JP2004151012A - Apparatus traveling along object surface - Google Patents

Apparatus traveling along object surface Download PDF

Info

Publication number
JP2004151012A
JP2004151012A JP2002318399A JP2002318399A JP2004151012A JP 2004151012 A JP2004151012 A JP 2004151012A JP 2002318399 A JP2002318399 A JP 2002318399A JP 2002318399 A JP2002318399 A JP 2002318399A JP 2004151012 A JP2004151012 A JP 2004151012A
Authority
JP
Japan
Prior art keywords
region
valve
pressure
valve plate
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002318399A
Other languages
Japanese (ja)
Inventor
Fukashi Uragami
不可止 浦上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002318399A priority Critical patent/JP2004151012A/en
Publication of JP2004151012A publication Critical patent/JP2004151012A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus that can cover an object surface with a region filled with liquid and can move the region, can absorb and collect the liquid from the object surface, can be sucked on the object surface for automatic traveling, and can perform the ultrasonic flaw detection and ultrasonic washing of the object surface. <P>SOLUTION: The apparatus has a first region having an annular surface A, and a second region having a surface B being present inside the surface A. The surface A is the boundary surface between the object surface and the first region, and the surface B is the boundary surface between the object surface and the second region. An outer seal member and an inner seal member are provided at portions for prescribing boundary lines outside and inside the surface A, respectively. The first region is connected to a means for sucking gas, and the second region is connected to a means for supplying liquid. The first region is located at the downstream side of gas for surrounding the apparatus and at the downstream side of the second region. Liquid flowing out of the second region is sucked and transferred to the suction means through the first region. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、大気などの気体中に在る物体表面に密着し且つそれに沿って移動する装置において、該装置は水などの液体を貯留する液体領域を具備し、且つ、該液体は該物体表面に直接に接液するように該液体領域が構成されており、又、該液体領域より流失する液体を吸引回収するために負圧化された気体領域を該液体領域の周囲に備えた、物体表面に沿って移動する装置に関する。
【0002】本発明はまた、大気などの気体中に在る物体表面に密着し且つそれに沿って移動する装置において、該装置は水などの液体を貯留する液体領域を具備し、且つ、該液体は該物体表面に直接に接液するように該液体領域が構成されており、また、該液体領域より流失する液体を吸引回収するために負圧化された気体領域を該液体領域の周囲に備えており、さらに、該液体領域は該物体表面に向けて超音波を発射する装置又は超音波を受波する装置或いはその両方を具備しており、而して、該物体表面の超音波探傷を実施し、又は該物体表面の超音波洗浄を実施することができる、物体表面に沿って移動する装置に関する。
【0003】本発明はまた、繊維や排水性舗装などの多孔質の物体表面に密着し且つそれに沿って移動する装置において、該装置は水などの液体を貯留する液体領域を具備し、且つ、該液体は該物体表面に直接に接液するように該液体領域が構成されており、また、該液体領域より流失する液体を吸引回収するために負圧化された気体領域を該液体領域の周囲に備えており、而して、該液体領域より流失した液体は、該物体表面の多数の孔を通過して該気体領域へ吸引移送される際に、該多数の孔に散在する汚れなどの異物を剥離して除去し、すなわち、多孔質の物体表面を洗浄することができる、物体表面に沿って移動する装置に関する。
【0004】
【従来の技術1】
以下に、本発明に関わる従来の技術の第1例を述べる。
従来、例えば、船体やガスホルダなどの鉄構造物の表面に密着し且つそれに沿って移動しながら該表面上に在る溶接線などの超音波探傷を行う装置、又はビルディングやトンネルなどのコンクリート構造物の表面に密着し且つそれに沿って移動しながら該表面上に在る亀裂などの超音波探傷を行う装置としては種々の装置が提案されている。上記の装置においては、超音波探傷子(プローブ)を被探傷表面に接触させると同時に、該超音波探傷子と該被探傷表面との間の隙間に接触媒質としての水を供給することにより、超音波を効率良く伝搬する手法が採用されている。
また、鉄構造物の壁面などの被探傷面に超音波探傷子を接触させたまま且つ該超音波探傷子を該被探傷面に沿って移動させる手段として、磁石を備えたことにより該被探傷面に吸着し且つ該被探傷面に沿って移動可能な台車に超音波探傷子が装着されている。
【0005】
【発明が解決しようとする課題1】
しかしながら、従来の超音波探傷装置には次の通りの解決すべき課題が存在する。
特に、超音波を発射する面の面積が大きいフェイズドアレイ式超音波探傷子を備える超音波探傷装置においては、多量の接触媒質としての水を必要とし、また使用された水は回収することが困難で、且つ被探傷面を濡れたまま放置することによる不都合、例えば、被探傷面にサビの発生を促進したりする不都合があった。また、超音波探傷子を被探傷面に接触させたまま長時間にわたり該被探傷面に沿って移動させると、該超音波探傷子の接触部分が磨耗して損傷したり、該被探傷面にも傷が付いたりする不都合があった。
また、従来、鉄構造物の壁面などの被探傷面に超音波探傷子を接触させたまま且つ該超音波探傷子を該被探傷面に沿って移動させる手段として、磁石を備えたことにより該被探傷面に吸着し且つ該被探傷面に沿って移動可能な台車に超音波探傷子が装着されているが、磁石はコンクリート構造物の壁面には吸着できない、という不都合があった。
【0006】本発明は、上記のような課題に鑑み、その課題を解決すべく創案されたものであって、その目的とするところは、接触媒質としての水は超音波探傷を実施中に全て回収されて循環使用されるので多量の水を必要とせず、超音波探傷後の被探傷面を濡れたまま放置すること無く逆に乾燥させるのでサビの発生を防止し、また、超音波探傷子を被探傷面に直接に接触させることなく超音波探傷を行うので超音波探傷子が損傷を受けない、といった特徴を備える、超音波探傷を行いながら物体表面に沿って移動する装置を提供することにある。
さらに、本発明の目的とするところは、接触媒質としての水を貯留する液体領域を負圧にすることにより該液体領域自身が物体表面に負圧吸着する機能を備える、超音波探傷を行いながら物体表面に沿って移動する装置を提供することにある。
【0007】
【従来の技術2】
以下に、本発明に関わる従来の技術の第2の例を述べる。
例えば、多孔質の排水性舗装を施された道路においては、舗装された後、時間が経過するとともに該多孔質舗装の空隙の部分に泥などの異物が詰まり、空隙率が低下して排水機能も減少するため、約5年に1度の間隔で該空隙の部分から泥などの空隙詰まり物質を除去する作業が必要とされている。
従来、該空隙の部分から泥などの異物を除去する洗浄手段として、該空隙部分に高圧水を噴射する方法が試用されている。
【0008】
【発明が解決しようとする課題2】
従来、該空隙の部分から泥などの異物を除去する洗浄手段として、該空隙部分に高圧水を噴射する方法が試用されているが、該空隙の形状は真っ直ぐな孔ではなく複雑に曲がりくねった孔であり、よって該高圧水は該異物のところまで届かず洗浄効果はあまり無かった。また、噴射された水を回収する手段についても回収効率が悪く、多量の水を必要としていた。
【0009】本発明は、上記のような課題に鑑み、その課題を解決すべく創案されたものであって、その目的とするところは、超音波を伝搬する媒質としての水を、多孔質舗装などの多孔質の素材から成る物体表面の空隙の部分に浸入させることにより、複雑に曲がりくねった空隙に在る異物に対して超音波を作用させ、よって該異物を該空隙の表面から剥離させて水中に浮遊せしめ、続いて該異物を水により該空隙の中を押し流しながら移送した後に該異物と水を全て吸引回収し、且つ作業中に濡れた物体表面は乾燥せしめ、該回収された水は該異物を分離除去した後に循環使用される、ように装置を構成することにより、多孔質の物体表面の空隙部分に詰まった異物を、多量の水を必要とせず且つ確実に除去することが可能な、超音波洗浄を行いながら物体表面に沿って移動する装置を提供することにある。
本発明はまた、絨毯やカーペットなどの繊維を素材とする多孔質の物体表面を超音波を利用して洗浄する作業にも適用することもできる。この場合、環境を汚染する物質である洗剤を全く使用すること無く、絨毯やカーペットの繊維の表面に付着した汚れや繊維の間の空隙に在る異物を超音波の作用により効果的に剥離し、該剥離された汚れや異物は水と共に全て吸引回収される。且つ作業中に濡れた物体表面は乾燥され、該回収された水は該汚れや異物を分離除去された後に循環使用される。
【0010】
【従来の技術3】
以下に、本発明に関わる従来の技術の第3例を述べる。
多孔質の物体表面を掃除する場合、例えて言えば排水性舗装を掃除する場合、その空隙の部分に付着した泥などの異物を除去する手段として、従来、高圧水を噴射する方法が試用されているがその効果に疑問がある旨を、本発明に関わる従来の技術の第2例の項において述べた。また同項においては、排水性舗装の空隙の部分に付着した泥などの異物を除去する手段として超音波を使用する装置を提案した。
しかしながら、カーペットなどの多孔質の物体表面を掃除する場合には真空掃除機を使用するのが一般的なやりかたと思われるので、本項においては、従来の技術の第3例として従来の真空掃除機を例にあげて本発明と対比させて述べる。なお、本項において述べる本発明においては掃除の手段として超音波を使用していないが、該超音波を使用しなくても従来の真空掃除機よりは効果的に掃除ができる。
【0011】
【発明が解決しようとする課題3】
従来の真空掃除機においては、多孔質の物体表面の空隙の部分に付着する異物を浮遊させて流体の流れに乗せて吸引回収するための媒質として大気を使用している。しかしながら、該異物を浮遊させて押し流す媒質としては大気より水を使用したほうが約800倍も押し流す力が強い。
【0012】本発明は、上記のような課題に鑑み、その課題を解決すべく創案されたものであって、その目的とするところは、物質を流体移送する媒質としての水を多孔質の物体表面の空隙の部分に浸入させることにより該空隙に在る異物を該空隙の表面から剥離させて水中に浮遊せしめ、続いて該異物を水により該空隙の中を押し流しながら移送した後に該異物と水を全て吸引回収する、ように装置を構成することにより、多孔質の物体表面の空隙部分に在る異物を効果的に除去することが可能な、液体洗浄を行いながら物体表面に沿って移動する装置を提供することにある。
【0013】
【課題を解決するための手段】以上の目的を達成するために、本発明によれば、特許請求の範囲の請求項1に記載されているように、環状の面Aを備える立体形状の第1領域と、面Aの内側に在る面Bを備える立体形状の第2領域とを具備する、気体中に在る物体表面に沿って移動する装置において、面Aは該物体表面と該第1領域との境界面であり、面Bは該物体表面と該第2領域との境界面であり、面Aの外側の境界線を規定する部分には外側シール部材が具備されており、面Aの内側の境界線を規定する部分には内側シール部材が具備されており、該第1領域は該第1領域より気体を吸引する手段と連結されており、該第2領域は該第2領域へ液体を供給する手段と連結されており、該第1領域は該物体表面、該第1領域及び該第2領域を包囲する気体の下流側に位置しており、該第1領域は該第2領域の下流側に位置しており、該第2領域へ供給された液体の量のうち該第2領域の体積を超えた量の液体すなわち該第2領域より下流側へ流失した液体は該第1領域に至り、続いて該液体は該第1領域より吸引される気体の流れに乗って該吸引手段まで吸引移送される、ことを特徴とする、物体表面に沿って移動する装置が提供される。
【0014】また、請求項1に記載の装置の機能を補強するため、特許請求の範囲の請求項2に記載されているように、該第2領域の圧力を任意の圧力に調整する調圧手段を備えている、ことを特徴とする、請求項1に記載の物体表面に沿って移動する装置が提供される。
【0015】また、請求項2に記載の該第2領域の圧力を任意の圧力に調整する手段について、すなわち本発明の種々の用途例の各々に最適な圧力を得る方法として、特許請求の範囲の請求項3に記載されているように、該調圧手段の構成において、液体供給ポンプに連結された上流側弁室と、該第2領域に連結された下流側弁室と、該上流側弁室と該下流側弁室とを連通する弁穴と、該弁穴を開閉する弁板と、該弁板を開閉駆動させるための弁駆動手段から構成された調圧手段において、該第2領域の実際の圧力の値と圧力調整目標である該任意の圧力の値との間に圧力差が発生することに起因して該弁板が開閉駆動されることにより該第2領域の圧力が該任意の圧力に調整されるように構成された調圧手段を備えている、ことを特徴とする、請求項2に記載の物体表面に沿って移動する装置が提供される。
【0016】また、該弁板を開閉駆動させるための弁駆動手段の構成例の一例として、特許請求の範囲の請求項4に記載されているように、該上流側弁室の内部の液体が該弁板に対して且つ該弁板の方向に作用を及ぼす力をFcとし、該下流側弁室の内部の液体が該弁板に対して且つ該弁板の方向に作用を及ぼす力をFbとした時の、該弁板を開閉駆動させるための該弁駆動手段の構成において、Fcと同じ力で且つFcと反対の方向に作用する力を該弁板に対して作用せしめ、且つ、Fbと反対の方向で且つ圧力調整目標の該任意の圧力の値に対応した任意の値の力Fxを該弁板に対して作用せしめ、而して、Fb<Fxの時に該弁板が開となり、Fb>Fxの時に該弁板が閉となる、ように構成された該弁駆動手段を備えている、ことを特徴とする、請求項3に記載の物体表面に沿って移動する装置が提供される。
【0017】また、該弁板を開閉駆動させるための弁駆動手段の構成例の別の一例として、特許請求の範囲の請求項5に記載されているように、該上流側弁室の内部の液体が該弁板に対して且つ該弁板の方向に作用を及ぼす力をFcとし、該下流側弁室の内部の液体が該弁板に対して且つ該弁板の方向に作用を及ぼす力をFbとした時の、該弁板を開閉駆動させるための該弁駆動手段の構成において、Fcと同じ力で且つFcと反対の方向に作用する力を該弁板に対して作用せしめ、且つ、大気圧に起因する力Foもしくは該物体表面、該第1領域及び該第2領域を包囲する気体の圧力に起因する力Foを該弁板に対してFbと反対の方向に作用せしめ、且つ、該弁板に対してFbと同じ方向にバネ等の弾性体の力Fsを作用せしめ、而して、Fb+Fs<Foの時に該弁板が開となり、Fb+Fs>Foの時に該弁板が閉となる、ように構成された該弁駆動手段を備えている、ことを特徴とする、請求項3に記載の物体表面に沿って移動する装置が提供される。
【0018】また、特許請求の範囲の請求項1乃至請求項5に記載された装置を超音波探傷装置もしくは超音波洗浄装置に適用するために、特許請求の範囲の請求項6に記載されているように、該第2領域に、超音波を発射する手段又は超音波を受波する手段或いはその両方を備えている、ことを特徴とする、請求項1乃至請求項5に記載の物体表面に沿って移動する装置が提供される。
【0019】また、特許請求の範囲の請求項1乃至請求項6に記載された装置を物体表面に沿って移動できるようにするために、特許請求の範囲の請求項7に記載されているように、該第1領域と該第2領域が物体表面に沿って移動できるように車輪もしくは無端軌条を備えている、ことを特徴とする、請求項1乃至請求項6に記載の物体表面に沿って移動する装置が提供される。
【0020】また、特許請求の範囲の請求項1乃至請求項7に記載された装置において該第1領域と該第2領域の各々の圧力を任意の圧力に維持するための機能を補強するために、特許請求の範囲の請求項8に記載されているように、該外側シール部材は、該外側シール部材の外側に在る気体の圧力により該物体表面に押し付けられるセルフシール形状を備えており、該内側シール部材は、該第2領域に在る液体の圧力により該物体表面に押し付けられるセルフシール形状を備えている、ことを特徴とする、請求項1乃至請求項7に記載の物体表面に沿って移動する装置が提供される。
【0021】
【実施例】
以下、本発明に従って構成された装置の好適実施例について、添付図を参照して更に詳細に説明する。
図1乃至図4を参照して説明すると、図示の装置はメインケーシングを具備しており、該メインケーシングは剛性材料を素材とし、外周側の筒状パーティション21と内周側の筒状パーティション22及び背面側の円板状パーティション23により構成されている。
内周側の筒状パーティション22は、物体表面1に面した部分が開口した円筒部、該円筒部の開口部の外周縁部に溶着された環状の円板部から形成されている。
外周側の筒状パーティション21は、物体表面1に面した部分が開口した円筒部、該円筒部の開口部の外周縁部に溶着された環状の円板部から形成されている。
外周側の筒状パーティション21の円筒部の対向する両側面には、それぞれ2個の車輪41を備えた一対の剛性材料を素材とする走行フレーム4が固定されている。
外周側の筒状パーティション21の環状の円板部には、例えばポリウレタンゴム、プラスチック等の比較的柔軟な材料を素材とする外側シール部材31がボルト、ナットにて装着されている。外側シール部材31は、全体の形状が略円環状を成し、その自由端部が物体表面1に沿って装置の外側へ延びた形状をしている。この形状により、外側シール部材31は外側シール部材31の外側に在る流体の圧力により物体表面1に押し付けられる。すなわち、外側シール部材31の形状はいわゆるセルフシールの形状を成している。
内周側の筒状パーティション22の環状の円板部には、例えばポリウレタンゴム、プラスチック等の比較的柔軟な材料を素材とする内側シール部材32がボルト、ナットにて装着されている。内側シール部材32は、全体の形状が略円環状を成し、その自由端部が物体表面1に沿って装置の内側へ延びた形状をしている。この形状により、内側シール部材32は内側シール部材32の内側に在る流体の圧力により物体表面1に押し付けられる。すなわち、内側シール部材32の形状はいわゆるセルフシールの形状を成している。
外周側の筒状パーティション21、内周側の筒状パーティション22、外側シール部材31、内側シール部材32、背面側の円板状パーティション23は物体表面1と協働して環状の第1領域11を規定している。また、内周側の筒状パーティション22、内側シール部材32、背面側の円板状パーティション23は物体表面1と協働して第2領域12を規定している。
【0022】背面側の円板状パーティション23には、第2領域12に在る水を接触媒質として物体表面1に向け超音波を発射し且つ受波する超音波探傷子91、或いは第2領域12に在る水を伝搬媒質として物体表面1に向け超音波を発射しよって物体表面1の超音波洗浄を行う超音波発振子91が装着されている。
【0023】背面側の円板状パーティション23に溶着された、第1領域11に連通する接続継手211はホース961を介して下流側に在るサイクロン963の入口に連結され、サイクロン963の出口はホース962を介してさらに下流側に在る真空ポンプ96の入口に連結されている。本発明の実施例の装置においては、使用される真空ポンプ96の最大吸込み圧力を絶対圧力にて約0.35kgf/cm2 と仮定する。また、第1領域11の絶対圧力:Pa kgf/cm2 については、気体がホース961を通って吸引移送される際に圧力損失が発生するためPaの値は約0.62と仮定する。
サイクロン963の下部には、サイクロン963の内部にて捕集された水を外部の貯水タンク97へ排出するためのロータリフィーダ964が装着されている。
【0024】背面側の円板状パーティション23に溶着された、第2領域12に連通する接続継手221はホース952を介して上流側に在る圧力調整弁92の下流側弁室932の接続継手923に連結され、圧力調整弁92の上流側弁室931の接続継手922はホース951を介してさらに上流側に在る可変容量形の水供給ポンプ95の出口に連結されている。本発明の実施例の装置においては、使用される水供給ポンプ95の最大吐出し圧力を絶対圧力にて約12kgf/cm2 と仮定する。また、上流側弁室931の絶対圧力:Pc kgf/cm2 については、液体が口径の小さいホース951を通って移送される際にかなりの圧力損失が発生するためPcの値は約4と仮定する。
【0025】圧力調整弁92の詳細について述べると、圧力調整弁92のケーシング921は、大別すると、弁板収納室と弁板駆動室の2つの部屋に区分されている。該弁板収納室の内部においては、円板状の弁板927が駆動ロッド926により下降させられて直径Dacm の弁穴931を塞ぎ、上昇させられて弁穴931を開く。弁板927が弁穴931を塞いでいる時、該弁板収納室は上流側弁室931と下流側弁室932の2室に区分される。なお、本実施例の図面においては上流側弁室931と弁穴931は同一の部分である。
【0026】該弁板駆動室の内部においては、円形の膜状のダイヤフラム929が該弁板駆動室をパイロット圧力室933と上流側圧力室934の2室に区分している。弁板927が弁穴931を塞いでいる時、ダイヤフラム929は直径Dbcm の円板状のピストン928を下方に押している。円板状のピストン928には駆動ロッド926が固定されている。
【0027】上流側弁室931の接続継手922と上流側圧力室934の接続継手925はホースにて連結されているので、上流側弁室931と上流側圧力室934の圧力は同一である。また、弁穴931の直径Dacmとピストン928の直径Dbcm が同一寸法の時、弁板927を上方へ押して弁穴931を開けようとする力Fcとピストン928を下方へ押して弁穴931を塞ごうとする力Fdは釣り合っている。
【0028】パイロット圧力室933の接続継手924はホース942を介してその上流側に在るリリーフ付き減圧弁943とさらにその上流側に在るエアコンプレッサ94に連結されている。パイロット圧力室933の絶対圧力:Px kgf/cm2 は、減圧弁943により設定されるものであるが、Pxの値は0以上の任意の正の値を選択することができる。ただし、パイロット圧力室933の絶対圧力を大気圧(絶対圧力:1.0332kgf/cm2 )よりも低い圧力にしたい場合には、Pxの値は1.0332よりも小さい値でなければならない。
【0029】パイロット圧力室933の絶対圧力:Px kgf/cm2 はピストン928を上方へ押して弁穴931を開けようとする力Fxを発生させる。また、下流側弁室932すなわち第2領域12の絶対圧力:Pb kgf/cm2 は弁板927を下方へ押して弁穴931を塞ごうとする力Fbを発生させる。なお、本発明の実施例の装置においては、弁穴931の直径Dacmとピストン928の直径Dbcm は同一寸法である。よって、Pb<Pxの時に弁板927が開となり、Pb>Pxの時に弁板927が閉となる。本発明の実施例の装置において、第2領域12の絶対圧力:Pb kgf/cm2 のPbの標準的な値を約0.65と仮定すると、第2領域12の絶対圧力を0.65 kgf/cm2 に維持するためにパイロット圧力室933の絶対圧力:Px kgf/cm2 は0.65 kgf/cm2 に設定される。すなわち、Pb<0.65の時に弁板927が開となり、Pb>0.65の時に弁板927が閉となる。
【0030】
【作用】
次に、上述した本発明の好適実施例の装置の作用効果について説明する。
真空ポンプ96が作動すると、第1領域11の内部の大気が下流側に吸引され、第1領域11が所要の通り減圧される(第1領域11の絶対圧力:Pa=0.62kgf/cm2 )。かく第1領域11が減圧されると、装置を包囲している大気の圧力(絶対圧力:Po=1.0332kgf/cm2 )が第1領域11の内外の圧力差(Po−Pa=0.4132kgf/cm2 )に起因して第1領域11を物体表面1の方向に押し付け、該押し付け力は4個の車輪41を介して物体表面1に伝達され、かくして装置は物体表面1に吸着するとともに、車輪41をギヤードモータ(図示せず)などの駆動手段により回転駆動せしめると装置は物体表面1に沿って移動する。なお、第1領域11の内部の圧力が所望の圧力に維持されている時、装置を包囲している大気が第1領域11の内外の圧力差に起因して外側シール部材31の自由端部を物体表面1の方向に押し付け、よって大気が第1領域11の内部に流入するのを極力阻止する。しかしながら、外側シール部材31の自由端部と物体表面1との間の僅かな隙間を通って第1領域11に流入する大気の全てを阻止しなくてもよい。むしろ、流入する大気をある程度許容したほうが、物体表面を吸引清掃する機能や、第2領域12から第1領域11へ流入した水を真空ポンプの方向に吸引回収する機能が増大する。
【0031】なお、以上の時の第2領域12の絶対圧力:Pb kgf/cm2 については、真空ポンプ96の作動により第2領域12に在る大気が内側シール部材32の自由端部と物体表面1との間の僅かな隙間を通って第1領域11に流入するので、第2領域12の絶対圧力は、時間が少し経つと、第1領域11の絶対圧力と同一の0.62kgf/cm2 になる。
なお、第2領域12に在る大気もしくは水の圧力は、内側シール部材32の自由端部を物体表面1の方向に押し付け、よって該大気もしくは該水が第1領域11へ流失するのを極力阻止する。
【0032】次に、圧力調整弁92の弁板927は第2領域12の絶対圧力:Pb kgf/cm2 がPb<0.65の時に弁板927が開となるように設定されてあるので、水供給ポンプ95が作動すると供給された水は開いた弁板927より第2領域12へ流入し、第2領域12の絶対圧力が0.65kgf/cm2 まで上昇すると弁板927が閉となる。次に、時間が少し経つと、第2領域12に在る水は、内側シール部材32の自由端部と物体表面1との間の僅かな隙間を通って第1領域11に流入するので、第2領域12の絶対圧力は0.65kgf/cm2 未満まで減少し、よって再び弁板927が開となる。以下、弁板927は上記のように開、閉を繰り返して第2領域12の絶対圧力を一定の値に維持する。
【0033】第2領域12から第1領域11へ流入した水は、外側シール部材31の自由端部と物体表面1との間の僅かな隙間を通って第1領域11へ流入した大気と共にサイクロン963まで吸引移送され、該水はサイクロン963にて分離された後にロータリフィーダ964により貯水タンク97へ戻され、サイクロン963にて該水を除去された大気は真空ポンプ96を経て再び大気中へ放出される。
【0034】上記の本発明の実施例の装置において、第1領域11と第2領域12の絶対圧力は共に大気の絶対圧力より小さいため、大気の圧力が第1領域11と第2領域12を物体表面1の方向へ押し付け、すなわち、第1領域11と第2領域12は物体表面1へ吸着する。この時、大気の押し付け力は4個の車輪41を介して物体表面1に伝達され、かくして装置は物体表面1に吸着するとともに、車輪41をギヤードモータ(図示せず)などの駆動手段により回転駆動せしめると装置は物体表面1に沿って移動する。
【0035】以下に、圧力調整弁92の動作の原理を図3と数式を使って説明する。
第2領域12及び下流側弁室932の絶対圧力をPbkgf/cm2、上流側弁室931及び上流側圧力室934の絶対圧力をPckgf/cm2、パイロット圧力室933の絶対圧力をPxkgf/cm2、下流側弁室932において弁板927を下方へ押す力をFbkgf、上流側弁室931において弁板927を上方へ押す力をFckgf、上流側圧力室934においてピストン928を下方へ押す力をFdkgf、パイロット圧力室933においてピストン928を上方へ押す力をFxkgf、弁板927の有効直径をDacm、ピストン928の有効直径をDbcm、Da=Dbとすれば、
【0036】弁板927を下方へ塞ぐ方向に押す力の合計Ft1kgfは、
Fb=Pb*Da*Da*3.14/4
Fd=Pc*Db*Db*3.14/4
Da=Db
Ft1=Fb+Fd
Ft1=(Pb+Pc)*Da*Da*3.14/4
【0037】弁板927を上方へ開く方向に押す力の合計Ft2kgfは、
Fc=Pc*Da*Da*3.14/4
Fx=Px*Db*Db*3.14/4
Da=Db
Ft2=Fc+Fx
Ft2=(Pc+Px)*Da*Da*3.14/4
【0038】弁板927が開く時の条件は、
Ft1<Ft2
(Pb+Pc)*Da*Da*3.14/4<(Pc+Px)*Da*Da*3.14/4
Pb+Pc<Pc+Px
Pb<Px
【0039】以上の式により、パイロット圧力室933の絶対圧力:Pxkgf/cm2 のPxの値と、第2領域12の圧力設定目標値である絶対圧力:Pbkgf/cm2 のPbの値とを同一の値にすれば、第2領域12の圧力を、上流側弁室931の圧力と無関係に、目標の圧力に容易に調整できることがわかる。
【0040】以下に、圧力調整弁92の別の実施態様を図5を使って説明する。
図5の圧力調整弁92が図3の圧力調整弁92と比べて異なる点は、パイロット圧力室933の接続継手924が大気に開放されている点と、上流側圧力室934にピストン928を下方へ押すコイルスプリング935を備えている点の2点のみである。
【0041】以下に、図5の圧力調整弁92の動作の原理を数式を使って説明する。
第2領域12及び下流側弁室932の絶対圧力をPbkgf/cm2、上流側弁室931及び上流側圧力室934の絶対圧力をPckgf/cm2、パイロット圧力室933の絶対圧力(大気圧)を1.0332kgf/cm2、下流側弁室932において弁板927を下方へ押す力をFbkgf、上流側弁室931において弁板927を上方へ押す力をFckgf、上流側圧力室934においてピストン928を下方へ押す力をFdkgf、パイロット圧力室933においてピストン928を上方へ押す力をFokgf、弁板927の有効直径をDacm、ピストン928の有効直径をDbcm、Da=Db、上流側圧力室934においてコイルスプリング935がピストン928を下方へ押す力をFskgfとすれば、
【0042】弁板927を下方へ塞ぐ方向に押す力の合計Ft1kgfは、
Fb=Pb*Da*Da*3.14/4
Fd=Pc*Db*Db*3.14/4
Da=Db
Ft1=Fb+Fd+Fs
Ft1=(Pb+Pc)*Da*Da*3.14/4+Fs
【0043】弁板927を上方へ開く方向に押す力の合計Ft2kgfは、
Fc=Pc*Da*Da*3.14/4
Fx=1.0332*Db*Db*3.14/4
Da=Db
Ft2=Fc+Fx
Ft2=(Pc+1.0332)*Da*Da*3.14/4
【0044】弁板927が開く時の条件は、
Ft1<Ft2
(Pb+Pc)*Da*Da*3.14/4+Fs<(Pc+1.0332)*Da*Da*3.14/4
Fs<(1.0332−Pb)*Da*Da*3.14/4
【0045】以上の式により、コイルスプリング935がピストン928を下方へ押す力:Fskgf は、第2領域12の圧力設定目標値である絶対圧力:Pbkgf/cm2 と弁板927の有効直径:Dacm の関数として表現されることがわかる。
すなわち、第2領域12の圧力を、上流側弁室931の圧力と無関係に、目標の圧力に容易に調整できることがわかる。
図5の圧力調整弁92は、図3の圧力調整弁92と比べて、パイロット圧力室933の圧力設定が要らない利点がある。なお、本発明の実施例の装置においては、どちらの圧力調整弁を用いてもよい。
【0046】第2領域12を圧力調整弁92を用いて任意の圧力に調整することが重要である点について説明すると、第2領域12の圧力はより低い圧力に維持したほうが第2領域12より第1領域11へ流出する水の量が少なくなるので好都合であり、また第2領域12の圧力が大気圧より低ければ第2領域12が物体表面1へ吸着することも可能となる。一方、水供給ポンプ95の圧力は、ホース951の長さによって圧力が変動し、且つホース951の圧力損失は大きい値であるので、水供給ポンプ95は余裕をもたせて吐出圧力の大きいポンプを選定する必要がある。また、水供給ポンプ95の吐出圧力が大きいと、ホース951の口径をより小さくすることもできる。よって、水供給ポンプ95の下流側には、必然的に減圧機能を備えた圧力調整弁が必要となる。
本発明の実施例の装置の圧力調整弁92は、水供給ポンプ95から供給された水を、該ポンプの吐出圧力に関係なく、大気圧より低い圧力にも減圧できる、といった優れた特徴を有するものである。
【0047】以下に、第2領域12に超音波探傷子91を備えた本発明の実施例の装置の作用について説明する。
超音波探傷子91より物体表面1に向け超音波を発射し、かつ物体表面1にぶつかって反射した反射波を受波することにより、物体表面1に在る溶接線に亀裂があるかなどの探傷情報を得ることができる。第2領域12に在る水は接触媒質として超音波を効果的に伝搬することができる。
【0048】以下に、第2領域12に超音波洗浄用の超音波発振子91を備えた場合の本発明の実施例の装置の作用について説明する。
超音波発振子より物体表面1に向け超音波を発射すると、第2領域12に在る水は超音波を効果的に伝搬して物体表面1に対して洗浄作用を及ぼす。
例えば、物体表面1が多孔質の素材から成る排水性舗装の場合、第2領域12に在る水は該舗装の空隙の部分に浸入し、該空隙部分に詰まった泥などの異物に対して超音波が作用して該異物は該空隙の表面から剥離して水中に浮遊し、続いて該異物は水により該空隙の中を押し流されながら移送されて第1領域11に至り、第1領域11に浸入した大気と共に該異物と水はホース961を通って下流の方向に吸引回収される。
【0049】以下に、本発明の実施例の装置において、洗浄用の超音波発振子を備えていない場合における洗浄作用について説明する。
例えば、物体表面1が多孔質の素材から成る排水性舗装の場合、第2領域12に在る水は該舗装の空隙部分に浸入し、続いて該空隙部分を通って、第1領域11まで吸引移送される。該水が該空隙部分を通過する際に、該空隙部分に散在する泥などの異物は該水に押し流されて該水と共に第1領域11まで吸引移送される。すなわち、該異物を移送する媒質として水を効果的に使用することができる。該異物を移送する媒質として水の代わりに空気を使った場合と比較して、水を使えば該異物は空気を使った場合の約800倍の力で押し流される。
【0050】以下にこの理由を数式を用いて説明する。
流体の流れの中に直径dmの球状の異物が在るとすれば、該異物が該流体から受ける抗力Dkgf は下記の式で表現することができる。
D=Cd*A*v*v*r/(2*g)
なお、Cdは効力係数であり球体の場合0.34、Aは流体の流れの方向に垂直な面の投影面積( m2 )、vは流体の流れの速度( m/s )、rは流体の比重量( kgf/m3 )、gは重力の加速度( 9.8 m/s2 )である。
また、1気圧、4度Cにおける水の比重量は1000kgf/m3 、空気の比重量は1.25kgf/m3 である。
【0051】上記の式は、流体の流れの中に在る異物が該流体から受ける抗力Dkgf は該流体の比重量rkgf/m3 に比例して増加することを示しており、流体が水である場合と、空気である場合とを比較すると、1気圧、4度Cにおいて、水の場合の抗力は、空気である場合の抗力の約800倍となるものである。
すなわち、上記の式により、異物を洗い流す手段としては、空気よりも水を使った方が効果的である、という結論を導き出すことができる。
【0052】本発明の実施例の装置において、第1領域11と大気との境界部分においては、異物を吸引移送する媒質として空気を使用しているが、第1領域11と第2領域12との境界部分においては、異物を吸引移送する媒質として水を使用しているので大変効果的に洗浄作業を行うことができる。
【0053】以上に、本発明の実施例の装置について説明したが、本発明の実施例の装置は該好適実例の他にも特許請求の範囲に従って種々の実施例を考えることができる。
【0054】
【発明の効果】
以上の記載から明らかなように、本発明においては、気体の中に在る物体表面を液体で満たした領域で局部的に覆い、且つ該領域を該物体表面に沿って移動することが可能で、且つ、該液体により一旦は濡らされた物体表面から該液体を吸引回収し且つ乾燥させることが可能であるため、物体表面の超音波探傷や超音波洗浄など、本発明においては種々の用途が考えられる。
また、該液体で満たされた領域の圧力を大気圧より低くすることも可能であるため、本発明の装置を構造物の壁面や天井面に吸着させて且つ自走させることが可能で、よって、例えば構造物の壁面や天井面の超音波探傷作業を自動化することができる。
【0055】本発明の効果を具体的に述べると、超音波探傷を行いながら物体表面に沿って移動する装置において、接触媒質としての水は超音波探傷を実施中に全て回収されて循環使用されるので多量の水を必要とせず、超音波探傷後の被探傷面を濡れたまま放置すること無く逆に乾燥させるのでサビの発生を防止し、また、超音波探傷子を被探傷面に直接に接触させることなく超音波探傷を行うので超音波探傷子が損傷を受けない、といった効果を本発明は有している。
【0056】さらに、超音波探傷を行いながら物体表面に沿って移動する装置において、接触媒質としての水を貯留する液体領域を負圧にすることにより該液体領域自身が物体表面に負圧吸着する機能を備える、といった効果を本発明は有している。
【0057】超音波洗浄を行いながら物体表面に沿って移動する装置において、超音波を伝搬する媒質としての水を、多孔質舗装などの多孔質の素材から成る物体表面の空隙の部分に浸入させることにより、該空隙に在る異物に対して超音波を作用させて該空隙の表面から剥離し、続いて、該異物と該水を全て吸引回収し、且つ作業中に濡れた物体表面は乾燥せしめる、といった機能を備えていることに起因して、多孔質の物体表面の空隙部分に詰まった異物を多量の水を必要とせず且つ確実に除去する、といった効果を本発明は有している。
【0058】絨毯やカーペットなどの繊維を素材とする多孔質の物体表面を超音波を利用して洗浄しながら且つ該物体表面に沿って移動する装置において、環境を汚染する物質である洗剤を全く使用すること無く、繊維の表面に付着した汚れや繊維の間の空隙に在る異物を超音波の作用により効果的に剥離し、該剥離された汚れや異物は水と共に全て吸引回収され、且つ作業中に濡れた物体表面は乾燥される、といった効果を本発明は有している。
【0059】液体を使用して物体表面の洗浄を行いながら且つ該物体表面に沿って移動する装置において、洗浄して除去される異物を浮遊させて押し流す媒質として大気の約800倍も押し流す力が強い水を使用することにより該異物を効果的に除去する、といった効果を本発明は有している。
【図面の簡単な説明】
【図1】本発明に従って構成された装置の好適実施例を物体表面の方向から見た平面図。
【図2】図1に示す装置におけるA−Aの断面図。
【図3】本発明に従って構成された装置が備える圧力調整弁の好適実施例の第1例を示す断面図。
【図4】本発明に従って構成された装置の好適実施例の全体システムを示す図。
【図5】本発明に従って構成された装置が備える圧力調整弁の好適実施例の第2例を示す断面図。
[0001]
[Industrial applications]
The present invention relates to a device that adheres to and moves along the surface of an object present in a gas such as the atmosphere, wherein the device includes a liquid region for storing a liquid such as water, and the liquid is provided on the surface of the object. An object, wherein the liquid region is configured so as to be in direct contact with the liquid region, and a negative pressure gas region is provided around the liquid region for sucking and recovering the liquid flowing away from the liquid region. It relates to a device that moves along a surface.
[0002] The present invention also relates to an apparatus which is in close contact with and moves along the surface of an object present in a gas such as the atmosphere, the apparatus comprising a liquid region for storing a liquid such as water; The liquid region is configured to be in direct contact with the surface of the object, and a negative pressure gas region is formed around the liquid region in order to suck and recover the liquid flowing away from the liquid region. The liquid region is further provided with a device for emitting ultrasonic waves toward the surface of the object and / or a device for receiving ultrasonic waves, and thus the ultrasonic inspection of the surface of the object. Or an apparatus that moves along an object surface, which can perform ultrasonic cleaning of the object surface.
[0003] The present invention is also directed to an apparatus that adheres to and moves along the surface of a porous object such as a fiber or drainage pavement, the apparatus including a liquid region for storing a liquid such as water; The liquid region is configured such that the liquid comes into direct contact with the surface of the object, and a negative pressure gas region is formed in the liquid region to suck and recover the liquid flowing away from the liquid region. The liquid which has been provided in the surrounding area, and which has been washed away from the liquid area, passes through a large number of holes on the surface of the object and is sucked and transferred to the gas area. The present invention relates to a device that moves along an object surface, which can remove and remove foreign matter from the object, that is, can clean the surface of the porous object.
[0004]
[Prior art 1]
Hereinafter, a first example of a conventional technique according to the present invention will be described.
Conventionally, for example, a device that performs ultrasonic flaw detection of a welding line or the like existing on a surface of a steel structure such as a hull or a gas holder while moving in close contact with the surface, or a concrete structure such as a building or a tunnel Various devices have been proposed as devices for performing ultrasonic flaw detection of cracks or the like on the surface while being in close contact with the surface and moving along the surface. In the above apparatus, by contacting the ultrasonic flaw detector (probe) with the surface to be detected and simultaneously supplying water as a couplant to the gap between the ultrasonic flaw detector and the surface to be flawed, A technique for efficiently transmitting ultrasonic waves has been adopted.
Further, since the ultrasonic flaw detector is kept in contact with the surface to be flawed such as the wall surface of the iron structure and the ultrasonic flaw detector is moved along the surface to be flawed, the magnet is provided with a flaw. An ultrasonic flaw detector is attached to a carriage that is attracted to a surface and is movable along the surface to be flawed.
[0005]
[Problem 1 to be Solved by the Invention]
However, the conventional ultrasonic flaw detector has the following problems to be solved.
In particular, an ultrasonic flaw detector having a phased array type ultrasonic flaw detector having a large area for emitting ultrasonic waves requires a large amount of water as a couplant, and it is difficult to recover used water. In addition, there has been a disadvantage that the surface to be inspected is left wet, for example, a problem of promoting the generation of rust on the surface to be inspected. Further, if the ultrasonic flaw detector is moved along the surface to be inspected for a long time while being in contact with the surface to be flawed, the contact portion of the ultrasonic flaw detector is worn out and damaged, or the surface to be flawed is damaged. There was also the inconvenience of scratching.
In addition, conventionally, a magnet is provided as a means for moving the ultrasonic flaw detector along the surface to be flawed while keeping the ultrasonic flaw detector in contact with the surface to be flawed such as a wall surface of an iron structure. Although an ultrasonic flaw detector is mounted on a carriage that is attracted to the surface to be inspected and that can move along the surface to be inspected, there is a disadvantage that the magnet cannot be attracted to the wall surface of the concrete structure.
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has been made in order to solve the problems. It is an object of the present invention that water as a couplant is used during ultrasonic flaw detection. Since it is collected and used in circulation, it does not require a large amount of water, and the surface to be inspected after ultrasonic flaw detection is dried without leaving it wet, preventing rust and preventing ultrasonic flaw detection. A device that moves along the surface of an object while performing ultrasonic flaw detection, wherein the ultrasonic flaw detector is subjected to ultrasonic flaw detection without directly contacting the surface to be detected. It is in.
Furthermore, it is an object of the present invention to provide a liquid region for storing water as a couplant having a negative pressure, whereby the liquid region itself has a function of adsorbing negative pressure on the surface of an object, while performing ultrasonic flaw detection. An object is to provide a device that moves along the surface of an object.
[0007]
[Prior art 2]
Hereinafter, a second example of the conventional technique according to the present invention will be described.
For example, on a road on which porous drainage pavement has been applied, as time passes after the pavement, voids in the porous pavement are clogged with foreign substances such as mud, the porosity is reduced, and the drainage function is reduced. Therefore, it is necessary to remove void clogging substances such as mud from the voids at intervals of about once every five years.
Conventionally, as a cleaning means for removing foreign substances such as mud from the gap, a method of injecting high-pressure water into the gap has been tried.
[0008]
Problem 2 to be Solved by the Invention
Conventionally, as a cleaning means for removing foreign substances such as mud from the void portion, a method of injecting high-pressure water into the void portion has been tried, but the shape of the void is not a straight hole but a complicated winding hole. Therefore, the high-pressure water did not reach the foreign matter, and the cleaning effect was not so high. Also, the means for collecting the injected water has a poor collection efficiency and requires a large amount of water.
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has been made in order to solve the problems. It is an object of the present invention to use water as a medium for transmitting ultrasonic waves on a porous pavement. By penetrating into the void portion on the surface of the object made of a porous material such as, by applying an ultrasonic wave to the foreign matter present in the complex meandering void, the foreign matter is separated from the surface of the void After being suspended in water and subsequently transferring the foreign matter while flushing the inside of the gap with water, the foreign matter and water are all collected by suction, and the surface of the wet object is dried during the work, and the collected water is By arranging the apparatus so that the foreign matter is used after being separated and removed, the foreign matter clogged in the void portion on the surface of the porous object can be reliably removed without requiring a large amount of water. Na, ultrasonic cleaning The invention is to provide a device that moves along the object surface while.
The present invention can also be applied to an operation of cleaning the surface of a porous object made of fiber such as a carpet or a carpet using ultrasonic waves. In this case, without using any detergent that is a pollutant of the environment, dirt adhering to the surface of the fibers of carpets and carpets and foreign substances in the voids between the fibers can be effectively peeled off by the action of ultrasonic waves. All of the peeled dirt and foreign matters are sucked and collected together with water. In addition, the surface of the object wet during the operation is dried, and the collected water is circulated for use after the dirt and foreign matters are separated and removed.
[0010]
[Prior art 3]
Hereinafter, a third example of the related art related to the present invention will be described.
Conventionally, when cleaning the surface of a porous object, for example, when cleaning a drainage pavement, a method of injecting high-pressure water is used as a means for removing foreign substances such as mud attached to the voids. However, the fact that the effect is questionable has been described in the section of the second example of the prior art relating to the present invention. In the same section, a device using ultrasonic waves as a means for removing foreign substances such as mud attached to voids of drainage pavement was proposed.
However, when cleaning the surface of a porous object such as a carpet, it is generally considered to use a vacuum cleaner. Therefore, in this section, a conventional vacuum cleaning is used as a third example of the conventional technology. The present invention will be described in comparison with the present invention using a machine as an example. Although the present invention described in this section does not use ultrasonic waves as cleaning means, it can perform cleaning more effectively than conventional vacuum cleaners without using ultrasonic waves.
[0011]
[Problem 3 to be Solved by the Invention]
In a conventional vacuum cleaner, the atmosphere is used as a medium for suspending and attaching foreign substances adhering to voids on the surface of a porous object, placing them on a flow of a fluid, and performing suction and recovery. However, when water is used as a medium in which the foreign matter is floated and washed away, water is stronger than the air by about 800 times.
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has been made in order to solve the problems. It is an object of the present invention to provide a method for transferring water as a medium for transferring a substance into a porous material. Foreign matter in the void is separated from the surface of the void by allowing the foreign matter to float in water by infiltrating into the void part of the surface, and then the foreign matter is transferred while being flushed through the void by water. By moving the device along the surface of the object while performing liquid cleaning, it is possible to effectively remove foreign substances existing in the voids on the surface of the porous object by configuring the device to collect all the water by suction. It is an object of the present invention to provide an apparatus for performing the above.
[0013]
According to the present invention, there is provided, in accordance with the present invention, a three-dimensional shape having an annular surface A, as defined in claim 1 of the appended claims. An apparatus for moving along a surface of an object in a gas, the device including a first region and a second region having a three-dimensional shape including a surface B inside the surface A. A boundary surface between the first region and the second region, a surface B is a boundary surface between the object surface and the second region, and an outer seal member is provided at a portion defining a boundary line outside the surface A; A portion defining an inner boundary of A is provided with an inner sealing member, the first region is connected to a means for sucking gas from the first region, and the second region is connected to the second region. A first region coupled to the means for supplying liquid to the region, the first region including the object surface, the first region, and the second region; And the first region is located downstream of the second region, and the volume of the second region of the amount of liquid supplied to the second region Liquid, that is, the liquid that has flowed downstream from the second area, reaches the first area, and then the liquid rides on the flow of gas sucked from the first area to the suction means. An apparatus is provided for moving along an object surface, the apparatus being transported.
In order to reinforce the function of the device according to the first aspect, the pressure in the second region is adjusted to an arbitrary pressure as described in the second aspect of the present invention. An apparatus for moving along an object surface according to claim 1, characterized in that it comprises means.
Further, the means for adjusting the pressure in the second region to an arbitrary pressure according to claim 2, that is, a method for obtaining an optimum pressure for each of various applications of the present invention, is described in claims. In the configuration of the pressure adjusting means, an upstream valve chamber connected to a liquid supply pump, a downstream valve chamber connected to the second region, and the upstream side. The pressure regulating means including a valve hole communicating the valve chamber with the downstream valve chamber, a valve plate for opening and closing the valve hole, and a valve driving means for driving the valve plate to open and close; The valve plate is opened and closed due to the occurrence of a pressure difference between the actual pressure value of the region and the arbitrary pressure value that is the pressure adjustment target, so that the pressure of the second region is reduced. Pressure adjusting means configured to be adjusted to the arbitrary pressure. , Device moving along the object surface according to claim 2 is provided.
Further, as an example of a configuration example of a valve driving means for driving the opening and closing of the valve plate, the liquid inside the upstream valve chamber is formed as described in claim 4 of the claims. The force acting on the valve plate and in the direction of the valve plate is Fc, and the force of the liquid in the downstream valve chamber acting on the valve plate and in the direction of the valve plate is Fb. In the structure of the valve driving means for opening and closing the valve plate, the force acting on the valve plate with the same force as Fc and acting in the opposite direction to Fc, and Fb And a force Fx of an arbitrary value corresponding to the arbitrary pressure value of the pressure adjustment target is applied to the valve plate, and when Fb <Fx, the valve plate is opened. , Fb> Fx, the valve plate is closed when the valve drive means is provided. The symptom, device moving along the object surface according to claim 3 is provided.
Further, as another example of the configuration of the valve driving means for driving the opening and closing of the valve plate, the inside of the upstream side valve chamber is provided as described in claim 5 of the present invention. Let Fc be the force with which the liquid acts on the valve plate and in the direction of the valve plate, and the force with which the liquid inside the downstream valve chamber acts on the valve plate and in the direction of the valve plate. In the configuration of the valve driving means for opening and closing the valve plate when is Fb, the same force as Fc and a force acting in the opposite direction to Fc are applied to the valve plate, and Causing the force Fo due to atmospheric pressure or the force Fo due to the pressure of gas surrounding the object surface, the first region and the second region to act on the valve plate in a direction opposite to Fb, and And the force Fs of an elastic body such as a spring is applied to the valve plate in the same direction as Fb. 4. The valve driving device according to claim 3, further comprising: a valve driving unit configured to open the valve plate when Fb + Fs <Fo and close the valve plate when Fb + Fs> Fo. An apparatus is provided for moving along an object surface.
Further, in order to apply the apparatus described in claims 1 to 5 to an ultrasonic flaw detector or an ultrasonic cleaning apparatus, the apparatus is described in claim 6 of the claims. 6. The object surface according to claim 1, wherein the second area includes a unit that emits an ultrasonic wave and / or a unit that receives an ultrasonic wave. 7. There is provided an apparatus that moves along.
Further, in order to enable the apparatus described in claims 1 to 6 to move along the surface of an object, the apparatus described in claim 7 is used. 7. The object surface according to claim 1, further comprising wheels or endless rails so that the first region and the second region can move along the object surface. An apparatus is provided for moving.
In the apparatus described in claims 1 to 7, the function of maintaining the pressure of each of the first region and the second region at an arbitrary pressure is reinforced. In addition, as described in claim 8, the outer seal member has a self-sealing shape pressed against the surface of the object by the pressure of gas outside the outer seal member. The object surface according to any one of claims 1 to 7, wherein the inner seal member has a self-sealing shape pressed against the object surface by the pressure of the liquid present in the second region. There is provided an apparatus that moves along.
[0021]
【Example】
Preferred embodiments of the device constructed according to the present invention will now be described in more detail with reference to the accompanying drawings.
Referring to FIGS. 1 to 4, the illustrated apparatus includes a main casing, which is made of a rigid material and has a cylindrical partition 21 on an outer peripheral side and a cylindrical partition 22 on an internal peripheral side. And a disk-shaped partition 23 on the back side.
The inner cylindrical partition 22 is formed of a cylindrical portion having an open portion facing the object surface 1 and an annular disk portion welded to the outer peripheral edge of the opening of the cylindrical portion.
The cylindrical partition 21 on the outer peripheral side is formed of a cylindrical portion whose portion facing the object surface 1 is open, and an annular disk portion welded to the outer peripheral edge of the opening of the cylindrical portion.
A traveling frame 4 made of a pair of rigid materials and having two wheels 41 is fixed to both opposing side surfaces of the cylindrical portion of the cylindrical partition 21 on the outer peripheral side.
An outer sealing member 31 made of a relatively flexible material such as polyurethane rubber or plastic is attached to an annular disk portion of the outer peripheral cylindrical partition 21 with bolts and nuts. The outer seal member 31 has a substantially annular shape as a whole, and has a free end portion extending along the object surface 1 to the outside of the device. With this shape, the outer seal member 31 is pressed against the object surface 1 by the pressure of the fluid existing outside the outer seal member 31. That is, the outer seal member 31 has a so-called self-sealing shape.
An inner sealing member 32 made of a relatively flexible material such as polyurethane rubber or plastic is attached to an annular disk portion of the inner peripheral cylindrical partition 22 with bolts and nuts. The inner seal member 32 has a substantially annular shape as a whole and has a free end extending along the object surface 1 to the inside of the device. With this shape, the inner seal member 32 is pressed against the object surface 1 by the pressure of the fluid inside the inner seal member 32. That is, the shape of the inner seal member 32 has a so-called self-sealing shape.
The outer cylindrical member 21, the inner cylindrical member 22, the outer seal member 31, the inner seal member 32, and the rear disk-shaped partition 23 cooperate with the object surface 1 to form an annular first region 11. Is defined. The inner peripheral cylindrical partition 22, the inner seal member 32, and the rear disk-shaped partition 23 cooperate with the object surface 1 to define the second region 12.
An ultrasonic flaw detector 91 that emits and receives ultrasonic waves toward the object surface 1 using water present in the second region 12 as a couplant, or the second region An ultrasonic oscillator 91 for ultrasonically cleaning the object surface 1 by emitting ultrasonic waves toward the object surface 1 using the water present at 12 as a propagation medium is mounted.
A connection joint 211, which is welded to the disk-shaped partition 23 on the rear side and communicates with the first region 11, is connected via a hose 961 to an inlet of a cyclone 963 located downstream, and an outlet of the cyclone 963 is It is connected via a hose 962 to the inlet of a vacuum pump 96 located further downstream. In the apparatus of the embodiment of the present invention, it is assumed that the maximum suction pressure of the vacuum pump 96 used is about 0.35 kgf / cm 2 in absolute pressure. As for the absolute pressure of the first region 11: Pa kgf / cm 2, it is assumed that the value of Pa is about 0.62 because a pressure loss occurs when the gas is sucked and transferred through the hose 961.
A rotary feeder 964 for discharging water collected inside the cyclone 963 to an external water storage tank 97 is mounted below the cyclone 963.
A connecting joint 221 welded to the rear disk-shaped partition 23 and communicating with the second region 12 is connected via a hose 952 to a connecting joint of the downstream valve chamber 932 of the pressure regulating valve 92 located upstream. 923, and a connection joint 922 of an upstream valve chamber 931 of the pressure regulating valve 92 is connected via a hose 951 to the outlet of a variable displacement water supply pump 95 located further upstream. In the apparatus according to the embodiment of the present invention, it is assumed that the maximum discharge pressure of the water supply pump 95 used is about 12 kgf / cm 2 in absolute pressure. Also, regarding the absolute pressure of the upstream valve chamber 931: Pc kgf / cm 2, it is assumed that the value of Pc is about 4 because a considerable pressure loss occurs when the liquid is transferred through the small-diameter hose 951. .
The details of the pressure regulating valve 92 will be described. The casing 921 of the pressure regulating valve 92 is roughly divided into two chambers, a valve plate storage chamber and a valve plate drive chamber. Inside the valve plate storage chamber, the disc-shaped valve plate 927 is lowered by the drive rod 926 to close the valve hole 931 having a diameter of Dacm 2, and is raised to open the valve hole 931. When the valve plate 927 closes the valve hole 931, the valve plate storage chamber is divided into two chambers, an upstream valve chamber 931 and a downstream valve chamber 932. In the drawings of the present embodiment, the upstream valve chamber 931 and the valve hole 931 are the same part.
Inside the valve plate driving chamber, a circular membrane-shaped diaphragm 929 divides the valve plate driving chamber into two chambers: a pilot pressure chamber 933 and an upstream pressure chamber 934. When the valve plate 927 is closing the valve hole 931, the diaphragm 929 is pushing the disk-shaped piston 928 having a diameter Dbcm 2 downward. A drive rod 926 is fixed to the disc-shaped piston 928.
Since the connection joint 922 of the upstream valve chamber 931 and the connection joint 925 of the upstream pressure chamber 934 are connected by a hose, the pressures in the upstream valve chamber 931 and the upstream pressure chamber 934 are the same. When the diameter Dacm of the valve hole 931 is the same as the diameter Dbcm of the piston 928, the valve plate 927 is pushed upward to open the valve hole 931, and the piston 928 is pushed downward to close the valve hole 931. Are balanced.
The connection joint 924 of the pilot pressure chamber 933 is connected via a hose 942 to a pressure-reducing valve 943 with relief located upstream thereof and to the air compressor 94 further upstream thereof. The absolute pressure of the pilot pressure chamber 933: Px kgf / cm 2 is set by the pressure reducing valve 943, but the value of Px can be any positive value of 0 or more. However, when the absolute pressure of the pilot pressure chamber 933 is desired to be lower than the atmospheric pressure (absolute pressure: 1.0332 kgf / cm 2), the value of Px must be smaller than 1.0332.
The absolute pressure in the pilot pressure chamber 933: Px kgf / cm 2 generates a force Fx for pushing the piston 928 upward to open the valve hole 931. Further, the absolute pressure Pb kgf / cm2 of the downstream valve chamber 932, that is, the second region 12, generates a force Fb for pushing the valve plate 927 downward to close the valve hole 931. In the apparatus of the embodiment of the present invention, the diameter Dacm of the valve hole 931 and the diameter Dbcm of the piston 928 are the same. Therefore, when Pb <Px, the valve plate 927 is opened, and when Pb> Px, the valve plate 927 is closed. In the apparatus according to the embodiment of the present invention, assuming that the standard value of the absolute pressure of the second region 12: Pb kgf / cm 2 is about 0.65, the absolute pressure of the second region 12 is 0.65 kgf / cm 2. The absolute pressure of pilot pressure chamber 933: Px kgf / cm2 is set to 0.65 kgf / cm2 in order to maintain the pressure at cm2. That is, when Pb <0.65, the valve plate 927 opens, and when Pb> 0.65, the valve plate 927 closes.
[0030]
[Action]
Next, the operation and effect of the apparatus according to the preferred embodiment of the present invention will be described.
When the vacuum pump 96 operates, the air inside the first region 11 is sucked downstream, and the first region 11 is depressurized as required (absolute pressure of the first region 11: Pa = 0.62 kgf / cm 2). . When the pressure in the first region 11 is reduced, the pressure of the atmosphere surrounding the apparatus (absolute pressure: Po = 1.0332 kgf / cm 2) is increased by the pressure difference between the inside and outside of the first region 11 (Po−Pa = 0.4132 kgf). / Cm 2), the first region 11 is pressed in the direction of the object surface 1, and the pressing force is transmitted to the object surface 1 via the four wheels 41, so that the device is attracted to the object surface 1 and When the wheels 41 are rotationally driven by driving means such as a geared motor (not shown), the device moves along the object surface 1. When the pressure inside the first region 11 is maintained at a desired pressure, the atmosphere surrounding the device is free from the free end of the outer seal member 31 due to the pressure difference between the inside and outside of the first region 11. Is pressed in the direction of the object surface 1, thereby preventing the air from flowing into the first region 11 as much as possible. However, it is not necessary to block all the air flowing into the first region 11 through a small gap between the free end of the outer seal member 31 and the object surface 1. Rather, allowing the inflowing air to some extent increases the function of suction-cleaning the object surface and the function of suction-recovering water flowing from the second region 12 to the first region 11 in the direction of the vacuum pump.
With respect to the absolute pressure of the second region 12 at the time described above: Pb kgf / cm 2, the atmosphere present in the second region 12 by the operation of the vacuum pump 96 causes the free end of the inner seal member 32 and the surface of the object. Since the gas flows into the first region 11 through a small gap between the first region 11 and the first region 11, the absolute pressure of the second region 12 becomes 0.62 kgf / cm 2, which is the same as the absolute pressure of the first region 11 after a short time. become.
The pressure of the air or water in the second region 12 presses the free end of the inner seal member 32 in the direction of the object surface 1, so that the air or the water flows to the first region 11 as little as possible. Block.
Next, the valve plate 927 of the pressure regulating valve 92 is set so that the valve plate 927 is opened when the absolute pressure Pb kgf / cm2 of the second region 12 is Pb <0.65. When the water supply pump 95 is operated, the supplied water flows from the opened valve plate 927 into the second region 12, and when the absolute pressure of the second region 12 rises to 0.65 kgf / cm 2, the valve plate 927 is closed. Then, after a short time, the water present in the second region 12 flows into the first region 11 through a small gap between the free end of the inner seal member 32 and the object surface 1, The absolute pressure in the second region 12 decreases to less than 0.65 kgf / cm2, and thus the valve plate 927 is opened again. Hereinafter, the valve plate 927 repeatedly opens and closes as described above to maintain the absolute pressure in the second region 12 at a constant value.
The water flowing from the second region 12 into the first region 11 is cycloneed together with the air flowing into the first region 11 through a small gap between the free end of the outer seal member 31 and the object surface 1. The water is suction-transferred to 963, the water is separated by a cyclone 963, and then returned to a water storage tank 97 by a rotary feeder 964. The air from which the water has been removed by the cyclone 963 is discharged to the atmosphere again via a vacuum pump 96. Is done.
In the above-described apparatus according to the embodiment of the present invention, since the absolute pressures of the first region 11 and the second region 12 are both smaller than the absolute pressure of the atmosphere, the pressure of the atmosphere is equal to the first region 11 and the second region 12. Pressing in the direction of the object surface 1, that is, the first area 11 and the second area 12 are attracted to the object surface 1. At this time, the pressing force of the atmosphere is transmitted to the object surface 1 via the four wheels 41, so that the device is attracted to the object surface 1 and the wheels 41 are rotated by driving means such as a geared motor (not shown). When driven, the device moves along the object surface 1.
The principle of the operation of the pressure regulating valve 92 will be described below with reference to FIG.
The absolute pressure of the second region 12 and the downstream valve chamber 932 is Pbkgf / cm2, the absolute pressure of the upstream valve chamber 931 and the upstream pressure chamber 934 is Pckgf / cm2, and the absolute pressure of the pilot pressure chamber 933 is Pxkgf / cm2. The force that pushes the valve plate 927 downward in the side valve chamber 932 is Fbkgf, the force that pushes the valve plate 927 upward in the upstream valve chamber 931 is Fckgf, the force that pushes the piston 928 downward in the upstream pressure chamber 934 is Fdkgf, If the force for pushing the piston 928 upward in the pressure chamber 933 is Fxkgf, the effective diameter of the valve plate 927 is Dacm, the effective diameter of the piston 928 is Dbcm, and Da = Db,
The total force Ft1kgf of pushing the valve plate 927 in the direction of closing it downward is:
Fb = Pb * Da * Da * 3.14 / 4
Fd = Pc * Db * Db * 3.14 / 4
Da = Db
Ft1 = Fb + Fd
Ft1 = (Pb + Pc) * Da * Da * 3.14 / 4
The total force Ft2kgf for pushing the valve plate 927 upward to open is:
Fc = Pc * Da * Da * 3.14 / 4
Fx = Px * Db * Db * 3.14 / 4
Da = Db
Ft2 = Fc + Fx
Ft2 = (Pc + Px) * Da * Da * 3.14 / 4
The conditions for opening the valve plate 927 are as follows:
Ft1 <Ft2
(Pb + Pc) * Da * Da * 3.14 / 4 <(Pc + Px) * Da * Da * 3.14 / 4
Pb + Pc <Pc + Px
Pb <Px
According to the above equation, the absolute pressure in the pilot pressure chamber 933: the value of Px in Pxkgf / cm 2 and the target pressure setting in the second region 12 for the absolute pressure: Pb in Pbkgf / cm 2 are the same. It can be understood that the pressure in the second region 12 can be easily adjusted to the target pressure irrespective of the pressure in the upstream valve chamber 931 if the value is set to the value.
Hereinafter, another embodiment of the pressure regulating valve 92 will be described with reference to FIG.
The difference between the pressure regulating valve 92 of FIG. 5 and the pressure regulating valve 92 of FIG. 3 is that the connection joint 924 of the pilot pressure chamber 933 is open to the atmosphere and the piston 928 There are only two points including a coil spring 935 that pushes the spring.
The principle of the operation of the pressure regulating valve 92 shown in FIG. 5 will be described below using mathematical expressions.
The absolute pressure of the second region 12 and the downstream valve chamber 932 is Pbkgf / cm2, the absolute pressure of the upstream valve chamber 931 and the upstream pressure chamber 934 is Pckgf / cm2, and the absolute pressure (atmospheric pressure) of the pilot pressure chamber 933 is 1 0.0332 kgf / cm 2, the force for pushing the valve plate 927 downward in the downstream valve chamber 932 is Fbkgf, the force for pushing the valve plate 927 upward in the upstream valve chamber 931 is Fckgf, and the piston 928 is pushed downward in the upstream pressure chamber 934. The pushing force is Fdkgf, the force pushing the piston 928 upward in the pilot pressure chamber 933 is Fokgf, the effective diameter of the valve plate 927 is Dacm, the effective diameter of the piston 928 is Dbcm, Da = Db, and the coil spring 935 is in the upstream pressure chamber 934. If the force that pushes the piston 928 downward is Fskgf,
The total force Ft1kgf for pushing the valve plate 927 in the direction of closing it downward is:
Fb = Pb * Da * Da * 3.14 / 4
Fd = Pc * Db * Db * 3.14 / 4
Da = Db
Ft1 = Fb + Fd + Fs
Ft1 = (Pb + Pc) * Da * Da * 3.14 / 4 + Fs
The total force Ft2kgf for pushing the valve plate 927 upward to open is:
Fc = Pc * Da * Da * 3.14 / 4
Fx = 1.0332 * Db * Db * 3.14 / 4
Da = Db
Ft2 = Fc + Fx
Ft2 = (Pc + 1.0332) * Da * Da * 3.14 / 4
The conditions for opening the valve plate 927 are as follows:
Ft1 <Ft2
(Pb + Pc) * Da * Da * 3.14 / 4 + Fs <(Pc + 1.0332) * Da * Da * 3.14 / 4
Fs <(1.0332-Pb) * Da * Da * 3.14 / 4
From the above equation, the force of the coil spring 935 pushing the piston 928 downward: Fskgf is the absolute pressure: Pbkgf / cm2, which is the target pressure setting value of the second region 12, and the effective diameter of the valve plate 927: Dacm. It can be seen that it is expressed as a function.
That is, it is understood that the pressure in the second region 12 can be easily adjusted to the target pressure independently of the pressure in the upstream valve chamber 931.
The pressure regulating valve 92 of FIG. 5 has an advantage that the pressure setting of the pilot pressure chamber 933 is not required as compared with the pressure regulating valve 92 of FIG. In the embodiment of the present invention, either pressure regulating valve may be used.
It will be described that it is important to adjust the second region 12 to an arbitrary pressure by using the pressure regulating valve 92. It is better to maintain the pressure in the second region 12 at a lower pressure than in the second region 12. This is advantageous because the amount of water flowing out to the first area 11 is reduced, and if the pressure in the second area 12 is lower than the atmospheric pressure, the second area 12 can be adsorbed to the object surface 1. On the other hand, since the pressure of the water supply pump 95 fluctuates depending on the length of the hose 951 and the pressure loss of the hose 951 is a large value, the water supply pump 95 has a margin and a pump having a large discharge pressure is selected. There is a need to. Further, when the discharge pressure of the water supply pump 95 is large, the diameter of the hose 951 can be further reduced. Therefore, on the downstream side of the water supply pump 95, a pressure regulating valve having a pressure reducing function is inevitably required.
The pressure regulating valve 92 of the device according to the embodiment of the present invention has an excellent feature that the water supplied from the water supply pump 95 can be reduced to a pressure lower than the atmospheric pressure regardless of the discharge pressure of the pump. Things.
The operation of the apparatus according to the embodiment of the present invention having the ultrasonic flaw detector 91 in the second area 12 will be described below.
By emitting ultrasonic waves toward the object surface 1 from the ultrasonic flaw detector 91 and receiving a reflected wave that has hit the object surface 1 and reflected, it is possible to check whether a welding line on the object surface 1 has a crack. Flaw detection information can be obtained. The water in the second region 12 can effectively propagate ultrasonic waves as a couplant.
The operation of the apparatus according to the embodiment of the present invention in the case where the ultrasonic oscillator 91 for ultrasonic cleaning is provided in the second region 12 will be described below.
When ultrasonic waves are emitted from the ultrasonic oscillator toward the object surface 1, the water in the second region 12 effectively propagates the ultrasonic waves and exerts a cleaning action on the object surface 1.
For example, when the object surface 1 is a drainage pavement made of a porous material, the water in the second region 12 enters the voids of the pavement and removes foreign substances such as mud clogged in the voids. Ultrasonic waves act to separate the foreign matter from the surface of the gap and float in water. Subsequently, the foreign matter is transported while being swept away through the gap by the water to reach the first area 11, and the first area The foreign matter and water are sucked and collected in the downstream direction through the hose 961 together with the air that has entered the air inlet 11.
Hereinafter, the cleaning operation of the apparatus according to the embodiment of the present invention when no ultrasonic oscillator for cleaning is provided will be described.
For example, if the object surface 1 is a drainage pavement made of a porous material, the water in the second area 12 will enter the voids in the pavement, and then pass through the voids to the first area 11. It is transferred by suction. When the water passes through the gap, foreign matter such as mud scattered in the gap is pushed away by the water and sucked and transferred to the first region 11 together with the water. That is, water can be effectively used as a medium for transferring the foreign matter. As compared with the case where air is used instead of water as a medium for transferring the foreign matter, the use of water allows the foreign matter to be swept away by about 800 times the force when air is used.
The reason will be described below using mathematical expressions.
If there is a spherical foreign matter having a diameter of dm in the flow of the fluid, the drag Dkgf which the foreign matter receives from the fluid can be expressed by the following equation.
D = Cd * A * v * v * r / (2 * g)
Here, Cd is an efficiency coefficient, which is 0.34 in the case of a sphere, A is a projected area (m2) of a plane perpendicular to the direction of fluid flow, v is the velocity of fluid flow (m / s), and r is the velocity of fluid. Specific weight (kgf / m3) and g are acceleration of gravity (9.8 m / s2).
The specific weight of water at 1 atmosphere and 4 degrees C is 1000 kgf / m3, and the specific weight of air is 1.25 kgf / m3.
The above equation shows that the drag Dkgf received by a foreign substance in a fluid flow from the fluid increases in proportion to the specific weight rkgf / m3 of the fluid, and the fluid is water. Comparing the case and the case of air, at 1 atmosphere and 4 degrees C, the drag in the case of water is about 800 times the drag in the case of air.
That is, from the above formula, it can be concluded that water is more effective than air as a means for washing away foreign substances.
In the apparatus according to the embodiment of the present invention, air is used as a medium for sucking and transferring foreign matter at the boundary between the first region 11 and the atmosphere. Since water is used as the medium for sucking and transferring the foreign matter at the boundary portion of, the cleaning operation can be performed very effectively.
The apparatus according to the embodiment of the present invention has been described above. However, the apparatus according to the embodiment of the present invention can be embodied in various embodiments other than the preferred embodiment according to the claims.
[0054]
【The invention's effect】
As is apparent from the above description, in the present invention, it is possible to locally cover the surface of an object present in a gas with a region filled with liquid, and move the region along the surface of the object. In addition, since the liquid can be suction-collected and dried from the surface of the object once wetted with the liquid and dried, various uses in the present invention such as ultrasonic flaw detection and ultrasonic cleaning of the surface of the object are possible. Conceivable.
Further, since the pressure of the region filled with the liquid can be made lower than the atmospheric pressure, the device of the present invention can be adsorbed on the wall surface or the ceiling surface of the structure and run on its own. For example, it is possible to automate ultrasonic flaw detection work on a wall surface or a ceiling surface of a structure.
Specifically, the effect of the present invention is as follows. In an apparatus which moves along the surface of an object while performing ultrasonic flaw detection, all water as a couplant is collected and circulated for use during ultrasonic flaw detection. Therefore, a large amount of water is not required, and the surface to be inspected after ultrasonic flaw detection is dried without leaving it wet, preventing the occurrence of rust and directing the ultrasonic flaw detector directly to the surface to be flawed. The present invention has an effect that the ultrasonic flaw detector is not damaged because the ultrasonic flaw detection is performed without contacting the ultrasonic flaw detector.
Further, in a device which moves along the surface of an object while performing ultrasonic flaw detection, the liquid region itself for storing water as a couplant is made to have a negative pressure, whereby the liquid region itself is negatively adsorbed to the surface of the object. The present invention has an effect of providing a function.
In an apparatus which moves along the surface of an object while performing ultrasonic cleaning, water as a medium for transmitting ultrasonic waves is made to penetrate into voids on the surface of the object made of a porous material such as porous pavement. Thereby, ultrasonic waves are applied to the foreign matter present in the gap to separate the foreign matter from the surface of the gap. Subsequently, the foreign matter and the water are all collected by suction, and the surface of the wet object during the operation is dried. The present invention has the effect of removing foreign substances clogged in the voids on the surface of the porous object without requiring a large amount of water and reliably removing the foreign substances due to the provision of such a function. .
In an apparatus that moves along the surface of a porous object made of fiber such as a carpet or a carpet while cleaning the surface of the object using ultrasonic waves, the detergent which is a substance polluting the environment is completely eliminated. Without using, the dirt attached to the surface of the fiber and foreign substances present in the voids between the fibers are effectively peeled off by the action of the ultrasonic wave, and all the peeled dirt and foreign substances are sucked and collected together with water, and The present invention has the effect that the surface of a wet object is dried during operation.
In a device that moves along and along the surface of an object while cleaning the surface of the object using a liquid, a force that sweeps out foreign matter to be washed and removed by about 800 times that of the atmosphere is used as a medium for floating the foreign matter. The present invention has an effect that the foreign matter is effectively removed by using strong water.
[Brief description of the drawings]
FIG. 1 is a plan view of a preferred embodiment of an apparatus constructed in accordance with the present invention as viewed from the direction of the object surface.
FIG. 2 is a sectional view taken along line AA in the apparatus shown in FIG.
FIG. 3 is a cross-sectional view showing a first example of a preferred embodiment of a pressure regulating valve provided in an apparatus constructed according to the present invention.
FIG. 4 shows the overall system of a preferred embodiment of the device configured according to the present invention.
FIG. 5 is a sectional view showing a second example of the preferred embodiment of the pressure regulating valve provided in the device constructed according to the present invention.

Claims (8)

環状の面Aを備える立体形状の第1領域と、面Aの内側に在る面Bを備える立体形状の第2領域とを具備する、気体中に在る物体表面に沿って移動する装置において、面Aは該物体表面と該第1領域との境界面であり、面Bは該物体表面と該第2領域との境界面であり、面Aの外側の境界線を規定する部分には外側シール部材が具備されており、面Aの内側の境界線を規定する部分には内側シール部材が具備されており、該第1領域は該第1領域より気体を吸引する手段と連結されており、該第2領域は該第2領域へ液体を供給する手段と連結されており、該第1領域は該物体表面、該第1領域及び該第2領域を包囲する気体の下流側に位置しており、該第1領域は該第2領域の下流側に位置しており、該第2領域へ供給された液体の量のうち該第2領域の体積を超えた量の液体すなわち該第2領域より下流側へ流失した液体は該第1領域に至り、続いて該液体は該第1領域より吸引される気体の流れに乗って該吸引手段まで吸引移送される、ことを特徴とする、物体表面に沿って移動する装置。An apparatus for moving along a surface of an object in a gas comprising a first region having a three-dimensional shape having an annular surface A and a second region having a three-dimensional shape having a surface B inside the surface A. Plane A is a boundary surface between the object surface and the first region, surface B is a boundary surface between the object surface and the second region, and a portion defining a boundary line outside the surface A is An outer seal member is provided, and an inner seal member is provided at a portion defining an inner boundary of the surface A, and the first region is connected to a means for sucking gas from the first region. Wherein the second region is connected to a means for supplying liquid to the second region, the first region being located downstream of a gas surrounding the object surface, the first region and the second region. And the first region is located downstream of the second region, and the amount of liquid supplied to the second region is reduced. The amount of liquid exceeding the volume of the second region, that is, the liquid that has flowed downstream from the second region, reaches the first region, and then the liquid rides on the flow of gas sucked from the first region. A device that moves along the surface of the object, wherein the device is suction-transferred to the suction means. 該第2領域の圧力を任意の圧力に調整する調圧手段を備えている、ことを特徴とする、請求項1に記載の物体表面に沿って移動する装置。The apparatus for moving along an object surface according to claim 1, further comprising a pressure adjusting means for adjusting a pressure in the second region to an arbitrary pressure. 該調圧手段の構成において、液体供給ポンプに連結された上流側弁室と、該第2領域に連結された下流側弁室と、該上流側弁室と該下流側弁室とを連通する弁穴と、該弁穴を開閉する弁板と、該弁板を開閉駆動させるための弁駆動手段から構成された調圧手段において、該第2領域の実際の圧力の値と圧力調整目標である該任意の圧力の値との間に圧力差が発生することに起因して該弁板が開閉駆動されることにより該第2領域の圧力が該任意の圧力に調整されるように構成された調圧手段を備えている、ことを特徴とする、請求項2に記載の物体表面に沿って移動する装置。In the configuration of the pressure regulating means, an upstream valve chamber connected to the liquid supply pump, a downstream valve chamber connected to the second region, and communication between the upstream valve chamber and the downstream valve chamber. In a pressure regulating means including a valve hole, a valve plate for opening and closing the valve hole, and a valve driving unit for driving the valve plate to open and close, the actual pressure value of the second region and the pressure adjustment target are determined. The pressure in the second region is adjusted to the arbitrary pressure by opening and closing the valve plate due to the occurrence of a pressure difference between the pressure value and the arbitrary pressure value. 3. The apparatus for moving along an object surface according to claim 2, further comprising a pressure adjusting means. 該上流側弁室の内部の液体が該弁板に対して且つ該弁板の方向に作用を及ぼす力をFcとし、該下流側弁室の内部の液体が該弁板に対して且つ該弁板の方向に作用を及ぼす力をFbとした時の、該弁板を開閉駆動させるための該弁駆動手段の構成において、Fcと同じ力で且つFcと反対の方向に作用する力を該弁板に対して作用せしめ、且つ、Fbと反対の方向で且つ圧力調整目標の該任意の圧力の値に対応した任意の値の力Fxを該弁板に対して作用せしめ、而して、Fb<Fxの時に該弁板が開となり、Fb>Fxの時に該弁板が閉となる、ように構成された該弁駆動手段を備えている、ことを特徴とする、請求項3に記載の物体表面に沿って移動する装置。The force that the liquid inside the upstream valve chamber acts on the valve plate and in the direction of the valve plate is Fc, and the liquid inside the downstream valve chamber is applied to the valve plate and the valve. When the force acting in the direction of the plate is Fb, in the configuration of the valve driving means for opening and closing the valve plate, a force acting in the same direction as Fc and in the direction opposite to Fc is applied to the valve. A force Fx having an arbitrary value acting on the valve plate and acting in the opposite direction to Fb and corresponding to the arbitrary pressure value of the pressure adjustment target, acting on the valve plate. 4. The valve driving device according to claim 3, further comprising: the valve driving means configured to open the valve plate when <Fx> and to close the valve plate when Fb> Fx. A device that moves along the surface of an object. 該上流側弁室の内部の液体が該弁板に対して且つ該弁板の方向に作用を及ぼす力をFcとし、該下流側弁室の内部の液体が該弁板に対して且つ該弁板の方向に作用を及ぼす力をFbとした時の、該弁板を開閉駆動させるための該弁駆動手段の構成において、Fcと同じ力で且つFcと反対の方向に作用する力を該弁板に対して作用せしめ、且つ、大気圧に起因する力Foもしくは該物体表面、該第1領域及び該第2領域を包囲する気体の圧力に起因する力Foを該弁板に対してFbと反対の方向に作用せしめ、且つ、該弁板に対してFbと同じ方向にバネ等の弾性体の力Fsを作用せしめ、而して、Fb+Fs<Foの時に該弁板が開となり、Fb+Fs>Foの時に該弁板が閉となる、ように構成された該弁駆動手段を備えている、ことを特徴とする、請求項3に記載の物体表面に沿って移動する装置。The force that the liquid inside the upstream valve chamber acts on the valve plate and in the direction of the valve plate is Fc, and the liquid inside the downstream valve chamber is applied to the valve plate and the valve. When the force acting in the direction of the plate is Fb, in the configuration of the valve driving means for opening and closing the valve plate, a force acting in the same direction as Fc and in the direction opposite to Fc is applied to the valve. Acting on the plate, and applying a force Fo resulting from atmospheric pressure or a force Fo resulting from the pressure of gas surrounding the object surface, the first region and the second region to the valve plate as Fb. In the opposite direction, the force Fs of an elastic body such as a spring is applied to the valve plate in the same direction as Fb. Therefore, when Fb + Fs <Fo, the valve plate is opened, and Fb + Fs> The valve driving means configured to close the valve plate at the time of Fo. The symptom, device moving along the surface of an object according to claim 3. 該第2領域に、超音波を発射する手段又は超音波を受波する手段或いはその両方を備えている、ことを特徴とする、請求項1乃至請求項5に記載の物体表面に沿って移動する装置。The moving along the surface of the object according to any one of claims 1 to 5, wherein the second region is provided with a unit for emitting ultrasonic waves and / or a unit for receiving ultrasonic waves. Equipment to do. 該第1領域と該第2領域が物体表面に沿って移動できるように車輪もしくは無端軌条を備えている、ことを特徴とする、請求項1乃至請求項6に記載の物体表面に沿って移動する装置。The moving along the object surface according to claim 1, further comprising a wheel or an endless rail so that the first region and the second region can move along the object surface. Equipment to do. 該外側シール部材は、該外側シール部材の外側に在る気体の圧力により該物体表面に押し付けられるセルフシール形状を備えており、該内側シール部材は、該第2領域に在る液体の圧力により該物体表面に押し付けられるセルフシール形状を備えている、ことを特徴とする、請求項1乃至請求項7に記載の物体表面に沿って移動する装置。The outer seal member has a self-sealing shape pressed against the surface of the object by the pressure of gas outside the outer seal member, and the inner seal member is formed by the pressure of the liquid present in the second region. The apparatus for moving along the surface of an object according to claim 1, further comprising a self-sealing shape pressed against the surface of the object.
JP2002318399A 2002-10-31 2002-10-31 Apparatus traveling along object surface Pending JP2004151012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002318399A JP2004151012A (en) 2002-10-31 2002-10-31 Apparatus traveling along object surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002318399A JP2004151012A (en) 2002-10-31 2002-10-31 Apparatus traveling along object surface

Publications (1)

Publication Number Publication Date
JP2004151012A true JP2004151012A (en) 2004-05-27

Family

ID=32461542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002318399A Pending JP2004151012A (en) 2002-10-31 2002-10-31 Apparatus traveling along object surface

Country Status (1)

Country Link
JP (1) JP2004151012A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008065742A2 (en) * 2006-11-16 2008-06-05 Uragami Fukashi Device closely contacting object surface and movable
WO2008072367A1 (en) * 2006-12-11 2008-06-19 Uragami Fukashi Device capable of moving while being in intimate contact with surface of object present in liquid
JP2015124500A (en) * 2013-12-26 2015-07-06 末広産業株式会社 Cleaning device for highly-functional pavement body
JP2015124499A (en) * 2013-12-26 2015-07-06 末広産業株式会社 Measuring apparatus, and cleaning device and method for highly-functional pavement body
CN108431593A (en) * 2015-12-24 2018-08-21 株式会社Posco Crackle measuring device and method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008065742A2 (en) * 2006-11-16 2008-06-05 Uragami Fukashi Device closely contacting object surface and movable
WO2008065742A3 (en) * 2006-11-16 2008-07-31 Uragami Fukashi Device closely contacting object surface and movable
US8127703B2 (en) 2006-11-16 2012-03-06 Uragami Fukashi Device closely contacting object surface and movable
WO2008072367A1 (en) * 2006-12-11 2008-06-19 Uragami Fukashi Device capable of moving while being in intimate contact with surface of object present in liquid
JP2015124500A (en) * 2013-12-26 2015-07-06 末広産業株式会社 Cleaning device for highly-functional pavement body
JP2015124499A (en) * 2013-12-26 2015-07-06 末広産業株式会社 Measuring apparatus, and cleaning device and method for highly-functional pavement body
CN108431593A (en) * 2015-12-24 2018-08-21 株式会社Posco Crackle measuring device and method
JP2019504311A (en) * 2015-12-24 2019-02-14 ポスコPosco Crack measuring apparatus and method

Similar Documents

Publication Publication Date Title
CA2127221C (en) Method for the ultrasonic inspection of pipe and tubing and a transducer assembly for use therewith
JP3620670B2 (en) Circulating drainage device for sewage pipe work
CN102101118A (en) Ultrasonic dry cleaner using metal medium
JP2004151012A (en) Apparatus traveling along object surface
CN113101740A (en) Mud drilling fluid negative pressure shale shaker
KR101697663B1 (en) Grinder for Eliminating of Dry Paint Film Having Dust Collecting Apparatus
JP2004170094A (en) Apparatus moving along surface of object
CN116538381A (en) Intelligent inspection robot
JP2003205873A (en) Suction moving device
CN212652242U (en) Ultrasonic detector cleaning device
JP2001336126A (en) Diagnostic method of clogged condition of pavement and restoring device of pavement function
JPH0615197A (en) Washing device for electrostatic dust collector
WO2020098690A1 (en) Suction device on gangue discharge system for air-dry sand coal preparation system
CN110624880A (en) Cleaning system for dock gate ballast tank
JPH07560Y2 (en) Suction device using high pressure air
CN216917494U (en) Return rubber belt cleaning device for belt conveyor
JPH0959953A (en) Elimination device of clogged article on pavement
JPH05148999A (en) Laitance removing device
JP4195233B2 (en) Suction transfer device
CN213450855U (en) Mortar pump with anti-blocking function
JP2000006860A (en) Device movable by adsorbing surface
RU2772001C1 (en) Bulk material collection vehicle
JPH09177022A (en) Function recovering method and device for pavement with water-permeable function
CN117967221A (en) Rock debris collecting and weighing device and method
CN219193262U (en) Tank sealing device for vacuum dirt discharging equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051029

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070424

A131 Notification of reasons for refusal

Effective date: 20070522

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070710

A521 Written amendment

Effective date: 20070710

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20070925

Free format text: JAPANESE INTERMEDIATE CODE: A02