JP2004150473A - Lubricating method for rolling bearing - Google Patents

Lubricating method for rolling bearing Download PDF

Info

Publication number
JP2004150473A
JP2004150473A JP2002313666A JP2002313666A JP2004150473A JP 2004150473 A JP2004150473 A JP 2004150473A JP 2002313666 A JP2002313666 A JP 2002313666A JP 2002313666 A JP2002313666 A JP 2002313666A JP 2004150473 A JP2004150473 A JP 2004150473A
Authority
JP
Japan
Prior art keywords
rolling bearing
lubricant
rolling
bearing
silica particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002313666A
Other languages
Japanese (ja)
Inventor
Satoshi Nakajima
聡 中島
Shinji Tanaka
伸治 田中
Shigenobu Takada
重信 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002313666A priority Critical patent/JP2004150473A/en
Publication of JP2004150473A publication Critical patent/JP2004150473A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lubricating method for a rolling bearing used under a boundary lubricating condition of a low speed/high load and high temperature. <P>SOLUTION: In this lubricating method for the rolling bearing for supplying a lubricant to the rolling bearing, very fine silica particles of an average particle size of 40 nm or less having a hydroxyl group on their surfaces are directly supplied to the rolling bearing and/or supplied to a pipe for supplying the lubricant to the rolling bearing, to form a silica coating film on a rolling surface of the rolling bearing. Whereby the metal contact can be stably prevented, the sufficient lubricating state can be kept, the abrasion and fatigue deterioration of the rolling surface can be prevented, and the long life of the rolling bearing can be inexpensively achieved. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、転がり軸受の潤滑方法に係り、とくに低速・高荷重、あるいはさらに高温といった環境の、境界潤滑条件下で使用される転がり軸受の潤滑方法に関する。
【0002】
【従来の技術】
一般に、産業機械設備の回転運動部分には、機械要素部品として多数の転がり軸受が使用されている。なかでも、圧延機、連続鋳造設備等の製鉄関連設備の使用環境は苛酷であり、そこで使用される転がり軸受は、低速、高荷重、高温といった、軸受の潤滑には不利な環境下で、しかも粉塵、水等の外来性異物の影響により、一般に短寿命となっている。
【0003】
転がり軸受の潤滑界面には、一般に潤滑油膜が形成され、金属同士の接触(メタル接触)を回避して、軸受の摩擦・摩耗を低減している。しかし、低速、高荷重、あるいはさらに高温といった条件下では、いわゆる境界潤滑領域となりやすく、通常の潤滑剤(鉱油、グリース)では潤滑界面に形成される潤滑油膜の厚さが極めて薄くなり、メタル接触が生じやすくなる。このため、発熱、摩耗、摩耗粉による圧痕の生成、局部的疲労剥離損傷等が生じ、軸受寿命が通常の1/2 〜1/100 に低下する。
【0004】
このような問題に対し、潤滑剤に油性向上剤、極圧添加剤や固体潤滑剤を添加して、軸受の潤滑性を向上させようとする方法が従来から考えられている。油性向上剤は、極性を有する分子を主とし、金属表面に吸着して金属表面に吸着膜を形成して、また、極圧添加剤は、金属表面と反応し、金属表面に反応被膜や付着膜を生成して、いずれもメタル接触を防止しようとするものである。また、固体潤滑剤は、二硫化モリブデン、グラファイト等のように金属表面に付着してすべりやすい層を形成し、境界潤滑条件下での滑り抵抗を低減しようとするものである。
【0005】
しかしながら、潤滑剤に油性向上剤、極圧添加剤や固体潤滑剤を添加することにより、転がり軸受の潤滑性向上に対しある程度の効果は認められるものの、潤滑条件のある範囲までに限定されるものであり、さらに厳しい潤滑条件下では顕著な効果は認められなかった。したがって、厳しい潤滑条件下では依然として、強いメタル接触が生じて軸受寿命が短寿命となっていた。
【0006】
このような問題に対し、例えば特許文献1には、基油と、金属石けん系化合物またはウレア化合物から選択される増ちょう剤と、粒径2μm以下の無機系化合物充填剤とを含有するグリース組成物が提案されている。無機系化合物充填剤をグリース組成物に配合することにより、増ちょう剤が形成するゲル構造が強化され、グリース膜の形成能力が大きくなり、衝撃荷重に対するダンピング効果が増大し、剥離防止効果が増大するとしている。
【0007】
また、特許文献2には、界面凹部に介在しメタル接触部の面圧を低下させ、微小ころとして作用し、メタル接触の凝着部を研摩する等の作用を有する超微細シリカ粒子および/または微細シリカ粒子を基油または基グリース中に含有させ、転がり軸受での高潤滑性を維持する、転がり軸受用潤滑剤が提案されている。
【0008】
【特許文献1】
特開平9−169989号公報
【特許文献2】
特開2000−105473号公報
【0009】
【発明が解決しようとする課題】
しかしながら、特許文献1に記載された技術によっても、低速・高荷重、高温下という厳しい環境下では、十分な潤滑状態を維持できないという問題があった。
また、特許文献2に記載された技術では、基油の粘度や基グリースの見掛けの粘度によっては、上記したシリカ粒子の作用を十分に発揮できない場合があるという問題が残されていた。また、シリカを添加した潤滑剤は通常の潤滑剤に比べてコスト高になるという問題もあった。
【0010】
本発明は、上記した従来技術の問題を解決し、低速・高荷重、高温下さらには揺動下という厳しい環境である境界潤滑条件下で使用される転がり軸受が優れた潤滑状態を維持できる潤滑方法を提案することを目的とする。なお、本発明でいう潤滑剤は、潤滑油およびグリースを含むものとする。
【0011】
【課題を解決するための手段】
本発明者らは、上記した課題を達成するために、転がり軸受の潤滑に及ぼす各種要因について鋭意研究した。その結果、転がり軸受の使用中に軸受の転動面にシリカ被膜を形成することにより、低速・高荷重、高温下、あるいは揺動運動下という、境界潤滑条件下の厳しい環境でも、メタル接触を防止し、十分な潤滑状態が維持され、 転動面の摩耗、 疲労損傷を防止して、転がり軸受の長寿命化が図れることを見いだした。
【0012】
本発明は、上記した知見に基づいて、さらに検討して完成されたものである。
すなわち、本発明の要旨は次のとおりである。
(1)転がり軸受に潤滑剤を供給する転がり軸受の潤滑方法において、表面に水酸基を有する平均粒径40nm以下の超微細シリカ粒子を前記転がり軸受に直接および/または前記転がり軸受に潤滑剤を供給する配管、に供給して、前記転がり軸受の転動面にシリカ被膜を形成することを特徴とする転がり軸受の潤滑方法。
(2)(1)において、前記表面に水酸基を有する平均粒径40nm以下の超微細シリカ粒子を、前記潤滑剤全量に対し1〜20質量%含有するように供給することを特徴とする転がり軸受の潤滑方法。
(3)(1)または(2)において、前記転がり軸受が、次(1)式
λ=h/√(σ +σ ) ………(1)
(ここで、λ:油膜パラメータ、h:油膜厚さ(μm)、σ,σ: 転がり軸受の2物体(コロまたは玉と内輪または外輪)の表面粗さ(μm))
で定義される油膜パラメータλが1未満の領域となる転がり軸受であることを特徴とする転がり軸受の潤滑方法。
【0013】
なお、本発明でいう、平均粒径は、光学顕微鏡または電子顕微鏡観察により、数百個の粒子について一次粒子径を測定して得られた値の平均値を使用するものとする。
【0014】
【発明の実施の形態】
転がり軸受では、通常、自動給脂、あるいは手動給脂で潤滑剤を、連続的あるいは間歇的に供給して潤滑を行っている。本発明では、このような転がり軸受の潤滑に加えてさらに転動面にシリカ被膜を形成して転がり軸受の潤滑を行なう。転動面にシリカ被膜を形成することにより、強固で厚い潤滑膜を形成でき、安定してメタル接触を防止して十分な潤滑状態が維持でき、 転動面の摩耗、 疲労損傷を防止して、転がり軸受の長寿命化が達成できる。なお、シリカ被膜は、軸受の運転(使用)中に形成するが、さらに軸受の転動面に予め形成しておいてもよい。
【0015】
シリカ被膜を軸受の転動面に運転(使用)途中で形成する方法は、本発明では、軸受に供給された潤滑剤に、および/または供給される潤滑剤に、表面に水酸基を有する平均粒径が40nm以下の超微細シリカ粒子(以下、超微細シリカ粒子ともいう)を連続的あるいは間歇的に供給して行なう。すなわち、表面に水酸基を有する超微細シリカ粒子は、例えば図1に示すように、軸受1bに直接、および/または軸受1aに潤滑剤を供給する配管3a、に供給され、軸受に供給された潤滑剤中に含有される。表面に水酸基を有する超微細シリカ粒子は、耐熱性を有し、 硬く耐摩耗性を有した吸着被膜を軸受の転動面に形成しやすいという有利な特性を有している。軸受の潤滑剤中に表面に水酸基を有する超微細シリカ粒子を含有することにより、軸受の転動面にシリカ被膜が形成され、軸受の耐摩耗性、 耐疲労性が顕著に向上する。
【0016】
また、表面に水酸基を有する超微細シリカ粒子を、軸受に直接および/または軸受に潤滑剤を供給する配管、に供給することにより、転動面にシリカ被膜を形成して耐摩耗性、 耐疲労性を向上させることが要求される軸受にのみ集中的に超微細シリカ粒子を供給する。これにより、必要な時だけシリカ粒子を添加することができ、予め潤滑剤中に添加しておくよりも、潤滑剤コストを低減することができるとともに、油分の揮発するような高温雰囲気下においても分配弁等の詰まりを防止できるという効果がある。
【0017】
また、潤滑剤中に含有されるシリカ粒子の平均粒径が40nmを超えて大きくなると、吸着力が弱く転動面にシリカ被膜が形成されない。なお、使用するシリカ粒子の好ましい平均粒径は30nm以下であり、より好ましくは20nm以下、さらに好ましくは10nm未満である。なお、超微細シリカ粒子の粒径が4nm 未満では、均一な粒子が得にくいため好適な潤滑効果が得にくくなるという問題がある。
【0018】
また、潤滑剤中に含有させる超微細シリカ粒子は、潤滑剤全量に対し1〜20質量%とすることが好ましい。超微細シリカ粒子の含有量が1質量%未満では、シリカ被膜の形成が認められない。一方、20質量%を超えると、増粘効果が大きくなり、潤滑剤が均一に供給できなくなるという問題がある。なお、より好ましくは2〜15質量%であり、さらに好ましくは3〜10質量%である。なお、軸受中の潤滑剤におけるシリカ粒子の含有量の調整は潤滑剤とシリカの供給量のバランスをとってこの範囲で極力一定に保つことが好ましい。
【0019】
本発明では、軸受に供給される潤滑剤の種類は、とくに限定されない。軸受の使用環境に応じ、潤滑剤に要求される動粘度、粘性指数等の潤滑剤特性に合致した基油または基グリースを適用した潤滑剤とすることが好ましい。
基油としては、鉱物油系、合成油系、天然油系、シリコンオイル等の潤滑油が好ましい。また、基グリースとしては、好ましくは上記した基油にリチウム石鹸、カルシウム石鹸、アルミニウム複合石鹸、ウレア等の増ちょう剤を添加したものが好ましい。
【0020】
鉱物油系基油としては、鉱油を減圧蒸留し、溶剤精製、水素精製、硫酸洗浄、白土処理、溶剤脱ろうなどを適宜組み合わせて不安定成分、ワックス分を取り除いたものを用いることができる。
合成油系基油としては、ポリαオレフィン、ポリブテン等の脂肪族系炭化水素油、アルキルベンゼン等の芳香族系炭化水素油、ポリオールエステル、リン酸エステル等のエステル系油、ポリフェニルエーテル、ポリグリコール等のエーテル系油などが挙げられる。
【0021】
本発明で好適に使用できる潤滑剤は、上記したような基油または基グリース中に、さらに従来公知の油性向上剤、極圧添加剤、固体潤滑剤、防錆剤、増ちょう剤、界面活性剤等の各種添加剤を、必要に応じ添加してもよいことはいうまでもない。
例えば、油性向上剤としては、オレイン酸、ステアリン酸のほか、高級アルコール、エステル、アミン等が、また、極圧添加剤としては、硫化油脂等の硫黄系化合物、リン酸トリクレジル等のリン系化合物が、固体潤滑剤としては、二硫化モリブデン、グラファイト、有機モリブデン、窒化ホウ素等が例示できる。
【0022】
上記した本発明の潤滑方法は、転がり軸受が、次(1)式
λ=h/√(σ +σ ) ………(1)
(ここで、λ:油膜パラメータ、h:油膜厚さ(μm)、σ,σ: 転がり軸受の2物体(コロまたは玉と内輪または外輪)の表面粗さ(μm))
で定義される油膜パラメータλが1未満の領域となる転がり軸受に、適用することが好ましい。油膜パラメータλが1以上の領域となる転がり軸受では、従来の潤滑方法を用いても、油膜が十分に形成され金属接触が生じにくい状態である。本発明の潤滑方法を適用してもコスト上昇を招くだけである。なお、油膜パラメータλが1未満の領域となる転がり軸受としては、連続鋳造機のガイドロール用転がり軸受、ユニバーサルジョイント用転がり軸受、揺動する転がり軸受、回転方向が逆転するロールを支持する転がり軸受等が例示できる。また、本発明の潤滑方法は滑りが発生しやすい軸受、例えば、玉軸受、自動調芯軸受等に適用することもできる。
【0023】
【実施例】
(実施例1)
自動調芯ころ軸受に静定格荷重の1/4 のラジアル荷重を負荷し、80℃の高温雰囲気中で、回転数10rpm の速度で、所定時間運転した。運転中は、図1に示すような自動給脂系システムで鉱物油(動粘度400mm/sec、at40℃)を基グリースの主構成成分である基油とするグリース組成物(潤滑剤)を軸受に供給するとともに、軸受に直接、超微細シリカ粒子を供給した。なお、超微細シリカ粒子は軸受内の潤滑剤中で常時5質量%となるように適宜供給した。
【0024】
運転後、軸受を解体し、外輪軌道面について摩耗プロフィルを測定するとともに、被膜の形成の有無をオージェ電子分光法で調査した。なお、本使用条件では、基油粘度から計算される油膜厚さh:0.05μm、ころおよび内外輪の表面粗さ:0.2 μmであり、(1)式の油膜パラメータλは1未満の0.18となる。
その結果、軸受に直接超微細シリカ粒子を供給し潤滑剤に超微細シリカ粒子を含有させた場合 (本発明例)には、転動面表面にシリカ被膜が30nm程度形成され、超微細シリカ粒子を供給しない場合 (比較例)に比べ、外輪軌道面の摩耗量が1/5 以下となり、転がり軸受の長寿命化が達成できる。
【0025】
【発明の効果】
本発明によれば、低速・高荷重・高温、あるいは揺動運動下という厳しい使用環境下においても、転がり軸受の長寿命化が期待でき、機械部品の保守の頻度が低減し、さらに生産性が向上するなど、産業上格段の効果を奏する。
【図面の簡単な説明】
【図1】本発明に好適な潤滑剤供給系統の一例を示す模式図である。
【符号の説明】
1 転がり軸受
2 潤滑剤供給制御手段
3 潤滑剤供給配管
3a,3b,3c:潤滑剤供給配管分岐
4 超微細シリカ貯蔵タンク
5 潤滑剤貯蔵タンク
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of lubricating a rolling bearing, and more particularly to a method of lubricating a rolling bearing used under boundary lubrication conditions in an environment of low speed, high load, or even high temperature.
[0002]
[Prior art]
2. Description of the Related Art Generally, a large number of rolling bearings are used as mechanical element parts in a rotary motion part of industrial machine equipment. Above all, the operating environment of steelmaking-related equipment such as rolling mills and continuous casting equipment is harsh, and the rolling bearings used there are in environments that are disadvantageous for bearing lubrication, such as low speed, high load, and high temperature. Generally, the life is short due to the influence of extraneous foreign substances such as dust and water.
[0003]
Generally, a lubricating oil film is formed on the lubricating interface of a rolling bearing to avoid metal-metal contact (metal contact) and reduce friction and wear of the bearing. However, under conditions such as low speed, high load, and even high temperature, a so-called boundary lubrication region is likely to occur. With a normal lubricant (mineral oil, grease), the thickness of the lubricating oil film formed on the lubricating interface becomes extremely thin, and metal contact occurs. Tends to occur. For this reason, heat generation, abrasion, indentation due to abrasion powder, local fatigue delamination damage, and the like occur, and the bearing life is reduced to 1/2 to 1/100 of the normal.
[0004]
To cope with such a problem, a method of improving the lubricity of a bearing by adding an oiliness improver, an extreme pressure additive, or a solid lubricant to a lubricant has been conventionally considered. The oiliness improver is mainly composed of polar molecules, adsorbs on the metal surface to form an adsorbed film on the metal surface, and the extreme pressure additive reacts with the metal surface to form a reactive film or adhere to the metal surface. All are intended to create films and prevent metal contact. In addition, the solid lubricant adheres to the metal surface, such as molybdenum disulfide, graphite, or the like, and forms a slippery layer to reduce slip resistance under boundary lubrication conditions.
[0005]
However, by adding an oiliness improver, extreme pressure additive or solid lubricant to the lubricant, a certain effect on the lubricity improvement of the rolling bearing is recognized, but it is limited to a certain range of lubrication conditions. No remarkable effect was found under more severe lubricating conditions. Therefore, under severe lubrication conditions, strong metal contact still occurred, and the bearing life was short.
[0006]
To cope with such a problem, for example, Patent Document 1 discloses a grease composition containing a base oil, a thickener selected from a metal soap compound or a urea compound, and an inorganic compound filler having a particle size of 2 μm or less. Things have been suggested. By incorporating an inorganic compound filler into the grease composition, the gel structure formed by the thickener is strengthened, the ability to form a grease film is increased, the damping effect against impact load is increased, and the peeling prevention effect is increased. I have to.
[0007]
Further, Patent Document 2 discloses that ultrafine silica particles and / or ultrafine silica particles having an action of lowering the surface pressure of a metal contact portion by interposing in an interface concave portion, acting as a micro roller, and polishing an adhered portion of a metal contact. A lubricant for a rolling bearing has been proposed in which fine silica particles are contained in a base oil or a base grease to maintain high lubricity in a rolling bearing.
[0008]
[Patent Document 1]
Japanese Patent Application Laid-Open No. Hei 9-16989 [Patent Document 2]
JP 2000-105473 A
[Problems to be solved by the invention]
However, even with the technology described in Patent Literature 1, there is a problem that a sufficient lubricating state cannot be maintained under severe environments such as low speed, high load, and high temperature.
Further, the technique described in Patent Document 2 has a problem that the above-described effect of the silica particles may not be sufficiently exerted depending on the viscosity of the base oil or the apparent viscosity of the base grease. In addition, there is also a problem that the cost of the lubricant containing silica is higher than that of a normal lubricant.
[0010]
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and provides a lubrication system that can maintain an excellent lubrication state of a rolling bearing used under boundary lubrication conditions, which is a severe environment of low speed, high load, high temperature, and even oscillating. The aim is to propose a method. The lubricant in the present invention includes lubricating oil and grease.
[0011]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on various factors affecting the lubrication of rolling bearings in order to achieve the above-mentioned object. As a result, by forming a silica coating on the rolling surface of the bearing during use of the rolling bearing, metal contact can be achieved even in harsh environments under boundary lubrication conditions such as low speed, high load, high temperature, or oscillating motion. It has been found that sufficient lubrication can be maintained and that rolling surface wear and fatigue damage can be prevented, thereby extending the life of rolling bearings.
[0012]
The present invention has been completed by further study based on the above findings.
That is, the gist of the present invention is as follows.
(1) Supplying a lubricant to a rolling bearing In a lubrication method for a rolling bearing, ultrafine silica particles having a hydroxyl group on the surface and having an average particle size of 40 nm or less are directly supplied to the rolling bearing and / or a lubricant is supplied to the rolling bearing. A lubricating method for a rolling bearing, wherein a silica coating is formed on a rolling surface of the rolling bearing by supplying the lubricating oil to a rolling pipe.
(2) The rolling bearing according to (1), wherein ultrafine silica particles having a hydroxyl group on the surface and having an average particle diameter of 40 nm or less are supplied so as to contain 1 to 20% by mass based on the total amount of the lubricant. Lubrication method.
(3) (1) or (2), wherein the rolling bearing, the following equation (1) λ = h / √ (σ 1 2 + σ 2 2) ......... (1)
(Where, λ: oil film parameter, h: oil film thickness (μm), σ 1 , σ 2 : surface roughness (μm) of two rolling bearings (roller or ball and inner or outer ring))
A lubricating method for a rolling bearing, wherein the oil film parameter λ defined in (1) is less than 1.
[0013]
In the present invention, the average particle size is an average value obtained by measuring the primary particle size of several hundred particles by observation with an optical microscope or an electron microscope.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
In a rolling bearing, usually, lubrication is performed by supplying lubricant continuously or intermittently by automatic lubrication or manual lubrication. In the present invention, in addition to such lubrication of the rolling bearing, a silica coating is further formed on the rolling surface to lubricate the rolling bearing. By forming a silica coating on the rolling surface, a strong and thick lubricating film can be formed, metal contact can be prevented stably and sufficient lubrication can be maintained, and wear and fatigue damage on the rolling surface can be prevented. The service life of the rolling bearing can be extended. The silica coating is formed during operation (use) of the bearing, but may be formed in advance on the rolling surface of the bearing.
[0015]
In the present invention, a method of forming a silica coating on a rolling surface of a bearing during operation (use) is as follows. In the present invention, the lubricant supplied to the bearing and / or the supplied lubricant has an average particle size having a hydroxyl group on the surface. Ultrafine silica particles having a diameter of 40 nm or less (hereinafter, also referred to as ultrafine silica particles) are supplied continuously or intermittently. That is, the ultrafine silica particles having a hydroxyl group on the surface are supplied directly to the bearing 1b and / or to a pipe 3a for supplying a lubricant to the bearing 1a, as shown in FIG. It is contained in the agent. Ultrafine silica particles having a hydroxyl group on the surface have heat resistance, and have an advantageous property that a hard and wear-resistant adsorption film is easily formed on the rolling surface of the bearing. By containing ultra-fine silica particles having a hydroxyl group on the surface in the lubricant of the bearing, a silica film is formed on the rolling surface of the bearing, and the wear resistance and fatigue resistance of the bearing are remarkably improved.
[0016]
In addition, by supplying ultra-fine silica particles having a hydroxyl group on the surface to a pipe for directly supplying a lubricant to the bearing and / or for supplying a lubricant to the bearing, a silica coating is formed on a rolling surface to thereby provide wear resistance and fatigue resistance. Ultra-fine silica particles are intensively supplied only to bearings that are required to improve the performance. As a result, the silica particles can be added only when necessary, and the lubricant cost can be reduced as compared with the case where the silica particles are previously added to the lubricant. There is an effect that clogging of the distribution valve and the like can be prevented.
[0017]
On the other hand, if the average particle size of the silica particles contained in the lubricant exceeds 40 nm, the adsorptive power is weak and a silica film is not formed on the rolling surface. The average particle diameter of the silica particles used is preferably 30 nm or less, more preferably 20 nm or less, and further preferably less than 10 nm. If the particle size of the ultrafine silica particles is less than 4 nm, it is difficult to obtain uniform particles, so that it is difficult to obtain a suitable lubricating effect.
[0018]
Further, the amount of the ultrafine silica particles contained in the lubricant is preferably 1 to 20% by mass based on the total amount of the lubricant. When the content of the ultrafine silica particles is less than 1% by mass, formation of a silica coating is not recognized. On the other hand, if it exceeds 20% by mass, there is a problem that the thickening effect becomes large and the lubricant cannot be supplied uniformly. In addition, it is more preferably 2 to 15% by mass, and still more preferably 3 to 10% by mass. In addition, it is preferable to adjust the content of the silica particles in the lubricant in the bearing so that the supply amount of the lubricant and the supply amount of silica are balanced to keep the content as constant as possible in this range.
[0019]
In the present invention, the type of the lubricant supplied to the bearing is not particularly limited. It is preferable to use a lubricant to which a base oil or a base grease suitable for a lubricant property such as a kinematic viscosity and a viscosity index required for the lubricant is applied according to a use environment of the bearing.
As the base oil, lubricating oils such as mineral oils, synthetic oils, natural oils, and silicone oils are preferred. The base grease is preferably one obtained by adding a thickener such as lithium soap, calcium soap, aluminum composite soap, or urea to the above base oil.
[0020]
As the mineral oil-based base oil, a mineral oil obtained by distilling a mineral oil under reduced pressure and removing an unstable component and a wax component by appropriately combining solvent purification, hydrogen purification, sulfuric acid washing, clay treatment, solvent dewaxing and the like can be used.
Synthetic base oils include aliphatic α-olefins, aliphatic hydrocarbon oils such as polybutene, aromatic hydrocarbon oils such as alkylbenzene, ester oils such as polyol esters and phosphate esters, polyphenyl ethers, polyglycols And other ether-based oils.
[0021]
Lubricants that can be suitably used in the present invention include, in the above-described base oil or base grease, conventionally known oiliness improvers, extreme pressure additives, solid lubricants, rust preventives, thickeners, and surfactants. It goes without saying that various additives such as agents may be added as necessary.
For example, in addition to oleic acid, stearic acid, higher alcohols, esters, amines, etc., as oiliness improvers, sulfur-based compounds, such as sulfurized oils and fats, and phosphorus-based compounds, such as tricresyl phosphate, as extreme pressure additives However, examples of the solid lubricant include molybdenum disulfide, graphite, organic molybdenum, and boron nitride.
[0022]
Lubrication method of the present invention described above, the rolling bearing, the following equation (1) λ = h / √ (σ 1 2 + σ 2 2) ......... (1)
(Where, λ: oil film parameter, h: oil film thickness (μm), σ 1 , σ 2 : surface roughness (μm) of two rolling bearings (roller or ball and inner or outer ring))
It is preferable to apply the present invention to a rolling bearing in which the oil film parameter λ defined by In a rolling bearing in which the oil film parameter λ is in the range of 1 or more, even when a conventional lubrication method is used, an oil film is sufficiently formed and metal contact hardly occurs. Applying the lubrication method of the present invention only increases costs. Rolling bearings in which the oil film parameter λ is less than 1 include rolling bearings for guide rolls of continuous casting machines, rolling bearings for universal joints, rolling bearings that swing, and rolling bearings that support rolls whose rotation direction is reversed. Etc. can be exemplified. Further, the lubrication method of the present invention can be applied to a bearing in which slippage is likely to occur, for example, a ball bearing, a self-aligning bearing, and the like.
[0023]
【Example】
(Example 1)
A radial load of 1/4 of the static rated load was applied to the self-aligning roller bearing, and the bearing was operated at a rotation speed of 10 rpm for a predetermined time in a high temperature atmosphere of 80 ° C. During operation, a grease composition (lubricant) containing mineral oil (kinematic viscosity 400 mm 2 / sec, at 40 ° C.) as a base oil, which is a main component of the base grease, is used in an automatic greasing system as shown in FIG. Ultrafine silica particles were supplied directly to the bearings as well as to the bearings. The ultrafine silica particles were appropriately supplied so as to be always 5% by mass in the lubricant in the bearing.
[0024]
After the operation, the bearing was disassembled, the wear profile was measured on the outer raceway surface, and the presence or absence of a coating was investigated by Auger electron spectroscopy. In this use condition, the oil film thickness h calculated from the base oil viscosity is 0.05 μm, the surface roughness of the rollers and the inner and outer rings is 0.2 μm, and the oil film parameter λ of the formula (1) is less than 1. Of 0.18.
As a result, when the ultrafine silica particles are directly supplied to the bearing and the ultrafine silica particles are contained in the lubricant (Example of the present invention), a silica film is formed on the surface of the rolling surface by about 30 nm, and the ultrafine silica particles are formed. The amount of wear on the raceway surface of the outer ring is reduced to 1/5 or less as compared with the case where the bearing is not supplied (Comparative Example), and a longer life of the rolling bearing can be achieved.
[0025]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, even under severe use environments, such as low speed, high load, high temperature, or oscillating motion, the life of a rolling bearing can be expected to be extended, the frequency of maintenance of mechanical parts is reduced, and productivity is further reduced. It has a remarkable industrial effect, such as improvement.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an example of a lubricant supply system suitable for the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rolling bearing 2 Lubricant supply control means 3 Lubricant supply piping 3a, 3b, 3c: Lubricant supply piping branch 4 Ultrafine silica storage tank 5 Lubricant storage tank

Claims (3)

転がり軸受に潤滑剤を供給する転がり軸受の潤滑方法において、表面に水酸基を有する平均粒径40nm以下の超微細シリカ粒子を前記転がり軸受に直接および/または前記転がり軸受に潤滑剤を供給する配管、に供給して、前記転がり軸受の転動面にシリカ被膜を形成することを特徴とする転がり軸受の潤滑方法。A lubrication method for a rolling bearing for supplying a lubricant to a rolling bearing, wherein a pipe for supplying a lubricant to the rolling bearing directly with ultra-fine silica particles having an average particle diameter of 40 nm or less having a hydroxyl group on a surface thereof, and / or And forming a silica coating on the rolling surface of the rolling bearing. 前記表面に水酸基を有する平均粒径40nm以下の超微細シリカ粒子を、前記潤滑剤全量に対し1〜20質量%含有するように供給することを特徴とする請求項1に記載の転がり軸受の潤滑方法。The lubrication of a rolling bearing according to claim 1, wherein ultrafine silica particles having a hydroxyl group on the surface and having an average particle diameter of 40 nm or less are supplied so as to contain 1 to 20% by mass based on the total amount of the lubricant. Method. 前記転がり軸受が、下記(1)式で定義される油膜パラメータλが1未満の領域となる転がり軸受であることを特徴とする請求項1または2に記載の転がり軸受の潤滑方法。

λ=h/√(σ +σ ) ………(1)
ここで、λ:油膜パラメータ
h:油膜厚さ(μm)
σ,σ: 転がり軸受の2物体(コロまたは玉と内輪または外輪)の表面粗さ(μm)
The lubrication method for a rolling bearing according to claim 1, wherein the rolling bearing is a rolling bearing in which an oil film parameter λ defined by the following equation (1) is less than 1. 4.
Note λ = h / √ (σ 1 2 + σ 2 2 ) (1)
Here, λ: oil film parameter h: oil film thickness (μm)
σ 1 , σ 2 : Surface roughness (μm) of two rolling bearings (roller or ball and inner or outer ring)
JP2002313666A 2002-10-29 2002-10-29 Lubricating method for rolling bearing Pending JP2004150473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002313666A JP2004150473A (en) 2002-10-29 2002-10-29 Lubricating method for rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002313666A JP2004150473A (en) 2002-10-29 2002-10-29 Lubricating method for rolling bearing

Publications (1)

Publication Number Publication Date
JP2004150473A true JP2004150473A (en) 2004-05-27

Family

ID=32458198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002313666A Pending JP2004150473A (en) 2002-10-29 2002-10-29 Lubricating method for rolling bearing

Country Status (1)

Country Link
JP (1) JP2004150473A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1301319C (en) * 2004-12-29 2007-02-21 中国石油化工股份有限公司 Lubricating oil additive and preparation method
JP2014137123A (en) * 2013-01-18 2014-07-28 Toray Ind Inc Method for lubricating bearing part and resin film manufacturing method using the same
JP2014518932A (en) * 2011-06-01 2014-08-07 クリューバー リュブリケーション ミュンヘン ソシエタス ヨーロピア ウント コンパニー コマンディートゲゼルシャフト Use of nanoscale materials in the composition to prevent fatigue phenomena in tissues close to the surface of the driving component
US9487843B2 (en) 2011-01-21 2016-11-08 Ntn Corporation Method for producing a bearing ring
WO2021196829A1 (en) * 2020-04-03 2021-10-07 江苏江海润液设备有限公司 Variable-frequency controlled lubricating oil system for alternating-current oil pump
CN113591253A (en) * 2021-08-26 2021-11-02 西安工业大学 Method for prolonging service life of nano-lubricating high-speed rolling bearing under oil-lacking working condition in wear-resisting manner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1301319C (en) * 2004-12-29 2007-02-21 中国石油化工股份有限公司 Lubricating oil additive and preparation method
US9487843B2 (en) 2011-01-21 2016-11-08 Ntn Corporation Method for producing a bearing ring
JP2014518932A (en) * 2011-06-01 2014-08-07 クリューバー リュブリケーション ミュンヘン ソシエタス ヨーロピア ウント コンパニー コマンディートゲゼルシャフト Use of nanoscale materials in the composition to prevent fatigue phenomena in tissues close to the surface of the driving component
JP2014137123A (en) * 2013-01-18 2014-07-28 Toray Ind Inc Method for lubricating bearing part and resin film manufacturing method using the same
WO2021196829A1 (en) * 2020-04-03 2021-10-07 江苏江海润液设备有限公司 Variable-frequency controlled lubricating oil system for alternating-current oil pump
CN113591253A (en) * 2021-08-26 2021-11-02 西安工业大学 Method for prolonging service life of nano-lubricating high-speed rolling bearing under oil-lacking working condition in wear-resisting manner

Similar Documents

Publication Publication Date Title
Lugt Modern advancements in lubricating grease technology
JP5350597B2 (en) Grease composition and machine parts
WO2013031705A1 (en) Grease composition and rolling device
CN102482604A (en) Fat composition
US11905483B2 (en) Tribological system
JP4461720B2 (en) Lubricant composition
JP2024051124A (en) Grease composition
JP5346491B2 (en) Grease for high speed bearings
Neale Lubrication and reliability handbook
JP4751808B2 (en) Railway vehicle bearings
JP2004150473A (en) Lubricating method for rolling bearing
JP4489387B2 (en) Lubrication method for machine element parts
JP6899788B2 (en) Grease composition
JP2009029876A (en) Grease composition and rolling bearing
JP2008255272A (en) Lubricating oil composition
JP4714977B2 (en) Lubrication method for rolling bearings
JP2009121532A (en) Rolling bearing for high speed
JP7091184B2 (en) Grease composition
JP4776946B2 (en) Grease composition and method for lubricating industrial machine element parts
Dongare et al. Experimental analysis of tribological properties of various lubricating oils without and with using extreme pressure additives by using four ball extreme pressure oil testing machine
Kajdas et al. Industrial lubricants
JP2009019750A (en) Rolling bearing for high speed
JP5513147B2 (en) Grease composition and grease composition automatic greasing device
JP2007031614A (en) Wheel-supporting apparatus
Al-Samarai et al. Lubrication and Lubricants