JP2004155005A - Resin fluid analyzing method and device for the method - Google Patents

Resin fluid analyzing method and device for the method Download PDF

Info

Publication number
JP2004155005A
JP2004155005A JP2002321937A JP2002321937A JP2004155005A JP 2004155005 A JP2004155005 A JP 2004155005A JP 2002321937 A JP2002321937 A JP 2002321937A JP 2002321937 A JP2002321937 A JP 2002321937A JP 2004155005 A JP2004155005 A JP 2004155005A
Authority
JP
Japan
Prior art keywords
temperature
resin
analysis
pressure
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002321937A
Other languages
Japanese (ja)
Other versions
JP4006316B2 (en
Inventor
Kaoru Okidaka
馨 沖高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002321937A priority Critical patent/JP4006316B2/en
Publication of JP2004155005A publication Critical patent/JP2004155005A/en
Application granted granted Critical
Publication of JP4006316B2 publication Critical patent/JP4006316B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin fluid analyzing method which can seek a flow behavior such as the pressure, temperature, velocity, shear rate, shear stress or flow pattern of a resin in its flow process mainly in a plastic injection-molding field. <P>SOLUTION: In the resin fluid analyzing method comprising a pressure analyzing process for calculating a pressure applied to every part of a molded product at the time of resin packing and also a temperature analyzing process for calculating a temperature of said every part at the time of resin packing, with regard to an objective 2.5-dimensional thin-walled shell structure by plastic injection molding, the temperature-analyzing process calculates a heat conduction term δ(KδT/δz)δ/z in the sheet thickness direction in the energy equation represented by formula 1 as a heat flow rate α(T-T<SB>W</SB>) by deciding a heat transfer rate α based on a die wall surface temperature T<SB>W</SB>, the sheet thickness of a molded product and the heat conduction rate of the resin of this molded product. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、主としてプラスチック射出成形分野における樹脂流動過程において、樹脂の圧力、温度、速度、剪断速度、剪断応力若しくはフローパターン等の流れ挙動を求める解析方法及びその装置に関する。
【0002】
【従来の技術】
プラスチック射出成形における2.5次元薄肉シェル構造を対象とした樹脂流動解析方法はMold FlowやC−Moldに代表されるように広く商用プログラムが存在し実用化されている。これらの2.5次元樹脂流動解析においては、成形品キャビティ内部の各部を3角形或は4角形要素を主体とした有限要素法解析手法が適用されており、成形品各部の温度計算時には成形品板厚方向に自由度を持つ離散化方法、即ち板厚を5〜10層に分割して板厚方向温度分布を考慮した計算をする方法が採用されている。
【0003】
ところで、3角形要素を用いた場合には、特に移流項等の要素特性に関する温度計算精度に、4角形要素を用いた場合には数値解法的に定式化が複雑であり、現状においても必要精度を得るための計算コストは可成り高い。又、最近では、例えば特開平8−99341号公報に開示されているように、3次元樹脂流動解析等も開発され、直交格子によるボクセルメッシュ分割手法等の採用で解析モデル作成は容易になりつつあるが、2.5次元と同等の精度を得るためには板厚方向メッシュ分割の必要性があるために解析モデル規模は大きくなり、現状においては計算コストが可成り高く、実用レベルで使用するにはまだまだ時間が必要である。
一方、製品設計、金型設計部門に3次元CADの普及が進み、3次元製品CADデータから中立面を半自動生成させたり、メッシュ分割を半自動的に行うことが可能になりつつあり、従来より解析モデルの作成時間が短縮されてきている。更に、コンピュータも従来のエンジニアリングワークステーション(EWS)からより操作性の良いパーソナルコンピュータ(PC)を利用した設計や解析が実用的に行われるようになってきている。
このような状況下、製品のサイクル短縮化、製品機種の多様化、軽薄短小化が一段と進み、製品設計、金型設計期間の短縮が従来にも増して要求され、CAEによる成形品不良現象予測技術に対する期待が非常に高くなってきており、製品設計者、金型設計者が直接に樹脂流動解析を行っていくことが不可欠な状況にある。このためには、短い製品或は金型設計期間においても、必要な解析精度を維持しつつ解析時間の短い高速な解析ツールが求められてきている。
【0004】
【発明が解決しようとする課題】
上記手法によれば、前記熱伝導項∂(K∂T/∂z)/∂zについて面外方向、即ち板厚方向に自由度を持つ離散化手法は必要がなく、面内方向のみを考えれば良く、計算アルゴリズムを単純化させるとともに、計算コストを大幅に削減できるメリットがある。本手法は簡易的ではあるが、特にウエルドライン予測等のフローパターン解析、充填圧力予測解析に非常に有効である。
【0005】
本発明は、主としてプラスチック射出成形分野における樹脂流動過程における樹脂の圧力、温度、速度、せん断速度、せん断応力、フローパターン等の流れ挙動を求めることができる樹脂流動解析方法及びその装置を提供することにある。
【0006】
【課題を解決するための手段】
一般に、2.5次元薄肉シェル構造を対象とした樹脂流動解析方法における基礎方程式として、質量保存則、運動方程式、エネルギ方程式、粘性方程式が必要である。ここで、成形品の流れ方向、板厚方向の温度分布は、以下に示すエネルギ方程式が用いられている。
エネルギ方程式(一般式)
【0007】
【数1】

Figure 2004155005
μ:粘性係数、γ:せん断速度
ここで、板厚方向の温度分布を求めるためには、差分法或は有限要素法等の手法により、熱伝導項∂(K∂T/∂z)/∂zについて面外方向、即ち板厚方向に自由度(節点或は要素分割が必要)を持つ離散化手法を適用する必要がある。このため、計算アルゴリズムが複雑化すると共に、計算コストが嵩むいう欠点があった。
本発明では、このような問題を解決するための解析手法として以下の式2に示すように、板厚方向への熱伝導項∂(K∂T/∂z)/∂zを、金型壁面温度をT として板厚と樹脂の熱伝導率による等価熱伝達率αによる熱流速項α(T−T )として取り扱う。本手法によれば、前記熱伝導項∂(K∂T/∂z)/∂zについて面外方向、即ち板厚方向に自由度を持つ離散化手法は必要がなく面内方向のみを考えれば良く、計算アルゴリズムを単純化させると共に、計算コストを大幅に削減できるメリットがある。
【0008】
エネルギ方程式(本発明)
【0009】
【数2】
Figure 2004155005
α:等価熱伝達係数T :金型壁面温度
【発明の実施の形態】
プラスチック射出成形法のプロセスは、充填、保圧、冷却、取出し後の自然冷却という連続する過程から成り立っている。ここでは、充填過程における金型内圧力分布、温度分布の時間的変化及びメルトフロント進行状況のシミュレーションを行うことを目的とする。
先ず、最初に解析で用いる仮定について説明する。
1)非圧縮性粘性流体
溶融樹脂の粘弾性的な性質、並びに圧縮性は考慮しない。
2)クリープ流れ
溶融樹脂の速度は遅く、慣性力は粘性力との比較において無視する。
3)擬定常近似
流動過程の各時刻においては流れは定常として時間微分の項はゼロとする。
4)ヘルショー流れ
成形品は薄肉で、充填時の流れは厚み方向の速度分布を持たない。又、粘性力は流れと平行な面のみに作用する。
5)ハーゲンポアズイユ流れ
スプル・ランナ内の流れは、その軸方向の速度成分のみを持つ。
6)流入樹脂の初期樹脂温度、壁面温度は一定とする。
7)壁面で樹脂のスリップはないものとする。
8)キャビティの厚みに比較し、流動方向の広がりは十分大きいと仮定して、樹脂の熱の伝導は厚み方法のみを考える。
9)メルトフロント(流入樹脂先端)での圧力はゼロとする。
以上の仮定に基づき、流れと平行な面をx−y平面、それと垂直にz軸とする2次元流れ(平板流れ)の場合の一般的な基礎方程式としては、次式のように表わされる。
【0010】
【数3】
Figure 2004155005
式3は連続の式、式4,5は運動方程式、式1はエネルギ式、式6は粘性式を表わす。
ここで、u:x方向速度、v:y方向速度、P:圧力、T:温度、μ:粘性、ρ:密度、c:比熱、K:熱伝導率、γ:せん断速度、A,B,C:粘性係数
尚、上記仮定に基づき運動方程式(式4,5)を板厚方向に積分し、連続の式(式3)に代入すると次式が得られる。
【0011】
【数4】
Figure 2004155005
ここで、Sはコンダクタンスとして定義され、次式で表わされる。
【0012】
【数5】
Figure 2004155005
式7に有限要素法を適用し、高次4角形シェル要素及び4角形シェル要素を縮合した3角形による離散化を適用すると、式7に対して次式のような代数マトリックスが得られる。
【0013】
【数6】
Figure 2004155005
ここで、[K]:係数マトリックス、{P}: 圧力マトリックス、{F}:右辺ベクトル
樹脂流入口における流量或は圧力境界条件、金型壁面における圧力勾配境界条件、メルトフロントにおける圧力境界条件を設定して計算することで、キャビティ内の圧力分布が得られる。
【0014】
次に、各要素内での圧力勾配が計算され速度分布、せん断速度分布が計算され、式6により粘性が求まる。非ニュートン流体解析であり、この粘性が変化することで圧力、速度場が変化するので圧力の収束計算を行う必要がある。
【0015】
本発明は、上記の基礎式に示すようなプラスチック射出成形における2.5次元薄肉シェル構造を対象とした樹脂流動解析方法において、温度計算に関るエネルギ方程式での板厚方向の熱伝導項∂(K∂T/∂z)/∂zを、金型壁面温度をT として板厚と樹脂の熱伝導率による熱伝達率αを考えることで平均熱流速α(T−T )として計算することを特徴とする樹脂流動解析方法である。即ち、この場合、式1は以下に示す式2のように簡略化される。
【0016】
【数7】
Figure 2004155005
本手法によれば、前記熱伝導項∂(K∂T/∂z)/∂zについて板厚方向に自由度を持つ離散化手法は必要がなく、計算アルゴリズムを単純化させると共に、計算コストを大幅に削減できるメリットがある。
式7で示した圧力解法と同様に、式2に対して有限要素法を適用すると次式のような代数マトリックスが得られる。
【0017】
【数8】
Figure 2004155005
ここで、[C]: 熱容量マトリックス、[K]: 熱伝導マトリックス
{T}: 温度マトリックス、{Q}:熱流速マトリックス
式8の解法としては、数値解析上無条件安定となるクランク・ニコルソン法を用いる。
【0018】
最後に本解析の全体のフローチャートを図1に示す。
【0019】
先ず、最初にステップ1において解析の対象となる形状データや成形条件データ、圧力温度境界条件データ、各種解析制御パラメータ等を読込む。次に、ステップ2において、樹脂が指定した流入口から流れ始めて最終的に充填するまでの間を、複数の解析ステップに分割して取り扱うための解析ステップ数の設定を行う。本解析では樹脂の流動は非圧縮性を仮定しており、全解析ステップ数と解析対象となる成形品の全体積より1ステップ当りの樹脂充填量が決まることになる。ステップ3では、ステップ2において設定された解析ステップに基づき初期粘性(前期式6)、初期コンダクタンス(前期式8)等の初期計算を行う。
【0020】
次に、ステップ4では、FAN法(Flow Analysis Network Method)等の方法により、ステップ2,3で計算しておいた1ステップでの樹脂充填量とコンダクタンスによりメルトフロント(樹脂流動先端部部分)の位置を決定する。そしてステップ5では、境界条件として流入口の部分において射出圧力の値或は射出速度の値を、メルトフロントにおいて圧力値を大気圧とすることで充填領域における圧力分布(前記式9)を求める。樹脂の粘性はせん断速度により変化するので、ステップ6において、この求まった圧力から圧力勾配、せん断速度、粘性値、コンダクタンスを修正しながら圧力の収束計算を行う。最終的に圧力が収束後、ステップ7で全充填領域での速度分布を計算する。この速度分布は、ステップ8での温度計算時に用いられる。
【0021】
次に、ステップ8の温度計算の詳細について次に述べる。
【0022】
ステップ10では温度計算のための各種の初期解析パラメータの設定を行い、ステップ11において板厚方向の壁面温度等の境界条件をとして考慮して、要素毎の熱伝導、熱容量、熱流速マトリックスを作成する。そして、充填領域全体の要素マトリックスを作成し、ステップ14で全領域での温度分布(前記式10)を求める。最終ステップ9において、本ステップにおける圧力、温度、せん断速度、速度、粘性、メルトフロント位置等の分布をポストプロセッサーに合せたフォーマットに変換し出力する。これらの操作をステップ2で設定した最終充填ステップまで繰返すことで解析を行うことができる。
以上示したように、本発明における温度解析法は、板厚方向の温度分布を面内方向のみの平均的な温度として計算する簡易的手法であるが、必要な解析精度を保ちつつ安定且つ高速に解析可能であり、充填解析に掛かる計算コストを大幅に削減できる。本手法は、特にウエルドライン予測等のフローパターン解析、充填圧力予測解析に非常に有効である。又、本提案における温度解析法は、充填解析に引続き行う保圧解析においても有効な方法である。
【0023】
<実施例1>
以下、本発明の解析方法を用いて充填圧力の検証を行った実施例を以下に示す。
【0024】
実験型として図2に示すような平板型を試作した。図中の▲1▼〜▲4▼の位置に圧力センサーを配置し、樹脂流動時の圧力を測定した。解析モデルは、図3に示すようにスプルー部をパイプ要素、その他の形状部分を4角形要素により分割を行った。
使用樹脂は、PC( ポリカーボネート) のナチュラル材とガラス短繊維10%含有材、成形条件は、樹脂温320℃、型温90℃、流入流量30cm /secである。
圧力センサー位置▲1▼〜▲4▼における圧力の時間的変化の計算結果と実験結果の比較を図4及び図5に示す。これらの図に示すように両者は良く一致している。
【0025】
<実施例2>
次に、本発明の解析方法を用いて板厚が異なる偏肉平板を用いてフローパターンの比較検証を行った実施例を以下に示す。
形状及び要素分割図を図6及び図7に示す。この例では周辺部の板厚を1.5mmに固定して、中央部の板厚(50×30mm)の部分を6種類変化(0.5〜3.0mm)させて検討を行った。
使用樹脂は、PC(ポリカーボネート)のナチュラル材で、成形条件は、樹脂温300℃、型温120℃、流入流量36.55cm /secである。フローパターンの計算結果と実験結果の比較を図8に示す。板厚の変化に伴う流れの状態が良く一致していることが分かる。
【0026】
<実施例3>
次に、本発明の解析方法を実際の製品である電子タイプライター・カセットケースに適用して流動バランス検討を行い、ゲート点数を削減し、成形品品質を向上させた事例について示す。
使用樹脂は、HI−PSである。成形条件は、樹脂温220℃、型温40℃、充填時間2secである。この成形品は、基本肉厚1.5mmで中央部に1.0mmの薄い肉厚個所が存在するので、当初4点ゲートにより成形を行っていた。しかしながら、図9に示すようにウエルドラインが中央部に生じてしまい、外観品質上及び強度上で問題が生じていた。
本発明の解析方法を適用して図10に示す要素分割モデルを用い、この状況を実際に解析した時のフローパターンを図11に示す。
【0027】
ウエルドライン発生位置は良く一致した。そこで、ゲート点数、位置を変えて解析を行った結果、中央部1点ゲートで十分に成形可能であることが分かった。最終充填位置、ウエルドライン発生位置共に良く一致し、外観品質の向上が得られた他、ゲート点数削減に伴う金型製作費を削減することができた。
【0028】
<実施例4>
もう一点、本発明の解析方法を実際の製品である中級機カメラ前カバー部品に適用してウエルドライン位置を予測した事例について示す。
【0029】
使用樹脂はPCであり、成形条件は、樹脂温310℃、充填時間2.0sec、型温90℃である。樹脂は成形品の撮影レンズが位置する中央部1点からディスクゲート方式で充填する。図12はこの条件化でのフローパターンに関する解析結果である。図中に示す位置にウエルドラインが生じることが分かった。
【0030】
図13は実際の成形時においてショートショット試験により、ウエルドラインが生じる位置を検証したときの実成形品である。図に示すように両者は良く一致していることが分かる。
【0031】
【発明の効果】
以上の説明で明らかなように、本発明によれば、熱伝導項∂(K∂T/∂z)/∂zについて面外方向、即ち板厚方向に自由度を持つ離散化手法は必要がなく面内方向のみを考えれば良い。これにより計算アルゴリズムを単純化させると共に、計算コストを大幅に削減できるメリットがある。近年、製品のサイクル短縮化、製品機種の多様化、軽薄短小化が進み、製品設計、金型設計期間の短縮が従来にも増して要求され、CAEによる成形品不良現象予測技術に対する期待が非常に高くなってきている。本手法は簡易的ではあるが、特にウエルドライン予測等のフローパターン解析、充填圧力予測解析等、実用的に使用できる解析精度を有しており非常に有効である。又、本システムは、パソコン上でも非常に高速に動作するので、製品設計者、金型設計者がCADシステムにより設計作業中に容易に利用することができる。
【図面の簡単な説明】
【図1】解析フローチャートである。
【図2】平板形状を示す図である。
【図3】平板形状の要素分割モデルを示す図である。
【図4】圧力の計算結果と実験結果の比較(ポリカーボネートのナチュラル材の場合)を示す図である。
【図5】圧力の計算結果と実験結果の比較(ポリカーボネートのガラス繊維含有材の場合)を示す図である。
【図6】偏肉平板形状を示す図である。
【図7】偏肉平板形状の要素分割モデルを示す図である。
【図8】フローパターンの計算結果と実験結果の比較を示す図である。
【図9】電子タイプライター・カセットケース形状&ウエルドラインを示す図である。
【図10】電子タイプライター・カセットケース形状の要素分割モデルを示す図である。
【図11】電子タイプライター・カセットケース形状のフローパターン解析結果を示す図である。
【図12】中級機カメラ前カバー部品の解析モデル&フローパターン解析結果を示す図である。
【図13】中級機カメラ前カバーの実成形部品&ウエルドライン位置を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an analysis method and apparatus for determining flow behavior such as pressure, temperature, speed, shear rate, shear stress or flow pattern of a resin in a resin flow process mainly in the field of plastic injection molding.
[0002]
[Prior art]
A resin flow analysis method for a 2.5-dimensional thin shell structure in plastic injection molding is widely practiced with commercial programs typified by Mold Flow and C-Mold. In the 2.5-dimensional resin flow analysis, a finite element analysis method in which each part inside the molded product cavity is mainly made of a triangular or quadrangular element is applied. A discretization method having a degree of freedom in the plate thickness direction, that is, a method of dividing the plate thickness into 5 to 10 layers and performing a calculation in consideration of the temperature distribution in the plate thickness direction is adopted.
[0003]
By the way, when a triangular element is used, the temperature calculation accuracy particularly concerning element characteristics such as advection term is complicated, and when a quadrilateral element is used, the formulation is complicated numerically. The computational cost to obtain is quite high. Also, recently, for example, as disclosed in Japanese Patent Application Laid-Open No. 8-99341, three-dimensional resin flow analysis and the like have been developed, and the creation of an analysis model has become easier by employing a voxel mesh division method using an orthogonal grid. However, in order to obtain the same accuracy as 2.5 dimensions, it is necessary to divide the mesh in the thickness direction, so the scale of the analysis model becomes large. At present, the calculation cost is considerably high, and it is used at a practical level. Needs more time.
On the other hand, the spread of 3D CAD has spread to the product design and mold design departments, and it has become possible to semi-automatically generate neutral surfaces from 3D product CAD data and semi-automatically perform mesh division. The time required to create an analysis model has been reduced. Further, the design and analysis of a computer using a personal computer (PC) having better operability has become practical from a conventional engineering workstation (EWS).
Under these circumstances, shortening of product cycles, diversification of product models, lightness, and shortening are further progressing, and shortening of product design and mold design periods is required more than ever before. Expectations for technology are becoming very high, and it is essential that product designers and mold designers directly conduct resin flow analysis. For this purpose, there is a demand for a high-speed analysis tool with a short analysis time while maintaining necessary analysis accuracy even during a short product or mold design period.
[0004]
[Problems to be solved by the invention]
According to the above method, there is no need for a discretization method having a degree of freedom in the out-of-plane direction, that is, the thickness direction, of the heat conduction term ∂ (K∂T / ∂z) / ∂z, and only the in-plane direction is considered. This has the advantage of simplifying the calculation algorithm and greatly reducing the calculation cost. Although this method is simple, it is very effective especially for flow pattern analysis such as weld line prediction and filling pressure prediction analysis.
[0005]
An object of the present invention is to provide a resin flow analysis method and apparatus capable of determining flow behavior such as pressure, temperature, speed, shear rate, shear stress, and flow pattern of a resin in a resin flow process mainly in the field of plastic injection molding. It is in.
[0006]
[Means for Solving the Problems]
In general, a mass conservation law, a motion equation, an energy equation, and a viscosity equation are required as basic equations in a resin flow analysis method for a 2.5-dimensional thin shell structure. Here, the energy distribution shown below is used for the temperature distribution in the flow direction and the thickness direction of the molded product.
Energy equation (general formula)
[0007]
(Equation 1)
Figure 2004155005
μ: viscosity coefficient, γ: shear rate Here, in order to obtain the temperature distribution in the thickness direction, the heat conduction term ∂ (K∂T / ∂z) / ∂ is obtained by a method such as a difference method or a finite element method. For z, it is necessary to apply a discretization method having a degree of freedom in the out-of-plane direction, that is, the thickness direction (nodal points or element division is necessary). For this reason, there are drawbacks that the calculation algorithm becomes complicated and the calculation cost increases.
In the present invention, as an analysis method for solving such a problem, the heat conduction term 式 (K∂T / ∂z) / ∂z in the sheet thickness direction is calculated by using handling temperature as the T w as heat flux term due equivalent heat transfer coefficient alpha by thermal conductivity of the plate thickness and the resin α (T-T W). According to this method, there is no need for a discretization method having a degree of freedom in the out-of-plane direction, that is, in the thickness direction of the heat conduction term ∂ (K∂T / ∂z) / ∂z. The advantage is that the calculation algorithm can be simplified and the calculation cost can be greatly reduced.
[0008]
Energy equation (this invention)
[0009]
(Equation 2)
Figure 2004155005
α: equivalent heat transfer coefficient Tw : mold wall temperature [Embodiment of the invention]
The plastic injection molding process consists of a continuous process of filling, packing, cooling, and natural cooling after removal. Here, the purpose is to simulate the temporal change of the pressure distribution and the temperature distribution in the mold and the progress of the melt front in the filling process.
First, the assumptions used in the analysis will be described first.
1) The viscoelastic properties of the incompressible viscous fluid molten resin and the compressibility are not considered.
2) Creep flow The velocity of the molten resin is slow, and the inertial force is ignored in comparison with the viscous force.
3) At each time of the quasi-stationary approximate flow process, the flow is stationary and the term of the time derivative is zero.
4) The Hellsho flow molded product is thin and the flow during filling does not have a velocity distribution in the thickness direction. The viscous force acts only on the plane parallel to the flow.
5) Hagenpoiseuil flow The flow in the sprue runner has only its axial velocity component.
6) The initial resin temperature and the wall surface temperature of the inflow resin are constant.
7) There shall be no resin slip on the wall.
8) Assuming that the spread in the flow direction is sufficiently large compared to the thickness of the cavity, only the thickness method is considered for the heat conduction of the resin.
9) The pressure at the melt front (tip of the inflow resin) is set to zero.
Based on the above assumptions, a general basic equation in the case of a two-dimensional flow (flat plate flow) having a plane parallel to the flow on the xy plane and the z-axis perpendicular thereto is represented by the following equation.
[0010]
[Equation 3]
Figure 2004155005
Equation 3 is a continuous equation, Equations 4 and 5 are equations of motion, Equation 1 is an energy equation, and Equation 6 is a viscosity equation.
Here, u: velocity in the x direction, v: velocity in the y direction, P: pressure, T: temperature, μ: viscosity, ρ: density, c: specific heat, K: thermal conductivity, γ: shear rate, A, B, C: Viscosity coefficient By integrating the equation of motion (Equations 4 and 5) in the thickness direction based on the above assumption and substituting it into the continuous equation (Equation 3), the following equation is obtained.
[0011]
(Equation 4)
Figure 2004155005
Here, S is defined as conductance and is represented by the following equation.
[0012]
(Equation 5)
Figure 2004155005
When the finite element method is applied to Equation 7, and discretization by a triangle obtained by condensing higher-order quadrangular shell elements and quadrangular shell elements is applied, an algebraic matrix such as the following equation is obtained for Equation 7.
[0013]
(Equation 6)
Figure 2004155005
Here, [K]: coefficient matrix, {P}: pressure matrix, {F}: flow rate or pressure boundary condition at the resin inlet of the right side, pressure gradient boundary condition at the mold wall surface, and pressure boundary condition at the melt front. By setting and calculating, a pressure distribution in the cavity can be obtained.
[0014]
Next, the pressure gradient in each element is calculated, the velocity distribution and the shear velocity distribution are calculated, and the viscosity is obtained by Expression 6. Since this is a non-Newtonian fluid analysis, pressure and velocity fields change due to changes in this viscosity, so pressure convergence calculations must be performed.
[0015]
The present invention relates to a resin flow analysis method for a 2.5-dimensional thin shell structure in plastic injection molding as shown in the above basic formula, wherein a heat conduction term in a thickness direction in an energy equation relating to temperature calculation is obtained. (K∂T / ∂z) / ∂z and, calculated as the average thermal velocity α (T-T W) by considering the heat transfer coefficient alpha by plate thickness and thermal conductivity of the resin mold wall temperature as T w This is a resin flow analysis method. That is, in this case, Expression 1 is simplified as Expression 2 shown below.
[0016]
(Equation 7)
Figure 2004155005
According to this method, there is no need for a discretization method having a degree of freedom in the thickness direction with respect to the heat conduction term ∂ (K∂T / ∂z) / ∂z, thereby simplifying the calculation algorithm and reducing the calculation cost. There is a merit that can be greatly reduced.
When the finite element method is applied to Equation 2 as in the case of the pressure solution shown in Equation 7, an algebraic matrix as shown in the following equation is obtained.
[0017]
(Equation 8)
Figure 2004155005
Here, [C]: heat capacity matrix, [K]: heat conduction matrix {T}: temperature matrix, {Q}: heat flow rate matrix As a solution of Equation 8, the Crank-Nicholson method that is unconditionally stable in numerical analysis Is used.
[0018]
Finally, FIG. 1 shows an overall flowchart of this analysis.
[0019]
First, in step 1, shape data, molding condition data, pressure temperature boundary condition data, various analysis control parameters, and the like to be analyzed are read. Next, in step 2, the number of analysis steps for setting the number of analysis steps to be divided into a plurality of analysis steps from the time when the resin starts flowing from the designated inflow port until the resin is finally filled is set. In this analysis, the resin flow is assumed to be incompressible, and the resin filling amount per step is determined from the total number of analysis steps and the total volume of the molded article to be analyzed. In Step 3, initial calculations such as initial viscosity (Equation 6) and initial conductance (Equation 8) are performed based on the analysis step set in Step 2.
[0020]
Next, in step 4, by a method such as the FAN method (Flow Analysis Network Method) or the like, the melt front (resin flow tip portion) is calculated by the resin filling amount and conductance in one step calculated in steps 2 and 3. Determine the position. In step 5, as the boundary condition, the value of the injection pressure or the value of the injection speed at the inflow port and the value of the pressure at the melt front are set to the atmospheric pressure to obtain the pressure distribution (formula 9) in the filling region. Since the viscosity of the resin changes according to the shear rate, in step 6, the pressure convergence calculation is performed while correcting the pressure gradient, the shear rate, the viscosity value, and the conductance from the obtained pressure. After the pressure finally converges, in step 7, the velocity distribution in the entire filling region is calculated. This velocity distribution is used at the time of temperature calculation in step 8.
[0021]
Next, the details of the temperature calculation in step 8 will be described below.
[0022]
In step 10, various initial analysis parameters for temperature calculation are set, and in step 11, heat conduction, heat capacity, and heat flow velocity matrices are created for each element in consideration of boundary conditions such as wall temperature in the thickness direction. I do. Then, an element matrix of the entire filling region is created, and a temperature distribution (Equation 10) in the entire region is obtained in step 14. In the final step 9, the distribution of pressure, temperature, shear rate, speed, viscosity, melt front position, etc. in this step is converted into a format suitable for the post processor and output. The analysis can be performed by repeating these operations up to the final filling step set in step 2.
As described above, the temperature analysis method in the present invention is a simple method of calculating the temperature distribution in the thickness direction as an average temperature only in the in-plane direction, but it is stable and high-speed while maintaining the required analysis accuracy. And the calculation cost required for filling analysis can be greatly reduced. This method is very effective especially for flow pattern analysis such as weld line prediction and filling pressure prediction analysis. The temperature analysis method in the present proposal is also an effective method in the dwelling analysis performed subsequently to the filling analysis.
[0023]
<Example 1>
Hereinafter, examples in which the filling pressure was verified using the analysis method of the present invention will be described below.
[0024]
A flat plate type as shown in FIG. 2 was experimentally manufactured as an experimental type. Pressure sensors were arranged at positions (1) to (4) in the figure, and the pressure during resin flow was measured. In the analysis model, as shown in FIG. 3, a sprue portion was divided by a pipe element, and other shape portions were divided by a square element.
The resin used is a natural material of PC (polycarbonate) and a material containing 10% of short glass fibers. The molding conditions are a resin temperature of 320 ° C., a mold temperature of 90 ° C., and an inflow flow rate of 30 cm 3 / sec.
FIGS. 4 and 5 show a comparison between a calculation result of a temporal change in pressure at the pressure sensor positions (1) to (4) and an experimental result. As shown in these figures, the two agree well.
[0025]
<Example 2>
Next, examples in which flow patterns are compared and verified using uneven thickness flat plates having different thicknesses using the analysis method of the present invention will be described below.
FIGS. 6 and 7 show the shapes and the element division diagrams. In this example, the thickness of the peripheral portion was fixed to 1.5 mm, and the thickness of the central portion (50 × 30 mm) was changed by six types (0.5 to 3.0 mm) for examination.
The resin used is a natural material of PC (polycarbonate), and the molding conditions are a resin temperature of 300 ° C., a mold temperature of 120 ° C., and an inflow flow rate of 36.55 cm 3 / sec. FIG. 8 shows a comparison between the calculation result of the flow pattern and the experimental result. It can be seen that the state of the flow accompanying the change in the plate thickness is in good agreement.
[0026]
<Example 3>
Next, an example in which the analysis method of the present invention is applied to an electronic typewriter / cassette case, which is an actual product, to examine the flow balance, reduce the number of gate points, and improve the quality of a molded product will be described.
The resin used is HI-PS. The molding conditions are a resin temperature of 220 ° C., a mold temperature of 40 ° C., and a filling time of 2 seconds. Since this molded product had a basic thickness of 1.5 mm and a thin portion of 1.0 mm in the center, the molding was initially performed using a four-point gate. However, as shown in FIG. 9, a weld line was formed at the center, which caused problems in appearance quality and strength.
FIG. 11 shows a flow pattern when this situation is actually analyzed using the element division model shown in FIG. 10 by applying the analysis method of the present invention.
[0027]
Weld line occurrence positions agreed well. Therefore, as a result of performing analysis by changing the number of gate points and the position, it was found that a single point gate at the center can be sufficiently molded. Both the final filling position and the weld line generation position were in good agreement, and the appearance quality was improved, and the die manufacturing cost associated with the reduction in the number of gate points was able to be reduced.
[0028]
<Example 4>
Another example is shown in which the analysis method of the present invention is applied to an intermediate product camera front cover part as an actual product to predict a weld line position.
[0029]
The resin used is PC, and the molding conditions are a resin temperature of 310 ° C., a filling time of 2.0 sec, and a mold temperature of 90 ° C. The resin is filled by a disk gate method from one point at the center of the molded product where the taking lens is located. FIG. 12 shows an analysis result regarding the flow pattern under this condition. It was found that a weld line was generated at the position shown in the figure.
[0030]
FIG. 13 shows an actual molded product when a position where a weld line occurs is verified by a short shot test during actual molding. As shown in the figure, it can be seen that the two agree well.
[0031]
【The invention's effect】
As is apparent from the above description, according to the present invention, a discretization method having a degree of freedom in the out-of-plane direction, that is, the thickness direction of the heat conduction term ∂ (K∂T / ∂z) / ∂z is necessary. Only the in-plane direction need be considered. This has the advantage that the calculation algorithm can be simplified and the calculation cost can be significantly reduced. In recent years, the shortening of product cycles, the diversification of product models, the lightness, and the miniaturization have been progressing, and the shortening of product design and mold design periods has been required more than ever before. It is getting higher. Although this method is simple, it has analysis accuracy that can be used practically, such as flow pattern analysis such as weld line prediction and filling pressure prediction analysis, and is very effective. Further, since this system operates at a very high speed even on a personal computer, a product designer and a die designer can easily use the CAD system during a designing operation.
[Brief description of the drawings]
FIG. 1 is an analysis flowchart.
FIG. 2 is a view showing a flat plate shape.
FIG. 3 is a diagram showing a plate-shaped element division model.
FIG. 4 is a diagram showing a comparison between a calculation result of pressure and an experimental result (in the case of a natural material of polycarbonate).
FIG. 5 is a diagram showing a comparison between a calculation result of pressure and an experiment result (in the case of a glass fiber-containing material of polycarbonate).
FIG. 6 is a view showing an uneven thickness flat plate shape.
FIG. 7 is a view showing an element division model of an uneven thickness flat plate shape.
FIG. 8 is a diagram showing a comparison between a calculation result of a flow pattern and an experimental result.
FIG. 9 is a view showing an electronic typewriter / cassette case shape and weld line.
FIG. 10 is a view showing an element division model in the form of an electronic typewriter / cassette case.
FIG. 11 is a diagram showing a flow pattern analysis result of an electronic typewriter / cassette case shape.
FIG. 12 is a diagram showing an analysis model and a flow pattern analysis result of a cover part in front of an intermediate-class camera.
FIG. 13 is a view showing actual molded parts and weld line positions of the intermediate machine camera front cover.

Claims (2)

プラスチック射出成形における2.5次元薄肉シェル構造を対象とし、成形品各部の充填時の圧力計算を行う圧力解析手段と、同じく充填時の温度計算を行う温度解析手段を備えた樹脂流動解析装置において、
前記温度解析手段は、エネルギ方程式での板厚方向の熱伝導項∂(K∂T/∂z)/∂zを、金型壁面温度T と成形品板厚とこの樹脂の熱伝導率から熱伝達率αを決定して熱流速α(T−T )として計算する手段を備えたことを特徴とする樹脂流動解析装置。
In a resin flow analysis device, which is intended for a 2.5-dimensional thin shell structure in plastic injection molding and has pressure analysis means for calculating the pressure at the time of filling each part of the molded product and temperature analysis means for calculating the temperature at the time of filling. ,
The temperature analysis means, heat conduction term ∂ the plate thickness direction of an energy equations (K∂T / ∂z) / ∂z, from the mold wall temperature T W to the molded part thickness and thermal conductivity of the resin A resin flow analysis device comprising means for determining a heat transfer coefficient α and calculating the heat flow rate α ( TTW ).
プラスチック射出成形における2.5次元薄肉シェル構造を対象とし、成形品各部の充填時の圧力計算を行う圧力解析方法と、同じく充填時の温度計算を行う温度解析方法を有する樹脂流動解析方法において、
前記温度解析方法は、エネルギ方程式での板厚方向の熱伝導項∂(K∂T/∂z)/∂zを、金型壁面温度T と成形品板厚とこの樹脂の熱伝導率から熱伝達率αを決定して熱流速α(T−T )として計算することを特徴とする樹脂流動解析方法。
In a resin flow analysis method having a temperature analysis method for calculating a pressure at the time of filling of each part of a molded product and a temperature analysis method for calculating a temperature at the time of filling, the method is intended for a 2.5-dimensional thin shell structure in plastic injection molding.
Said temperature analysis method, heat conduction term ∂ the plate thickness direction of an energy equations (K∂T / ∂z) / ∂z, from the mold wall temperature T W to the molded part thickness and thermal conductivity of the resin A resin flow analysis method, wherein a heat transfer coefficient α is determined and calculated as a heat flow rate α (T−T W ).
JP2002321937A 2002-11-06 2002-11-06 Resin flow analysis method and apparatus Expired - Fee Related JP4006316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002321937A JP4006316B2 (en) 2002-11-06 2002-11-06 Resin flow analysis method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002321937A JP4006316B2 (en) 2002-11-06 2002-11-06 Resin flow analysis method and apparatus

Publications (2)

Publication Number Publication Date
JP2004155005A true JP2004155005A (en) 2004-06-03
JP4006316B2 JP4006316B2 (en) 2007-11-14

Family

ID=32802263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002321937A Expired - Fee Related JP4006316B2 (en) 2002-11-06 2002-11-06 Resin flow analysis method and apparatus

Country Status (1)

Country Link
JP (1) JP4006316B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213015A (en) * 2005-02-07 2006-08-17 Kochi Univ Of Technology Flow-analyzing apparatus and method for polymer liquid crystal in mold, and flow-analyzing program of polymer liquid crystal in mold
JP2007190827A (en) * 2006-01-19 2007-08-02 Toyo Tire & Rubber Co Ltd Flow simulation method for viscoelastic fluid
JP2008033380A (en) * 2006-07-26 2008-02-14 Hitachi Appliances Inc Method and program for analyzing heat insulation performance of product
JP2008188957A (en) * 2007-02-07 2008-08-21 Toyota Motor Corp Method and device of analyzing flow in injection molding
JP2009053094A (en) * 2007-08-28 2009-03-12 Toyota Motor Corp Mold temperature analysis method
CN114912377A (en) * 2021-02-10 2022-08-16 株式会社Hasl Multilayer fluid analysis program, multilayer fluid analysis system, and multilayer fluid analysis method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213015A (en) * 2005-02-07 2006-08-17 Kochi Univ Of Technology Flow-analyzing apparatus and method for polymer liquid crystal in mold, and flow-analyzing program of polymer liquid crystal in mold
JP4630987B2 (en) * 2005-02-07 2011-02-09 公立大学法人高知工科大学 In-mold polymer liquid crystal flow analysis device, in-mold polymer liquid crystal flow analysis method, and in-mold polymer liquid crystal flow analysis program
JP2007190827A (en) * 2006-01-19 2007-08-02 Toyo Tire & Rubber Co Ltd Flow simulation method for viscoelastic fluid
JP2008033380A (en) * 2006-07-26 2008-02-14 Hitachi Appliances Inc Method and program for analyzing heat insulation performance of product
JP2008188957A (en) * 2007-02-07 2008-08-21 Toyota Motor Corp Method and device of analyzing flow in injection molding
JP2009053094A (en) * 2007-08-28 2009-03-12 Toyota Motor Corp Mold temperature analysis method
CN114912377A (en) * 2021-02-10 2022-08-16 株式会社Hasl Multilayer fluid analysis program, multilayer fluid analysis system, and multilayer fluid analysis method

Also Published As

Publication number Publication date
JP4006316B2 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
Chang et al. Numerical simulation of mold filling in injection molding using a three‐dimensional finite volume approach
CN100348403C (en) Method and apparatus for modeling injection of fluid in mold cavity
Chiang et al. Integrated simulation of fluid flow and heat transfer in injection molding for the prediction of shrinkage and warpage
Kim et al. Developments of three-dimensional computer-aided engineering simulation for injection moulding
US9283695B1 (en) Computer-implemented simulation method and non-transitory computer medium capable of predicting fiber orientation for use in a molding process
JP5095461B2 (en) Injection molding process analysis method
JP2004058453A (en) Design assisting apparatus and method for resin molded product
Tie et al. Three-dimensional finite element method for the filling simulation of injection molding
CN105945270B (en) A kind of acquisition methods and device of quantitative casting curve
JP4006316B2 (en) Resin flow analysis method and apparatus
JP2009233882A (en) Void generation prediction method of resin molded article
Hirata et al. Numerical simulation of shrinkage formation of pure Sn casting using particle method
Chang et al. Analysis of flow and heat transfer in twin-roll strip casting process
Shen et al. Study on numerical simulation and experiment of lightguide plate in injection molding
JP2008191830A (en) Resin flow analysis program, resin flow analysis device and resin flow analysis method
JP2003271678A (en) Numerical analysis method and device
Shen et al. An improved algorithm for the simulation of injection-molding filling process
JP2000289076A (en) Method for simulating resin molding
Kietzmann et al. A free‐front tracking algorithm for a control‐volume‐based Hele–Shaw method
Yan et al. Numerical simulation of the filling stage for plastic injection moulding based on the Petrov-Galerkin methods
Estacio et al. Simplified model for mould filling simulations using CVFEM and unstructured meshes
JP6804801B2 (en) Warp deformation prevention design method for resin molded products, programs, recording media, and warp deformation prevention design equipment for resin molded products
Tutar et al. Computational study of the effect of governing parameters on a polymer injection molding process for single-cavity and multicavity mold systems
Magid et al. Analysis of the main factors affecting mass production in the plastic molding process by using the finite element method
Fontaínhas Injection Moulding Simulation Using Openfoam®

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050722

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070827

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees