature may be different depending on the use of the cosmetic material. For example, when used as an interior material of an automobile, better results can be obtained by determining the characteristics of the intermediate resin layer, particularly when the room temperature is set to be higher on the upper limit side, as compared with indoor use in a house. Of course, if the resin used for the intermediate resin layer and its cost allow, the characteristics of the intermediate resin layer may be determined as room temperature within a wider temperature range in consideration of various applications. Also, in the actual product design, depending on the cost, etc., the lower limit and the upper limit of the frequency of occurrence (probability) of the temperature in the use environment and the intensity of the wear stress applied at that time and the frequency of occurrence may cause the lower limit. Also, both ends of the upper limit may be cut off in a direction in which the width of the temperature region is reduced. For example, in the case of designing for indoor use in ordinary Japan as an example, the lower limit of the room temperature is preferably set to 10 ° C. and the upper limit is set to 50 ° C. as a standard. The embodiment described below shows an example designed at this room temperature setting.

ところで、中間樹脂層に採用する樹脂の損失弾性率E″のピークが室温未満になる様に、或いはピークが室温超過となる様にするには、一般的には、樹脂の分子鎖構造に脂肪族系を採用すればピーク温度は低下傾向となり、芳香族系を採用すれば、ピーク温度は上昇傾向となる。なお、樹脂の分子量(重合度)は、損失弾性率E″のピークが明確に現れる為に或る程度(例えば重合度500)以上は必要であるが、ピーク温度の高低にはあまり関係しない。上記の様に、損失弾性率E″は、樹脂の分子鎖構造を適宜なものに分子設計する事で、所望のものに制御することができる。   By the way, in order for the peak of the loss modulus E ″ of the resin used in the intermediate resin layer to be lower than room temperature or to be higher than room temperature, generally, the fatty acid is added to the molecular chain structure of the resin. When the aromatic group is used, the peak temperature tends to decrease, and when the aromatic group is used, the peak temperature tends to increase.The molecular weight (degree of polymerization) of the resin has a clear peak of the loss modulus E ″. It is necessary to have a certain degree (for example, a polymerization degree of 500) or more to appear, but it is not so related to the peak temperature. As described above, the loss elastic modulus E ″ can be controlled to a desired value by appropriately designing the molecular chain structure of the resin.

なお、互いに異なる損失弾性率E″のピーク温度を持った樹脂同士を混合した場合は、両樹脂がミクロ的に完全に混ざり合ってしまえば、それらのピークが融合或いは消失する場合があるが、両樹脂がミクロ的に相分離した状態で混合していれば、それら異なるピーク温度が変わらずに残り場合がある。従って、中間樹脂層の損失弾性率E″のピークに、室温未満のピークPaと、室温超過のピークPbとの両方を持たせるには、2種類以上の樹脂を混合して実現しても良い。つまり、損失弾性率E″に室温未満のピークPaを持つ樹脂と、室温超過のピークPbを持つ樹脂とを混合した混合樹脂を使用しても良い。   In the case where resins having different loss elastic modulus E ″ peak temperatures are mixed with each other, if both resins are completely mixed microscopically, their peaks may be fused or disappear. If the two resins are mixed in a state where they are microscopically phase-separated, the different peak temperatures may remain unchanged, so that the peak of the loss elastic modulus E ″ of the intermediate resin layer may have a peak Pa below room temperature. In order to have both the peak and the peak Pb exceeding the room temperature, two or more kinds of resins may be mixed. That is, a mixed resin in which a resin having a peak Pa lower than room temperature in the loss elastic modulus E ″ and a resin having a peak Pb exceeding room temperature may be used.

中間樹脂層に用いる樹脂としては、上述の動的粘弾性特性を満足すれば、熱可塑性樹脂、硬化性樹脂等、特に制限が無い事は既に述べたが、更にここで具体例を挙げれば、アクリル樹脂、ポリエステル樹脂、スチレンブタジエンゴム(SBR)、熱可塑性ウレタン樹脂等の熱可塑性樹脂、2液硬化型ウレタン樹脂等の硬化性樹脂等を、単独、又は2種以上の混合物として使用することができる。なかでも、ポリエステル樹脂は、原料となる多価アルコールと多塩基酸の種類及び配合によって、動的粘弾性特性を調整し易い樹脂の一つである点で好適である。   As the resin used for the intermediate resin layer, as long as the dynamic viscoelastic properties described above are satisfied, a thermoplastic resin, a curable resin, and the like are not particularly limited, as described above. Acrylic resins, polyester resins, styrene-butadiene rubber (SBR), thermoplastic resins such as thermoplastic urethane resins, and curable resins such as two-component curable urethane resins can be used alone or as a mixture of two or more. it can. Among them, a polyester resin is preferable in that it is one of the resins whose dynamic viscoelastic properties are easily adjusted depending on the types and blends of polyhydric alcohol and polybasic acid as raw materials.

但し、熱可塑性樹脂よりは硬化性樹脂を使用して架橋させた方が(或いは熱可塑性樹脂として使用するよりは硬化性樹脂として架橋させて使用した方が)、耐摩耗性と共に耐溶剤性や耐熱性も良好となる点で、好ましい。架橋するには、公知の方法で良いが、例えば、イソシアネートを架橋剤として用いたり、或いは、樹脂分子中にアクリロイル基を持たせ(例えば、ポリエステル樹脂(プレポリマー)に、アクリル酸やメタクリル酸等を反応させたポリエステルアクリレートや、その他各種アクリレート系プレポリマー等)、且つ表面保護層にアクリレート系等の電離放射線硬化性樹脂を用いて、電離放射線照射で該表面保護層を硬化時に、前記アクリロイル基も同時に硬化させる等の方法によれば良い。また、樹脂分子中にヒドロキシル基等の活性水素含有基を持たせたり(例えば、2液硬化型ウレタン樹脂の主剤として使用される、ポリエステルポリオール、アクリルポリオール、ポリエーテルポリオール、ポリカーボネートポリオール、ポリウレタンポリオール等の各種ポリオール)、或いはイソシアネート基等を持たせて(例えばポリイソシアネートプレポリマー)、且つ表面保護層に2液硬化型等のウレタン樹脂を用いて、表面保護層を熱等で硬化時に、中間樹脂層も同時に硬化させる様にしても良い。なお、ポリエステル樹脂は、通常、反応残基としてヒドロキシル基が存在しているので、2液硬化型ウレタン樹脂の主剤のポリエステルポリオールとして使用できる。   However, it is better to use a curable resin than a thermoplastic resin for crosslinking (or to use a crosslinked resin as a curable resin rather than using a thermoplastic resin). It is preferable in that heat resistance is also improved. A known method may be used for crosslinking. For example, isocyanate is used as a crosslinking agent, or an acryloyl group is provided in a resin molecule (for example, acrylic acid, methacrylic acid, or the like is added to a polyester resin (prepolymer)). And an acrylate-based ionizing radiation-curable resin for the surface protective layer. When the surface protective layer is cured by ionizing radiation, the acryloyl group May be cured at the same time. Also, an active hydrogen-containing group such as a hydroxyl group may be provided in the resin molecule (for example, a polyester polyol, an acrylic polyol, a polyether polyol, a polycarbonate polyol, a polyurethane polyol, etc. used as a main component of a two-component curable urethane resin). Various polyols) or an isocyanate group (eg, a polyisocyanate prepolymer), and a two-component curable urethane resin for the surface protective layer. When the surface protective layer is cured by heat or the like, an intermediate resin is used. The layer may be cured at the same time. In addition, since a polyester resin usually has a hydroxyl group as a reactive residue, it can be used as a polyester polyol as a main component of a two-part curable urethane resin.

なお、架橋剤の添加量は、樹脂系、架橋剤の種類等によって異なるが、通常は樹脂(主剤)100質量部当たり1〜10質量部程度である。
また、架橋剤に用いるイソシアネートとしては、ポリイソシアネートとして、例えば、2,4−トリレンジイソシアネート、キシレンジイソシアネート、ナフタレンジイソシアネート、4,4′−ジフェニルメタンジイソシアネート等の芳香族イソシアネート、或いは、1,6−ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、水素添加トリレンジイソシアネート、水素添加ジフェニルメタンジイソシアネート等の脂肪族(乃至は脂環式)イソシアネート等が用いられる。或いはまた、上記各種イソシアネートの付加体又は多量体も用いられる。例えば、トリレンジイソシアネートの付加体、トリレンジイソシアネートの3量体(trimer)、1,6−ヘキサメチレンジイソシアネートの付加体等である。尚、イソシアネートは、耐候性、耐熱黄変性の点で、芳香族イソシアネートよりは、脂肪族(乃至は脂環式)イソシアネートの方が好ましい。
The amount of the crosslinking agent varies depending on the type of the resin, the type of the crosslinking agent, and the like, but is usually about 1 to 10 parts by mass per 100 parts by mass of the resin (base material).
Examples of the isocyanate used for the crosslinking agent include polyisocyanates such as aromatic isocyanates such as 2,4-tolylene diisocyanate, xylene diisocyanate, naphthalene diisocyanate, and 4,4'-diphenylmethane diisocyanate; Aliphatic (or alicyclic) isocyanates such as methylene diisocyanate, isophorone diisocyanate, hydrogenated tolylene diisocyanate, and hydrogenated diphenylmethane diisocyanate are used. Alternatively, adducts or multimers of the above various isocyanates are also used. For example, an adduct of tolylene diisocyanate, a trimer of tolylene diisocyanate, an adduct of 1,6-hexamethylene diisocyanate, and the like. In addition, from a viewpoint of weather resistance and heat-resistant yellowing, an aliphatic (or alicyclic) isocyanate is more preferable than an aromatic isocyanate.

中間樹脂層は、上記樹脂を溶解した溶液、或いは分散した分散液等からなる塗液(或いはインキ)を塗工、印刷等の公知の塗膜形成法で形成することが出来る。中間樹脂層を全面に形成するのであれば、グラビアコート、ロールコート等の塗工法で形成出来、また、パターン状に或いは全面に形成するのであれば、グラビア印刷、シルクスクリーン印刷、オフセット印刷、グラビアオフセット印刷等の印刷法で形成出来る。なお、塗液(或いはインキ)を水性とする場合でも、イソシアネートをブロックイソシアネートとし、溶媒或いは分散媒としての水を揮発乾燥させた後、更に加熱してイソシアネートのブロックを解除する等すれば、イソシアネート架橋は可能である。
なお、中間樹脂層の厚さは、用途、要求物性等によって異なるが、単層或いは多層構成に於ける総厚としても、通常1〜10μm程度とする。
The intermediate resin layer can be formed by a known coating film forming method such as coating and printing a coating liquid (or ink) composed of a solution in which the above resin is dissolved or a dispersion liquid in which the resin is dispersed. If the intermediate resin layer is formed on the entire surface, it can be formed by a coating method such as gravure coating or roll coating, and if it is formed in a pattern or on the entire surface, gravure printing, silk screen printing, offset printing, gravure It can be formed by a printing method such as offset printing. Even when the coating liquid (or ink) is aqueous, if the isocyanate is used as a blocked isocyanate, water as a solvent or a dispersion medium is volatilized and dried, and then further heated to release the isocyanate block, the isocyanate is used. Crosslinking is possible.
The thickness of the intermediate resin layer varies depending on applications, required physical properties, and the like, but is generally about 1 to 10 μm as a total thickness in a single-layer or multilayer structure.

ところで、基材と表面保護層との2層のみによって、所望の意匠表現を満たす場合では、中間樹脂層は着色剤等を添加しない単なる無着色透明な樹脂層として形成しても良い。しかし、通常は、中間樹脂層は、装飾等の他の機能も担う層として形成する。例えば図2で例示した如く、中間樹脂層2は、シーラ層4、絵柄層5、プライマー層6等の耐摩耗性向上目的以外の各種機能層を兼用する層として、形成する事ができる。この様な機能層との兼用は、1種、又は2種以上の機能層と兼用させる事ができる。図1では3種の機能層と兼用する多層構成の例であった。   By the way, when a desired design expression is satisfied only by the two layers of the base material and the surface protective layer, the intermediate resin layer may be formed as a simple non-colored transparent resin layer without adding a coloring agent or the like. However, usually, the intermediate resin layer is formed as a layer that also performs other functions such as decoration. For example, as illustrated in FIG. 2, the intermediate resin layer 2 can be formed as a layer that also serves as various functional layers other than the purpose of improving wear resistance, such as the sealer layer 4, the picture layer 5, and the primer layer 6. Such a function layer can be used also as one kind or two or more kinds of function layers. FIG. 1 shows an example of a multi-layer configuration that also serves as three types of functional layers.

なお、シーラ層4は、基材が例えば紙や木材等で表面が粗面や浸透性を呈する場合に、塗液やインキが基材内部に吸収されて膜厚が減少したり、基材の地合ムラが塗膜やインキ皮膜の艶ムラとなったりすることを防止する為に設ける層である。
また、中間樹脂層(各種機能層との兼用層も含む)に着色剤を添加して、全面の、着色層、隠蔽層、着色隠蔽層等としても良い。
また、中間樹脂層に着色剤を添加し、且つパターン状に形成すれば、それは、絵柄層にできる。但し、パターン状に形成する場合は、本来の中間樹脂層の目的からして、あまりに散在した層とはしない方が好ましい。なお、多色刷りの絵柄層の場合には、各色の層としては散在しても重ね合わせた結果として、全体としては散在せずに略全面又は全面にわたる層とする事もできる。
The sealer layer 4 has a structure in which the coating liquid or the ink is absorbed into the inside of the base material to reduce the film thickness or the thickness of the base material when the base material is, for example, paper or wood, and has a rough surface or permeability. This layer is provided in order to prevent formation unevenness from causing gloss unevenness of a coating film or an ink film.
Further, a coloring agent may be added to the intermediate resin layer (including a layer that also serves as various functional layers) to form a colored layer, a concealing layer, a colored concealing layer, and the like on the entire surface.
If a colorant is added to the intermediate resin layer and the intermediate resin layer is formed in a pattern, it can be made into a picture layer. However, when it is formed in a pattern, it is preferable that the layer is not excessively dispersed for the purpose of the original intermediate resin layer. In the case of a multicolor printing pattern layer, as a result of superimposing even if it is scattered as a layer of each color, it is also possible to form a layer that is not scattered as a whole but covers almost the entire surface or the entire surface.

また、中間樹脂層を多層構成とする場合に、そのうちで表面保護層に接する層は、表面保護層との接着強化目的のプライマー層を兼ねる層にできる。なお、プライマー層は、表面保護層との接着強化以外に、基材等も含めた異種層間の接着強化目的でも形成される。従って、多層構成の中間樹脂層が基材に接する場合には、基材に接する層を基材に対するプライマー層と兼用できる。例えば、基材が一般に密着性が悪いポリオレフィン系樹脂シート等の場合である。   In the case where the intermediate resin layer has a multilayer structure, a layer in contact with the surface protective layer may be a layer also serving as a primer layer for the purpose of enhancing adhesion to the surface protective layer. The primer layer is formed not only for the purpose of enhancing the adhesion with the surface protective layer but also for the purpose of enhancing the adhesion between different layers including the base material. Therefore, when the intermediate resin layer having a multilayer structure contacts the substrate, the layer contacting the substrate can be used also as a primer layer for the substrate. For example, this is the case where the base material is generally a polyolefin resin sheet having poor adhesion.

ところで、中間樹脂層は、基材と表面保護層間とすれば良いのだが、中間樹脂層以外の層(例えば中間樹脂層と兼用しない絵柄層、シーラ層等)も基材と表面保護層間に設ける場合には、好ましくは中間樹脂層は表面保護層に接する表面保護層直下の層とするか、より表面保護層に近い層とするのが、中間樹脂層のクッション効果(動的粘弾性特性)が直に表面保護層に与えられる点で望ましい。従って、例えば中間樹脂層と兼用しない絵柄層は、中間樹脂層と基材間に設けるのが好ましい。この場合、該絵柄層と表面保護層とが直接接触する場合に接着力が弱い場合には、中間樹脂層は該絵柄層と表面保護層とのプライマー層と見做す事もできる。   By the way, the intermediate resin layer may be provided between the base material and the surface protection layer. However, a layer other than the intermediate resin layer (for example, a pattern layer not used as the intermediate resin layer, a sealer layer, etc.) is also provided between the base material and the surface protection layer. In such a case, it is preferable that the intermediate resin layer be a layer immediately below the surface protection layer in contact with the surface protection layer or a layer closer to the surface protection layer because of the cushion effect of the intermediate resin layer (dynamic viscoelasticity). Is preferably provided directly to the surface protective layer. Therefore, for example, it is preferable to provide a picture layer that does not double as the intermediate resin layer between the intermediate resin layer and the substrate. In this case, when the pattern layer and the surface protective layer are in direct contact with each other and the adhesive strength is weak, the intermediate resin layer can be regarded as a primer layer between the pattern layer and the surface protective layer.

なお、中間樹脂層には、塗工適性、印刷適性、或いはその他物性等を適宜調整する為に、前記特定の損失弾性率、及び貯蔵弾性率の発現を阻害しない範囲で、シリカ、炭酸カルシウム、硫酸バリウム等の体質顔料、ベンゾトリアゾール、ベンゾフェノン、微粒子酸化セリウム等の紫外線吸収剤、ヒンダードアミン系ラジカル捕捉剤等の光安定剤、熱安定剤等の公知の添加剤を添加してもよい。   In addition, the intermediate resin layer, in order to appropriately adjust the coating suitability, printability, or other physical properties, the specific loss modulus, and, within a range that does not inhibit the expression of storage modulus, silica, calcium carbonate, Known additives such as extenders such as barium sulfate, ultraviolet absorbers such as benzotriazole, benzophenone and fine particle cerium oxide, light stabilizers such as hindered amine radical scavengers, and heat stabilizers may be added.

また、中間樹脂層に着色剤を添加して絵柄層(全面の着色ベタ層も含む)等とする場合には、該着色剤には公知の着色剤が使用できる。例えば、チタン白、亜鉛華、カーボンブラック、鉄黒、弁柄、カドミウムレッド、黄鉛、チタンイエロー、コバルトブルー、群青等の無機顔料、アニリンブラック、キナクリドンレッド、ポリアゾレッド、イソインドリノンイエロー、ベンジジンイエロー、フタロシアニンブルー、インダスレンブルー等の有機顔料、二酸化チタン被覆雲母、貝殻、真鍮、アルミニウム等の鱗片状箔粉等の光輝性顔料、或いはその他染料等を着色剤として使用する。   When a colorant is added to the intermediate resin layer to form a picture layer (including a solid color layer on the entire surface) or the like, a known colorant can be used as the colorant. For example, inorganic pigments such as titanium white, zinc white, carbon black, iron black, red iron oxide, cadmium red, graphite, titanium yellow, cobalt blue, and ultramarine blue, aniline black, quinacridone red, polyazo red, isoindolinone yellow, and benzidine yellow And organic pigments such as phthalocyanine blue and induslen blue, brilliant pigments such as flaky foil powders such as titanium dioxide-coated mica, shells, brass and aluminum, and other dyes are used as coloring agents.

なお、中間樹脂層を兼用する絵柄層、或いは兼用しない絵柄層で表現する絵柄は任意であるが、例えば、木目模様、石目模様、布目模様、タイル調模様、煉瓦調模様、皮絞模様、砂目、梨地、文字、記号、幾何学模様等である。   The pattern represented by the pattern layer also serving as the intermediate resin layer or the pattern layer not serving also is arbitrary, for example, a wood pattern, a stone pattern, a cloth pattern, a tile pattern, a brick pattern, a leather pattern, Grains, satin, letters, symbols, geometric patterns, etc.

また、中間樹脂層を兼用しない絵柄層の場合、そのバインダーの樹脂としては、他層との密着性等の要求物性に応じて、公知の樹脂を適宜使用すれば良い。例えば、例えば、ニトロセルロース、酢酸セルロース、セルロースアセテートプロピオネート等のセルロース系樹脂、ウレタン樹脂、アクリル樹脂、塩化ビニル−酢酸ビニル共重合体、ポリエステル樹脂、アルキド樹脂等の単体又はこれらを含む混合物を用いる。   In the case of a picture layer that does not double as an intermediate resin layer, a known resin may be appropriately used as the binder resin in accordance with required physical properties such as adhesion to other layers. For example, for example, nitrocellulose, cellulose acetate, cellulose resin such as cellulose acetate propionate, urethane resin, acrylic resin, vinyl chloride-vinyl acetate copolymer, polyester resin, alkyd resin or the like alone or a mixture containing these. Used.

〔表面保護層〕
次に、表面保護層3は、化粧材の最表面層となる層であり、熱可塑性樹脂で形成しても良いが、より良い耐摩耗性が得られる点で、架橋した樹脂を与える硬化性樹脂が好ましい。該硬化性樹脂としては、公知の樹脂が使用でき、例えば、電離放射線硬化性樹脂、2液硬化型ウレタン樹脂、エポキシ樹脂、メラミン樹脂等を使用する。表面保護層はこれらの1種又は2種以上の樹脂からなる塗液を、ロールコート、グラビアコート等の公知の塗工法で形成する事ができる。なお、或いはグラビア印刷、シルクスクリーン印刷等の公知の印刷法による全ベタ印刷で形成しても良い。なお、表面保護層の厚さは用途、要求物性等によるが、1〜30μm程度である。
(Surface protective layer)
Next, the surface protective layer 3 is a layer to be the outermost surface layer of the decorative material, and may be formed of a thermoplastic resin. Resins are preferred. As the curable resin, a known resin can be used. For example, an ionizing radiation curable resin, a two-component curable urethane resin, an epoxy resin, a melamine resin, and the like are used. The surface protective layer can be formed by applying a coating liquid comprising one or more of these resins by a known coating method such as roll coating or gravure coating. Alternatively, it may be formed by full solid printing by a known printing method such as gravure printing or silk screen printing. The thickness of the surface protective layer depends on the application, required physical properties, etc., but is about 1 to 30 μm.

なお、上記電離放射線硬化性樹脂は、電離放射線により架橋硬化可能な組成物であり、具体的には、分子中にラジカル重合性不飽和結合、又はカチオン重合性官能基を有する、プレポリマー(所謂オリゴマーも包含する)及び/又はモノマーを適宜混合した電離放射線により硬化可能な組成物が好ましくは用いられる。これらプレポリマー又はモノマーは単体又は複数種を混合して用いる。   The ionizing radiation-curable resin is a composition which can be cross-linked and cured by ionizing radiation. Specifically, a prepolymer (so-called prepolymer having a radical polymerizable unsaturated bond or a cationic polymerizable functional group in a molecule). A composition curable by ionizing radiation, in which an oligomer is included) and / or a monomer appropriately mixed, is preferably used. These prepolymers or monomers are used alone or as a mixture of two or more.

上記プレポリマー又はモノマーは、具体的には、分子中に(メタ)アクリロイル基、(メタ)アクリロイルオキシ基等のラジカル重合性不飽和基、エポキシ基等のカチオン重合性官能基等を有する化合物からなる。また、ポリエンとポリチオールとの組み合わせによるポリエン/チオール系のプレポリマーも好ましくは用いられる。なお、例えば(メタ)アクリロイル基とは、アクリロイル基又はメタクリロイル基の意味である。
ラジカル重合性不飽和基を有するプレポリマーの例としては、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、メラミン(メタ)アクリレート、トリアジン(メタ)アクリレート、シリコーン(メタ)アクリレート等が使用できる。分子量としては、通常250〜100,000程度のものが用いられる。
The above-mentioned prepolymer or monomer is, specifically, a compound having a radical polymerizable unsaturated group such as a (meth) acryloyl group, a (meth) acryloyloxy group, or a cationic polymerizable functional group such as an epoxy group in a molecule. Become. Further, a polyene / thiol prepolymer based on a combination of a polyene and a polythiol is also preferably used. In addition, for example, a (meth) acryloyl group means an acryloyl group or a methacryloyl group.
Examples of the prepolymer having a radical polymerizable unsaturated group include polyester (meth) acrylate, urethane (meth) acrylate, epoxy (meth) acrylate, melamine (meth) acrylate, triazine (meth) acrylate, and silicone (meth) acrylate. Etc. can be used. A molecular weight of about 250 to 100,000 is usually used.

ラジカル重合性不飽和基を有するモノマーの例としては、単官能モノマーとして、メチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等がある。また、多官能モノマーとして、ジエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイドトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等もある。
カチオン重合性官能基を有するプレポリマーの例としては、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ化合物等のエポキシ系樹脂、脂肪酸系ビニルエーテル、芳香族系ビニルエーテル等のビニルエーテル系樹脂のプレポリマーがある。
チオールとしては、トリメチロールプロパントリチオグリコレート、ペンタエリスリトールテトラチオグリコレート等のポリチオールがある。また、ポリエンとしては、ジオールとジイソシアネートによるポリウレタンの両端にアリルアルコールを付加したもの等がある。
Examples of the monomer having a radical polymerizable unsaturated group include monofunctional monomers such as methyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and phenoxyethyl (meth) acrylate. Further, as polyfunctional monomers, diethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, hexanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane ethylene oxide tri (meth) acrylate, There are also pentaerythritol tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate and the like.
Examples of the prepolymer having a cationically polymerizable functional group include prepolymers of epoxy resins such as bisphenol epoxy resins and novolak epoxy compounds, and vinyl ether resins such as fatty acid vinyl ethers and aromatic vinyl ethers.
Examples of the thiol include polythiols such as trimethylolpropane trithioglycolate and pentaerythritol tetrathioglycolate. Examples of the polyene include those obtained by adding allyl alcohol to both ends of a polyurethane made of a diol and a diisocyanate.

なお、紫外線又は可視光線にて架橋硬化させる場合には、上記電離放射線硬化性樹脂に、さらに光重合開始剤を添加する。ラジカル重合性不飽和基を有する樹脂系の場合は、光重合開始剤として、アセトフェノン類、ベンゾフェノン類、チオキサントン類、ベンゾイン、ベンゾインメチルエーテル類を単独又は混合して用いることができる。また、カチオン重合性官能基を有する樹脂系の場合は、光重合開始剤として、芳香族ジアゾニウム塩、芳香族スルホニウム塩、芳香族ヨードニウム塩、メタロセン化合物、ベンゾインスルホン酸エステル等を単独又は混合物として用いることができる。なお、これらの光重合開始剤の添加量としては、電離放射線硬化性樹脂100質量部に対して、0.1〜10質量部程度である。   When crosslinking and curing with ultraviolet light or visible light, a photopolymerization initiator is further added to the ionizing radiation-curable resin. In the case of a resin having a radical polymerizable unsaturated group, acetophenones, benzophenones, thioxanthones, benzoin, benzoin methyl ethers can be used alone or in combination as a photopolymerization initiator. In the case of a resin having a cationically polymerizable functional group, an aromatic diazonium salt, an aromatic sulfonium salt, an aromatic iodonium salt, a metallocene compound, a benzoin sulfonic acid ester, or the like is used alone or as a mixture as a photopolymerization initiator. be able to. The addition amount of these photopolymerization initiators is about 0.1 to 10 parts by mass with respect to 100 parts by mass of the ionizing radiation-curable resin.

なお、電離放射線としては、電離放射線硬化性樹脂(組成物)中の分子を硬化反応させ得るエネルギーを有する電磁波又は荷電粒子が用いられる。通常用いられるものは、紫外線又は電子線であるが、この他、可視光線、X線、荷電粒子線等を用いる事も可能である。紫外線源としては、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク灯、ブラックライト、メタルハライドランプ等の光源が使用される。紫外線の波長としては通常190〜380nmの波長域が主として用いられる。電子線源としては、コッククロフトワルトン型、バンデグラフト型、共振変圧器型、絶縁コア変圧器型、或いは、直線型、ダイナミトロン型、高周波型等の各種電子線加速器を用い、100〜1000keV、好ましくは、100〜300keVのエネルギーをもつ電子を照射するものが使用される。   In addition, as the ionizing radiation, an electromagnetic wave or a charged particle having energy capable of causing a curing reaction of molecules in the ionizing radiation-curable resin (composition) is used. Usually, ultraviolet rays or electron beams are used, but it is also possible to use visible rays, X-rays, charged particle beams, and the like. As the ultraviolet light source, a light source such as an ultra-high pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc lamp, a black light, and a metal halide lamp is used. As a wavelength of the ultraviolet light, a wavelength range of 190 to 380 nm is usually mainly used. As the electron beam source, various electron beam accelerators such as Cockcroft-Walton type, Van degraft type, resonance transformer type, insulating core transformer type, or linear type, dynamitron type, and high frequency type are used, and 100 to 1000 keV, preferably A device that irradiates electrons having an energy of 100 to 300 keV is used.

また、上記電離放射線硬化性樹脂には、更に必要に応じて、塩化ビニル−酢酸ビニル共重合体、酢酸ビニル樹脂、アクリル樹脂、セルロース系樹脂等の熱可塑性樹脂を添加することもできる。   Further, a thermoplastic resin such as a vinyl chloride-vinyl acetate copolymer, a vinyl acetate resin, an acrylic resin, and a cellulose resin can be further added to the ionizing radiation-curable resin, if necessary.

また、上記電離放射線硬化性樹脂には、更に必要に応じて、各種添加剤を添加する事もできる。これらの添加剤としては、例えば、炭酸カルシウム、硫酸バリウム、シリカ、アルミナ等の微粉末からなる体質顔料(充填剤)、染料、顔料等の着色剤等である。等である。   Further, various additives can be further added to the ionizing radiation-curable resin, if necessary. These additives include, for example, extenders (fillers) composed of fine powders such as calcium carbonate, barium sulfate, silica, and alumina, and coloring agents such as dyes and pigments. And so on.

また、本発明の化粧材では、中間樹脂層によって耐摩耗性が向上している為、減摩剤は不必須ではあるが、より優れた耐摩耗性が必要で、また表面のザラツキ感の触感、ドクター摩耗、版摩耗等の影響を無視できるような場合には、表面保護層の樹脂中に、アルミナ(α−アルミナ等)、シリカ、硝子、炭化ケイ素、炭化ホウ素、ダイヤモンド等の硬質の無機質粒子からなる減摩剤、シリコーン樹脂、シリコーンオイル、フッ素樹脂、フッ素変性オイル、木蝋、モンタンワックス、パラフィンワックス等の滑剤を更に添加しても良い。
なお、減摩剤は、減摩剤粒子自体の持つ硬度(例えばビッカース硬度等)が表面保護層の樹脂よりも硬く、この硬さにより外部応力に対して耐性を持たせて耐摩耗性を向上させる物理的手法による添加剤である。
また、滑剤は、潤滑作用により、動摩擦或いは静摩擦係数を下げることで耐摩耗性を向上させる物理化学的な手法による添加剤である。
Further, in the decorative material of the present invention, the wear resistance is improved by the intermediate resin layer. Therefore, although the lubricant is not essential, it requires more excellent wear resistance, and the surface has a rough feel. When the influence of doctor wear, plate wear, etc. can be ignored, hard inorganic materials such as alumina (α-alumina), silica, glass, silicon carbide, boron carbide, diamond, etc. Lubricants such as a lubricant composed of particles, silicone resin, silicone oil, fluororesin, fluorine-modified oil, wood wax, montan wax, paraffin wax and the like may be further added.
In addition, the lubricant (eg, Vickers hardness, etc.) of the lubricant particles themselves is harder than the resin of the surface protective layer, and by this hardness, it has resistance to external stress and improves abrasion resistance. It is an additive based on a physical method to be used.
Further, the lubricant is an additive by a physicochemical method for improving the wear resistance by lowering the dynamic friction or the static friction coefficient by a lubricating action.

そして、表面保護層は上記の様な樹脂を含む塗液を、ロールコート、フローコート等の従来公知の塗工法で形成することができる。或いは、グラビア印刷等の従来公知の印刷法による全面印刷でも形成することができる。   The surface protective layer can be formed by applying a coating solution containing the above-mentioned resin by a conventionally known coating method such as roll coating or flow coating. Alternatively, it can also be formed by full-surface printing by a conventionally known printing method such as gravure printing.

〔被着基材〕
なお、本発明の化粧材(中でも化粧紙等の化粧シートの形態)は、更に様々な被着基材の表面に貼着する為の表面化粧材として用いられる。
被着基材としては、特に制限は無い。例えば、被着基材の材質は、無機非金属系、金属系、木質系、樹脂系等である。具体的には、無機非金属系では、例えば、抄造セメント、押出しセメント、スラグセメント、ALC(軽量気泡コンクリート)、GRC(硝子繊維強化コンクリート)、パルプセメント、木片セメント、石綿セメント、ケイ酸カルシウム、石膏、石膏スラグ等の非陶磁器窯業系材料、土器、陶器、磁器、セッ器、硝子、琺瑯等のセラミックス等の無機質材料等がある。また、金属系では、例えば、鉄、アルミニウム、銅等の金属材料がある。また、木質系では、例えば、杉、檜、樫、ラワン、チーク等からなる単板、合板、パーティクルボード、繊維板、集成材等がある。また、樹脂系では、例えば、ポリプロピレン、ABS樹脂、フェノール樹脂等の樹脂材料がある。
被着基材の形状としては、平板、曲面板、多角柱等任意である。
(Deposited substrate)
The decorative material of the present invention (especially in the form of a decorative sheet such as decorative paper) is used as a surface decorative material to be adhered to the surface of various substrates to be adhered.
The substrate to be adhered is not particularly limited. For example, the material of the adhered substrate is an inorganic non-metal-based, metal-based, wood-based, resin-based, or the like. Specifically, in the inorganic nonmetal system, for example, papermaking cement, extruded cement, slag cement, ALC (lightweight cellular concrete), GRC (glass fiber reinforced concrete), pulp cement, wood chip cement, asbestos cement, calcium silicate, Non-ceramic ceramic materials such as gypsum and gypsum slag; and inorganic materials such as ceramics such as earthenware, ceramics, porcelain, setware, glass, and enamel. Further, in the metal system, for example, there are metal materials such as iron, aluminum, and copper. Further, in the case of woody materials, there are, for example, veneers made of cedar, cypress, oak, lauan, teak, etc., plywood, particle board, fiber board, laminated wood and the like. In the resin system, for example, there are resin materials such as polypropylene, ABS resin, and phenol resin.
The shape of the substrate to be adhered is arbitrary such as a flat plate, a curved plate, and a polygonal prism.

〔用途〕
本発明の化粧材の用途は、特に制限は無いが、壁、床、天井等の建築物内装材、扉、扉枠、窓枠等の建具、回縁、幅木等の造作部材、箪笥、キャビネット等の家具等に用いる。
[Application]
The use of the cosmetic material of the present invention is not particularly limited, but includes walls, floors, ceilings and other building interior materials, doors, door frames, window frames and other fittings, rims, building members such as skirting boards, chests, Used for furniture such as cabinets.

以下、本発明について、実施例及び比較例により更に説明する。   Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples.

〔実施例1〕
試験評価用として、図3の如き構成の化粧紙となる化粧材Dを、次の様にして作製した。
先ず、基材1として坪量30g/m2の未晒薄葉紙(未含浸紙)の片面に、基材側から順に、塗布量(固形分基準、以下同様)5g/m2で白色の着色ベタ層7(絵柄層に於ける全ベタ層とも言える)、塗布量2g/m2で赤色全面柄の絵柄層5、塗布量2g/m2のプライマー層6の3層からなる中間樹脂層2をミヤバーで順次塗工形成した。これら3層の樹脂分は同一とした。該樹脂は表1に示す如く、(飽和)ポリエステル樹脂(ヒドロキシル基有り)〔表中略号をPESとする。以下〔 〕内同様。〕と不飽和ポリエステル樹脂(ヒドロキシル基有り)〔U−PES〕との4対6質量比の混合樹脂からなる主剤100質量部に対して、イソシアネート系架橋剤として1,6−ヘキサメチレンジイソシアネート(HMDI)付加体を3質量部配合した2液硬化型ウレタン樹脂を用いた。
[Example 1]
For the purpose of test evaluation, a decorative material D as a decorative paper having a configuration as shown in FIG. 3 was prepared as follows.
First, a white colored solid with a coating amount (solid basis, the same applies hereinafter) of 5 g / m 2 was applied to one surface of unbleached thin paper (unimpregnated paper) having a basis weight of 30 g / m 2 as a substrate 1 in order from the substrate side. layer 7 (also said total solid layer in the picture layer), the pattern layer 5 of the red entire pattern at a coverage of 2 g / m 2, an intermediate resin layer 2 consisting of three layers of the primer layer 6 coating amount 2 g / m 2 Coating was performed sequentially with a Miya bar. The resin components of these three layers were the same. As shown in Table 1, the resin is a (saturated) polyester resin (having a hydroxyl group). The same applies in [] below. And an unsaturated polyester resin (having a hydroxyl group) [U-PES] in a ratio of 4 to 6 with respect to 100 parts by mass of a base resin, 1,6-hexamethylene diisocyanate (HMDI 2) A two-component curable urethane resin containing 3 parts by mass of an adduct was used.

なお、上記樹脂(この場合、架橋硬化物)の動的粘弾性特性は、該樹脂の単層をポリプロピレン製秤量皿内で成膜したものについて、動的粘弾性測定装置(UBM社製、「Rheogel−E4000」)で測定した。また、測定は引張モードで行い、10Hzの正弦波で振動を与え、歪み5μm、昇温速度3℃/min、取り込み温度2℃毎、測定温度範囲−50℃〜120℃の測定条件で行った。その結果、損失弾性率E″の温度依存特定は、室温(一連の作製した化粧材では、10℃〜50℃を室温とした)未満の−14℃にピークを有し、且つ室温超過の90℃にもピークを有した。また、貯蔵弾性率E′は、上記室温領域にて、7×107〜2×108Paであった。 The dynamic viscoelastic properties of the resin (in this case, the crosslinked cured product) were determined by measuring a single layer of the resin in a polypropylene weighing dish with a dynamic viscoelasticity measuring apparatus (manufactured by UBM, " Rheogel-E4000 "). The measurement was performed in a tensile mode, a vibration was applied with a sine wave of 10 Hz, the strain was 5 μm, the heating rate was 3 ° C./min, the capturing temperature was 2 ° C., and the measuring temperature range was −50 ° C. to 120 ° C. . As a result, the temperature-dependent specification of the loss modulus E ″ has a peak at −14 ° C. lower than room temperature (10 ° C. to 50 ° C. is set to room temperature for a series of prepared cosmetic materials), and 90 ° C. exceeding room temperature. The storage elastic modulus E 'was 7 × 10 7 to 2 × 10 8 Pa in the room temperature range.

更に、上記中間樹脂層2の上に、4官能ウレタンアクリレートプレポリマー20質量部、3官能ウレタンアクリレートプレポリマー40質量部、ポリエステルアクリレートオリゴマー40質量部からなる電子線硬化性樹脂の塗料を、塗布量5g/m2となる様にミヤバーで塗布後、電子線を175keV、30kGy(3Mrad)の条件で照射して塗膜を架橋硬化させて、架橋した樹脂からなる表面保護層3を形成して、化粧材Dとした。 Further, on the intermediate resin layer 2, a coating of an electron beam-curable resin composed of 20 parts by mass of a 4-functional urethane acrylate prepolymer, 40 parts by mass of a trifunctional urethane acrylate prepolymer, and 40 parts by mass of a polyester acrylate oligomer was applied. After coating with a miller bar so as to be 5 g / m 2 , an electron beam is irradiated under the conditions of 175 keV and 30 kGy (3 Mrad) to crosslink and cure the coating film to form a surface protective layer 3 made of a crosslinked resin. The decorative material was D.

〔実施例2〕
実施例1に於いて、シーラ層、絵柄層、及びプライマー層を兼ねる3層構成の中間樹脂層の樹脂を、表1の如く、水性の(飽和)ポリエステル樹脂〔水性PES〕に変更し、架橋剤は未使用とした他は、実施例1と同様にして化粧材を得た。なお、上記樹脂の損失弾性率E″の室温未満でのピーク温度は−31℃で、室温超過のピークは存在しない。また、貯蔵弾性率E′の室温領域での値は、2×107〜2×108Paであった。
[Example 2]
In Example 1, the resin of the three-layered intermediate resin layer also serving as a sealer layer, a picture layer, and a primer layer was changed to an aqueous (saturated) polyester resin [aqueous PES] as shown in Table 1 and crosslinked. A cosmetic material was obtained in the same manner as in Example 1, except that the agent was not used. The peak temperature of the loss elastic modulus E ″ of the resin at a temperature lower than room temperature is −31 ° C., and there is no peak exceeding the room temperature. The value of the storage elastic modulus E ′ in the room temperature region is 2 × 10 7. 22 × 10 8 Pa.

〔実施例3〕
実施例1に於いて、中間樹脂層の樹脂として、表1の如く、主剤のみを使用し、架橋剤は未使用とした他は、実施例1と同様にして化粧材を得た。なお、該樹脂(架橋していない熱可塑性樹脂である)の損失弾性率E″の室温未満でのピーク温度は−10℃となり、室温超過のピーク温度は60℃となった。また、貯蔵弾性率E′の室温領域での値は、2×107〜2×108Paであった。
[Example 3]
In Example 1, a cosmetic material was obtained in the same manner as in Example 1 except that only the main agent was used and the crosslinking agent was not used as shown in Table 1 as the resin of the intermediate resin layer. In addition, the peak temperature of the loss elastic modulus E ″ of the resin (which is a non-crosslinked thermoplastic resin) below room temperature was −10 ° C., and the peak temperature above room temperature was 60 ° C. Further, storage elasticity was obtained. The value of the ratio E ′ in the room temperature range was 2 × 10 7 to 2 × 10 8 Pa.

〔実施例4〕
実施例1に於いて、中間樹脂層の樹脂として、表1の如く、主剤は(飽和)ポリエステル樹脂〔PES〕のみ(架橋剤配合はそのまま)とした他は、実施例1と同様にして化粧材を得た。なお、該樹脂(架橋樹脂である)の損失弾性率E″の室温未満のピーク温度は−10℃で、室温超過のピークは存在せず、また、貯蔵弾性率E′の室温領域での値は、1×107〜2×107Paであるものを選択した。
[Example 4]
In Example 1, as shown in Table 1, as the resin of the intermediate resin layer, the main component was only a (saturated) polyester resin [PES] (the blending of the cross-linking agent was unchanged), and the makeup was the same as in Example 1. Wood was obtained. The peak temperature below room temperature of the loss elastic modulus E ″ of the resin (which is a crosslinked resin) is −10 ° C., there is no peak exceeding room temperature, and the storage elastic modulus E ′ is a value in the room temperature region. Was selected to be 1 × 10 7 to 2 × 10 7 Pa.

〔実施例5〕
実施例1に於いて、中間樹脂層の樹脂として、表1の如く、アクリル樹脂〔AC(A)〕を使用(架橋剤は未使用)した他は、実施例1と同様にして化粧材を得た。なお、該樹脂(熱可塑性樹脂である)の損失弾性率E″の室温未満でのピーク温度は6℃で、室温超過のピークは存在しない。また、貯蔵弾性率E′の室温領域での値は、2×108〜2×109Paであった。
[Example 5]
In Example 1, a cosmetic material was prepared in the same manner as in Example 1 except that an acrylic resin [AC (A)] was used (a crosslinking agent was not used) as a resin of the intermediate resin layer as shown in Table 1. Obtained. The peak temperature of the resin (which is a thermoplastic resin) having a loss modulus E ″ at a temperature lower than room temperature is 6 ° C., and there is no peak exceeding the room temperature. Was 2 × 10 8 to 2 × 10 9 Pa.

〔実施例6〕
実施例1に於いて、表1の如く、表面保護層の樹脂を電子線硬化性樹脂〔EB〕に替えて、ウレタンポリオールの主剤100質量部に対して、HMDI付加体の架橋剤12質量部を配合した2液硬化型ウレタン樹脂〔2液PU〕を使用して加熱硬化させた他は、実施例1と同様にして、化粧材を得た。
[Example 6]
In Example 1, as shown in Table 1, the resin of the surface protective layer was changed to the electron beam-curable resin [EB], and the crosslinking agent of the HMDI adduct was 12 parts by mass with respect to 100 parts by mass of the urethane polyol main agent. A cosmetic material was obtained in the same manner as in Example 1, except that a two-component curable urethane resin [two-component PU] was used and cured by heating.

〔比較例1〕
実施例1に於いて、中間樹脂層の樹脂として、表1の如く、アクリル樹脂〔AC(B)〕(但し、実施例5で使用のアクリル樹脂とは樹脂内容が異なる)と、塩化ビニル−酢酸ビニル共重合体〔VC−VA〕との5対5質量比の混合樹脂を使用(架橋剤は未使用)した他は、実施例1と同様にして化粧材を得た。なお、該混合樹脂(熱可塑性樹脂)の損失弾性率E″は、室温未満にはピークが存在せず、室温超過の51℃にピークが存在した。また、貯蔵弾性率E′の室温領域での値は、6×108〜2×109Paであった。
[Comparative Example 1]
In Example 1, as the resin of the intermediate resin layer, as shown in Table 1, acrylic resin [AC (B)] (however, the resin content is different from the acrylic resin used in Example 5) and vinyl chloride- A cosmetic material was obtained in the same manner as in Example 1, except that a mixed resin with a vinyl acetate copolymer [VC-VA] at a ratio of 5 to 5 was used (a crosslinking agent was not used). The loss elastic modulus E ″ of the mixed resin (thermoplastic resin) had no peak below room temperature and a peak at 51 ° C. which was higher than room temperature. Was 6 × 10 8 to 2 × 10 9 Pa.

〔比較例2〕
実施例1に於いて、中間樹脂層の樹脂として、表1の如く、アクリルウレタン樹脂〔ACU〕を使用(架橋剤は未使用)した他は、実施例1と同様にして化粧材を得た。なお、該樹脂(熱可塑性樹脂)の損失弾性率E″には、室温未満及び室温超過にはピークが存在せず、室温領域内(31℃)にピークが存在する。また、貯蔵弾性率E′の室温領域での値は、2×107〜1×109Paであった。
[Comparative Example 2]
In Example 1, a cosmetic material was obtained in the same manner as in Example 1 except that an acrylic urethane resin [ACU] was used as the resin of the intermediate resin layer as shown in Table 1 (a crosslinking agent was not used). . The loss modulus E ″ of the resin (thermoplastic resin) has no peak below and above room temperature, but has a peak in the room temperature region (31 ° C.). 'In the room temperature range was 2 × 10 7 to 1 × 10 9 Pa.

〔比較例3〕
実施例1に於いて、中間樹脂層の形成を省いた他は、実施例1と同様にして化粧材を得た。
[Comparative Example 3]
A cosmetic material was obtained in the same manner as in Example 1, except that the formation of the intermediate resin layer was omitted.

〔性能評価〕
実施例及び比較例の各化粧材を、被着基材となる木質基材として厚さ3mmのシナ合板に、両面粘着テープで貼り付けて化粧板とし、この化粧板について評価した。評価は、耐摩耗性と耐溶剤性について下記方法にて行った。
(Performance evaluation)
Each decorative material of the example and the comparative example was attached to a 3 mm-thick plywood plywood as a wood substrate as an adhered substrate with a double-sided adhesive tape to form a decorative plate, and the decorative plate was evaluated. The evaluation was performed for the abrasion resistance and the solvent resistance by the following method.

(1)耐摩耗性:JIS K 6902 熱硬化性化粧板、及びNEMA規格の耐摩耗試験に準じて評価した。具体的には、テーバー摩耗試験機(東洋精機株式会社製)を用い、両輪荷重9.81N(1kgf)でS42研磨紙を用いて、10回転後の摩耗減量〔mg〕を2点測定し、その平均値で評価した。 (1) Abrasion resistance: Evaluated according to JIS K 6902 thermosetting decorative board and NEMA standard abrasion resistance test. Specifically, using a Taber abrasion tester (manufactured by Toyo Seiki Co., Ltd.), using S42 abrasive paper with a load of both wheels of 9.81 N (1 kgf), two points of wear reduction [mg] after 10 rotations were measured, The average was evaluated.

(2)耐溶剤性:化粧板の表面保護層表面に対し、メチルエチルケトンを含ませたガーゼにて、荷重0.981N(100gf)の条件でラビングを200往復行い、溶剤による化粧材の外観変化を目視観察した。変化無きものは良好、変化有るものは不良とした。 (2) Solvent resistance: Rubbing was performed 200 times on the surface of the surface protective layer of the decorative board with a gauze impregnated with methyl ethyl ketone under a load of 0.981 N (100 gf), and the appearance change of the decorative material due to the solvent was observed. It was visually observed. Those without change were good, and those with change were bad.

以上の評価の結果、表1の如く、耐摩耗性は実施例は全て良好となった。しかし、比較例はいずれも不良となった。すなわち、中間樹脂層自体が無い比較例3、中間樹脂層があり、その貯蔵弾性率E′が室温領域で1×107〜2×109Pa内でも、肝心の損失弾性率E″に室温未満のピークが無い比較例2、或いは損失弾性率E″にピークが有っても室温超過の温度域のみである比較例1である。
一方、耐溶剤性は、実施例及び比較例共に全て、表面保護層は架橋した樹脂で形成してあるが、中間樹脂層を熱可塑性樹脂として形成した、実施例2、実施例3、実施例5、比較例1、比較例2及び比較例3は、不良であった。しかし、中間樹脂層を架橋した樹脂で形成した、実施例1、実施例4及び実施例6は良好となった。従って、耐摩耗性の他に耐溶剤性も要求される様な用途では、中間樹脂層は架橋した樹脂で形成するのが良い事が判る。
As a result of the above evaluation, as shown in Table 1, the abrasion resistance of all the examples was good. However, all of the comparative examples were defective. That is, in Comparative Example 3 having no intermediate resin layer itself, there was an intermediate resin layer, and even when the storage elastic modulus E ′ was 1 × 10 7 to 2 × 10 9 Pa in the room temperature region, the essential loss elastic modulus E ″ was lower than room temperature. Comparative Example 2 having no peak less than or less than Comparative Example 1, or Comparative Example 1 having a peak in the loss elastic modulus E ″ but only in a temperature range exceeding room temperature.
On the other hand, in the solvent resistance, the surface protection layer was formed of a crosslinked resin in all of the examples and comparative examples, but the intermediate resin layer was formed of a thermoplastic resin. 5, Comparative Example 1, Comparative Example 2, and Comparative Example 3 were defective. However, Examples 1, 4 and 6 in which the intermediate resin layer was formed of a crosslinked resin were good. Therefore, in applications where solvent resistance is required in addition to abrasion resistance, it is understood that the intermediate resin layer is preferably formed of a crosslinked resin.

本発明の化粧材の一形態を例示する断面図と、その中間樹脂層の動的粘弾性特性(損失弾性率E″、貯蔵弾性率E′)を概念的に例示する説明図。FIG. 2 is a cross-sectional view illustrating one embodiment of the decorative material of the present invention, and an explanatory diagram conceptually illustrating dynamic viscoelastic properties (loss elastic modulus E ″ and storage elastic modulus E ′) of the intermediate resin layer. 本発明の化粧材の他の形態例を示す断面図。Sectional drawing which shows the other example of a form of the decorative material of this invention. 本発明の化粧材の他の形態例を示す断面図。Sectional drawing which shows the other example of a form of the decorative material of this invention.

符号の説明Explanation of reference numerals

1 基材
2 中間樹脂層
3 表面保護層
4 シーラ層
5 絵柄層
6 プライマー層
7 着色ベタインキ層
D 化粧材
E′ 貯蔵弾性率E′
E″ 損失弾性率E″
Pa 室温未満でのE″のピーク
Pb 室温超過でのE″のピーク
R 室温(領域)でのE′の最適領域
Tr 室温(領域)
Reference Signs List 1 base material 2 intermediate resin layer 3 surface protective layer 4 sealer layer 5 picture layer 6 primer layer 7 colored solid ink layer D cosmetic material E 'storage elastic modulus E'
E "Loss modulus E"
Pa Peak of E ″ below room temperature Pb Peak of E ″ above room temperature R Optimal region of E ′ at room temperature (region) Tr Room temperature (region)

Claims (4)

基材上に、塗液或いはインキからなる中間樹脂層、及び架橋した樹脂からなる表面保護層をこの順に有する化粧材において、
中間樹脂層の動的粘弾性法に於ける損失弾性率の測定周波数10Hzでの温度依存性特性が、少なくとも室温(但し、室温とは10℃〜50℃で定義される幅を持った温度)未満の温度に於いてピークを有し且つ該中間樹脂層は前記表面保護層に接している、化粧材。
On a base material, an intermediate resin layer made of a coating liquid or ink, and a cosmetic material having a surface protective layer made of a cross-linked resin in this order,
The temperature-dependent characteristic at a measurement frequency of 10 Hz of the loss elastic modulus in the dynamic viscoelasticity method of the intermediate resin layer is at least room temperature (however, room temperature is a temperature having a width defined from 10 ° C. to 50 ° C.) A cosmetic material having a peak at a temperature of less than and wherein said intermediate resin layer is in contact with said surface protective layer.
中間樹脂層の動的粘弾性法に於ける貯蔵弾性率の測定周波数10Hzでの値が、室温領域に於いて1×107〜2×109Paである、請求項1記載の化粧材。 Value at a measuring frequency of 10Hz of the storage elastic modulus in dynamic viscoelasticity method of the intermediate resin layer is 1 × 10 7 ~2 × 10 9 Pa at room temperature region, claim 1 decorative material according. 中間樹脂層の動的粘弾性法に於ける損失弾性率の測定周波数10Hzでの温度依存性特性が、更に、室温超過の温度にもピークを有する、請求項1又は2記載の化粧材。 The cosmetic material according to claim 1 or 2, wherein the temperature-dependent characteristic of the intermediate resin layer at a measurement frequency of 10 Hz of a loss elastic modulus in a dynamic viscoelasticity method further has a peak even at a temperature exceeding room temperature. 基材が紙である、請求項1〜3のいずれか1項に記載の化粧材。
The decorative material according to any one of claims 1 to 3, wherein the base material is paper.
JP2004045645A 2004-02-23 2004-02-23 Cosmetic material Expired - Fee Related JP4440669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004045645A JP4440669B2 (en) 2004-02-23 2004-02-23 Cosmetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004045645A JP4440669B2 (en) 2004-02-23 2004-02-23 Cosmetic material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000296038A Division JP4061014B2 (en) 2000-09-28 2000-09-28 Cosmetic material

Publications (2)

Publication Number Publication Date
JP2004155208A true JP2004155208A (en) 2004-06-03
JP4440669B2 JP4440669B2 (en) 2010-03-24

Family

ID=32822142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004045645A Expired - Fee Related JP4440669B2 (en) 2004-02-23 2004-02-23 Cosmetic material

Country Status (1)

Country Link
JP (1) JP4440669B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012030597A (en) * 2010-03-31 2012-02-16 Mitsubishi Rayon Co Ltd Laminate, and producing method for the same
JP2017088850A (en) * 2015-11-11 2017-05-25 株式会社リコー Ink, ink accommodation container, inkjet recording method, inkjet recording device and recorded article
EP3785997A4 (en) * 2018-04-25 2021-08-11 Toppan Printing Co., Ltd. Decorative sheet
US11890845B2 (en) 2018-04-25 2024-02-06 Toppan Printing Co., Ltd. Decorative sheet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012030597A (en) * 2010-03-31 2012-02-16 Mitsubishi Rayon Co Ltd Laminate, and producing method for the same
JP2017088850A (en) * 2015-11-11 2017-05-25 株式会社リコー Ink, ink accommodation container, inkjet recording method, inkjet recording device and recorded article
EP3785997A4 (en) * 2018-04-25 2021-08-11 Toppan Printing Co., Ltd. Decorative sheet
EP3909763A1 (en) * 2018-04-25 2021-11-17 Toppan Printing Co., Ltd. Decorative sheet
US11660836B2 (en) 2018-04-25 2023-05-30 Toppan Printing Co., Ltd. Decorative sheet
US11890845B2 (en) 2018-04-25 2024-02-06 Toppan Printing Co., Ltd. Decorative sheet

Also Published As

Publication number Publication date
JP4440669B2 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
JP4061014B2 (en) Cosmetic material
JP3453679B2 (en) Cosmetic material
JP4985736B2 (en) Cosmetic material
JP2016064628A (en) Decorative sheet and decorative plate
JP2001225420A (en) Decorative sheet
JP5429129B2 (en) A decorative sheet for flooring that is excellent in impact resistance and scratch resistance
JP2018167495A (en) Decorative sheet and decorative material using the same
JP2004050827A (en) Decorative sheet, production method thereof, and decorative member
JP4402339B2 (en) Cosmetic material
JP4289548B2 (en) Cosmetic material with contact suitability
JP4440669B2 (en) Cosmetic material
JP6679834B2 (en) Decorative sheet and veneer
JP2014184675A (en) Decorative sheet and decorative laminate using the same
KR101456731B1 (en) Decorative sheet and decorative plate using the decorative sheet
JP6992762B2 (en) How to make a decorative sheet
JP4765132B2 (en) Cosmetic material and method for producing cosmetic material
CN101563223A (en) Decorative sheet and decorative plate using the decorative sheet
JP7201123B1 (en) Decorative sheets and materials
JP4429488B2 (en) Decorative paper, decorative material, and method for producing decorative paper
JP2000334895A (en) Decorative sheet having scratch resistance
EP3741557B1 (en) Cosmetic sheet, cosmetic material, and method for producing cosmetic sheet
JP4498559B2 (en) Decorative paper and cosmetics
JP2001159224A (en) Decorative member for floor member
JP3530103B2 (en) Cosmetic sheet and cosmetic material
JP2023145310A (en) Decorative sheet and decorative material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4440669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees