JP2004150348A - Control device for internal combustion engine equipped with turbocharger with electric motor - Google Patents
Control device for internal combustion engine equipped with turbocharger with electric motor Download PDFInfo
- Publication number
- JP2004150348A JP2004150348A JP2002316376A JP2002316376A JP2004150348A JP 2004150348 A JP2004150348 A JP 2004150348A JP 2002316376 A JP2002316376 A JP 2002316376A JP 2002316376 A JP2002316376 A JP 2002316376A JP 2004150348 A JP2004150348 A JP 2004150348A
- Authority
- JP
- Japan
- Prior art keywords
- electric motor
- turbocharger
- turbine
- motor
- exhaust
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Supercharger (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、電動機付ターボチャージャを備える内燃機関の制御装置に関する。
【0002】
【従来の技術】
ターボチャージャは、高出力なエンジン出力特性を得るため、エンジンの吸入空気量を過給する。しかし、ターボチャージャの場合、エンジンの排気エネルギを利用するため、排気エネルギの少ない低回転域の過給圧の立ち上がりが悪く、高回転域に比べて低回転域でのエンジン出力特性が悪い。そこで、ターボチャージャのタービン/コンプレッサに電動機(モータ)を組み込み、この電動機によってタービン/コンプレッサを強制的に駆動して所望の過給圧を得る電動機付ターボチャージャが開発されている。
【0003】
また、V型エンジンやL(直列)型のリーンバーンエンジン等では、排気系が2系統に分かれている場合があり、各排気系に排気浄化触媒が各々設けられる。このような構成のエンジンに電動機付ターボチャージャを設ける場合、各排気系には排気浄化触媒の上流側に電動機付ターボチャージャのタービン側が各々設けられる(特許文献1参照)。
【0004】
【特許文献1】
特開平5−65830号公報
【0005】
【発明が解決しようとする課題】
しかしながら、エンジンに2個の電動機付ターボチャージャを備える場合、各ターボチャージャにコンプレッサを各々有しているので、各コンプレッサに対応して2系統の吸気系が構成される。そのため、各コンプレッサで過給された空気を合流させなければならないので(つまり、2系統の吸気系を結合しなければならないので)、吸気系の構造が複雑化する。
【0006】
そこで、本発明は、複数の排気系を有し、各排気系にタービンが設けられた内燃機関において吸気系の構造を簡単化した電動機付ターボチャージャを備える内燃機関の制御装置を提供することを課題とする。
【0007】
【課題を解決するための手段】
本発明に係る電動機付ターボチャージャを備える内燃機関の制御装置は、複数の排気系を有する内燃機関の制御装置において、内燃機関は、一方の排気系にタービン及びコンプレッサを有する電動機付ターボチャージャと、他方の排気系にタービン及びコンプレッサのうちタービンのみを有する電動機付タービンとを備え、電動機付ターボチャージャの電動機及び電動機付タービンの電動機を制御することを特徴とする。
【0008】
この電動機付ターボチャージャを備える内燃機関の制御装置では、一方の排気系にはタービン及びコンプレッサを有する電動機付ターボチャージャのタービンが設けられるとともに他方の排気系にはタービンのみを有する電動機付タービンのタービンが設けられた内燃機関において、電動付ターボチャージャの電動機及び電動機付タービンの電動機を制御する。この内燃機関には電動機付ターボチャージャのコンプレッサで過給された空気のみを吸入させればよいので、複数の吸気系を結合させる必要はなく、吸気系の構造を簡単化できる。なお、電動機付タービンは、タービンのみを有し、コンプレッサを有さない。
【0009】
本発明の上記電動機付ターボチャージャを備える内燃機関の制御装置は、所定以上の加速要求の場合に、電動機付タービンの電動機を電動駆動させるように構成してもよい。
【0010】
この電動機付ターボチャージャを備える内燃機関の制御装置では、ドライバのアクセルペダル操作に基づく加速要求が所定以上の場合、排気系における背圧が低下する方向に電動機付タービンのタービンを回転させるために、電動機付タービンの電動機を電動駆動する。背圧が低下することによって、他方の排気系が設けられる側の気筒の残留ガスが減少するので、内燃機関への吸入空気量が増加し、内燃機関の出力が増大する。つまり、電動機付タービンでも、内燃機関の出力をアシストする。
【0011】
本発明の上記電動機付ターボチャージャを備える内燃機関の制御装置は、電動機付タービンの電動機で発電させる時にバッテリが所定以上の充電状態である場合に、電動機付タービンの電動機で発電した電力を電動機付ターボチャージャの電動機での電動駆動で消費させるように構成してもよい。
【0012】
この電動機付ターボチャージャを備える内燃機関の制御装置では、排気エネルギを消費するために電動機付タービンの電動機で発電させる必要がある時にバッテリが所定以上の充電状態の場合には、電動機付タービンの電動機による発電力を電動機付ターボチャージャの電動機による電動駆動で消費させる。このように制御することによって、過充電によるバッテリの劣化を防止できるとともに、発電を禁止することによる電動機付タービンの過回転を抑制することができる。
【0013】
本発明の上記電動機付ターボチャージャを備える内燃機関の制御装置は、電動機付ターボチャージャと電動機付タービンとの回転数差を所定範囲内とするように構成してもよい。
【0014】
この電動機付ターボチャージャを備える内燃機関の制御装置では、電動機付ターボチャージャと電動機付タービンとの回転数差を所定範囲内となるように電動機付ターボチャージャの電動機又は/及び電動機付タービンの電動機を制御し、排気系間の背圧差を抑制する。排気系間の背圧差が大きくなると、内燃機関の各気筒間の燃焼状態が変わるので、気筒間のトルク差や異常燃焼等が生じる。そこで、回転数を所定範囲内とすることによって、異常燃焼等を未然に防止し、燃焼効率を最適化して、燃費の向上を図っている。
【0015】
なお、所定範囲は、排気系間の背圧差によって各気筒の燃焼状態に異常が発生しない程度の電動機付ターボチャージャと電動機付タービンとの回転数差とする。
【0016】
本発明の上記電動機付ターボチャージャを備える内燃機関の制御装置は、一方の排気系と他方の排気系との背圧差に応じて、内燃機関の燃焼制御値を補正するように構成してもよい。燃焼制御値としては、点火時期や空燃比が好適である。
【0017】
この電動機付ターボチャージャを備える内燃機関の制御装置では、一方の排気系と他方の排気系との背圧差に応じて内燃機関の燃焼制御値を補正することによって、各気筒での燃焼状態を良好な状態に保つ。そのため、制御上の遅れや電動機のメカ上のトラブル等によって上記の回数数差による制御によって排気系間の背圧差を抑制できない場合でも、気筒間のトルク差や異常燃焼等を防止できる。
【0018】
なお、燃焼制御値は、内燃機関における燃焼状態を変化させることができるものであり、例えば、点火時期、空燃比、噴射時期、可変バルブ機構におけるバルブのリフト量や開閉時期、EGR[Exhaust Gas Recirculation]におけるバルブ開度等がある。
【0019】
本発明の上記電動機付ターボチャージャを備える内燃機関の制御装置は、内燃機関には、複数の排気系の下流に排気浄化触媒が備えられ、排気浄化触媒の触媒温度を上昇させる時に、一方の排気系の気筒の空燃比をリッチにするとともに他方の排気系の気筒の空燃比をリーンにすると好適である。
【0020】
この電動機付ターボチャージャを備える内燃機関の制御装置では、各排気系の下流に設けられた排気浄化触媒の触媒温度を上昇させる時には、電動機付ターボチャージャ側の排気系の気筒の空燃比をリッチにするとともに電動機付タービンの排気系の気筒の空燃比をリーンにする。この際、排気浄化触媒では、空燃比リーン時に酸化するとともに空燃比リッチ時に還元して排気ガスを浄化し、未燃焼ガスと酸素とが供給されることによって触媒温度が上昇する。このように制御することによって、リッチな空燃比によって排気温が高い(すなわち、排気エネルギが大きい)側から電動機付ターボチャージャによって排気エネルギを回転エネルギに直接変換して目標の過給圧を得るので、エネルギ効率が高くなる。ちなみに、電動機付タービンで排気エネルギを電気エネルギに変換し、その電気エネルギを電動機付ターボチャージャに供給し、さらに、その電気エネルギを電動機で回転エネルギに変換してから目標の過給圧を得る場合、その変換ロスによってエネルギ効率が低下する。
【0021】
本発明の上記電動機付ターボチャージャを備える内燃機関の制御装置は、一方の排気系を、各気筒の燃焼室からタービンまでの長さが短い方の排気系とすると好適である。
【0022】
この電動機付ターボチャージャを備える内燃機関の制御装置では、電動機ターボチャージャ側の排気系を燃焼室からタービンまでの長さが短い方の排気系とすることによって、排気系が長い排気系より排気熱が放熱されないので、排気温が高くなる。そのため、排気温が高い(すなわち、排気エネルギが大きい)側から電動機付ターボチャージャによって排気エネルギを回転エネルギに直接変換して目標の過給圧を得ることができるので、エネルギ効率が高くなる。
【0023】
【発明の実施の形態】
以下、図面を参照して、本発明に係る電動機付ターボチャージャを備える内燃機関の制御装置の実施の形態を説明する。
【0024】
本実施の形態では、本発明に係る制御装置を、自動車に搭載される直列4気筒のリーンバーンエンジンのECU[Electronic Control Unit]に適用する。本実施の形態に係るエンジンシステムは、2気筒毎にリーン運転とリッチ運転とを行うために2系統の排気系及び各排気系に排気浄化触媒を備えており、第1排気系では直列4気筒のうちの内側の2気筒の排気を行い、第2排気系では外側の2気筒の排気を行う。また、本実施の形態に係るエンジンシステムには、第1排気系には電動機付ターボチャージャが配設され、第2排気系には電動機付タービンが配設される。
【0025】
図1を参照して、本実施の形態に係るエンジンシステム1の構成について説明する。図1は、本実施の形態に係る電動機付ターボチャージャを備えるエンジンシステムの構成図である。
【0026】
エンジンシステム1は、自動車に搭載され、内燃機関としてのエンジン10により自動車を駆動するための駆動力を得ており、エンジン10には2つの排気系15,16がある。エンジンシステム1では、エンジン10での出力特性を高めるために、一方の排気系15の排気ガスを利用してターボチャージャ11によりエンジン10の吸入空気量を過給している。さらに、エンジンシステム1では、低回転域の過給圧の立ち上がりを向上させるために、電動機12によりターボチャージャ11を強制的に駆動している。また、エンジンシステム1では、減速時等に電動機12により発電を行っている。さらに、エンジンシステム1では、他方の排気系16の排気ガスを利用してタービン13を回転させ、電動機14により発電を行っている。
【0027】
エンジン10は、直列4気筒(L4型)のリーンバーンエンジンであり、希薄燃焼によりガソリン消費量を節約して低燃費化を図っている。エンジン10では、外側の第1気筒10a及び第4気筒10dと内側の第2気筒10b及び第3気筒10cとの2気筒毎にリーン運転とリッチ運転とを行う。そのため、エンジン10は、2つの触媒を有しており、この2つの触媒の温度を別々に制御するために2系統の排気系15,16がある。リーン運転時の空燃比の排気ガスとリッチ運転時の空燃比の排気ガスとが1つの触媒に供給されると触媒が過加熱されるが、リーン運転による排気ガスとリッチ運転による排気ガスとを異なる触媒に供給することにより、各触媒が過加熱されない。そのため、エンジンシステム1では、アンダフロア触媒の温度が低い場合でも、2気筒毎にリーン運転とリッチ運転とを行っても2つの触媒を過加熱することなく、アンダフロア触媒の温度を上昇させることができる。
【0028】
第1排気系15は、第2気筒10bからの第2排気流路15aと第3気筒10cからの第3排気流路15bとを有しており、第2排気流路15aと第3排気流路15bとがターボチャージャ11の上流側で結合している。第2排気系16は、第1気筒10aからの第1排気流路16aと第4気筒10dからの第4排気流路16bとを有しており、第1排気流路16aと第4排気流路16bとがタービン13の上流側で結合している。第1排気系15は、内側の気筒10b,10cの排気系であるため、第2排気系16に比べて、気筒10b,10cの各燃焼室(図示せず)からタービンホイール11aに至る排気流路15a,15bの長さが短く、各排気流路15a,15bの形状差も少ない。そのため、第1排気系15では、第2排気系16に比べて、排気熱の放熱が少なく排気温が高く保たれ、ターボホイール11aに至るまでの排気エネルギのロスが少ない。
【0029】
また、エンジン10では、1系統の吸気系17から空気を吸入し、2系統の排気系15,16に排気ガスを排気する。吸気系17は、1本の吸気流路17aを有しており、吸気流路17aには上流側からエアフローメータ18、ターボチャージャ11のコンプレッサ側、インタークーラ19、スロットルバルブ20、サージタンク21等が設けられている。第1排気系15は、第2排気流路15aと第3排気流路15bとが結合した排気流路15cに上流側からターボチャージャ11のタービン側、空燃比センサ22、排気浄化触媒23等が設けられている。第2排気系16は、第1排気流路16aと第4排気流路16bとが結合した排気流路16cに上流側からタービン13、空燃比センサ24、排気浄化触媒25等が設けられている。さらに、第1排気系15(排気流路15c)と第2排気系16(排気流路16c)とが結合して1本の排気流路26となり、排気流路26にはノックス浄化触媒27等が設けられている。なお、第1排気系15にターボチャージャ11を設けるのは、排気エネルギが大きい排気系から排気エネルギを回転エネルギとして直接回収して、変換エネルギによるロスを少なくするためである。ちなみに、第1排気系15にタービン13を設けて電動機14で排気エネルギを電気エネルギとして回収した場合、その電気エネルギを電動機12又はバッテリ29に送電し、その電気エネルギを電動機12で回転エネルギに変換すると、電気エネルギに一旦変換した分の変換ロスが発生する。
【0030】
吸気系17では、まず、吸気流路17aの最上流から吸入した空気は、エアフローメータ18で吸入空気量が検出された後、ターボチャージャ11で過給される。ターボチャージャ11から出た吸入空気は、過給による圧力上昇によって温度が上昇する。そこで、インタークーラ19では、温度上昇した吸入空気の温度を空冷式で低下させ、充填効率を向上させる。続いて、スロットルバルブ20では、エンジン10への吸入空気量を調節する。さらに、この調節された空気が、サージタンク21で各気筒10a〜10dに吸入される空気量に分配され、各気筒10a〜10dに吸入される。スロットルバルブ16は、電子制御式バルブであり、ECU28によって開度が決定され、制御される。また、サージタンク21は、ECU28によって各気筒10a〜16bの吸入空気量が決定され、制御される。
【0031】
第1排気系15では、まず、第2気筒10bからの排気ガスと第3気筒10cからの排気ガスが合流した後、この合流した排気ガスがターボチャージャ11のタービンホイール11aを回転させる。この際、排気エネルギは、加速時等にはターボチャージャ11によるアシストによって消費され、減速時には電動機12による発電によって消費される。タービンホイール11aを通過した排気ガスは、空燃比センサ22で空燃比が検出された後、排気浄化触媒23で浄化される。
【0032】
第2排気系16では、まず、第1気筒10aからの排気ガスと第4気筒10dからの排気ガスが合流した後、この合流した排気ガスがタービン13のタービンホイール13aを回転させる。この際、排気エネルギは、電動機14による発電又は電動駆動によって消費される。タービンホイール13aを通過した排気ガスは、空燃比センサ24で空燃比が検出された後、排気浄化触媒25で浄化される。
【0033】
排気浄化触媒23,25は、排気ガスに含まれるCO(一酸化炭素)及びHC(炭化水素)等の未燃焼成分を酸化し、毒性を吸収する。排気浄化触媒23,25では、排気エネルギに応じた排気温によって触媒温度が変動する。
【0034】
さらに、排気ガスは、2系統の排気系15,16が合流した後、排気浄化触媒としてのノックス浄化触媒27で更に浄化される。ノックス浄化触媒27は、空燃比リーン時に酸化するとともに空燃比リッチ時に還元して排気ガスに含まれるNOx(窒息酸化物)を還元し、毒性を吸収する。ノックス浄化触媒27では、リッチ運転による未燃焼ガスとリーン運転による酸素とが供給されることによって昇温制御される。
【0035】
ターボチャージャ11は、第1排気系15からの排気エネルギを利用して過給圧を上げる。ターボチャージャ11では、排気流路15cにタービンホイール11a、吸気流路17aにコンプレッサホイール11bが配設されており、両ホイールがシャフト11cで連結されている。このシャフト11cの中央部には、電動機12の一構成要素であるロータ(図示せず)が固定されている。
【0036】
電動機12は、三相交流モータであり、ターボチャージャ11の過給圧をアシストするとともに回生時にはバッテリ29を充電する。電動機12は、磁石が設けられたロータの周囲にステータ(図示せず)が配設されている。ステータは、複数枚の積層鋼板に巻線を巻いたものであり、ターボチャージャ11のハウジングに対して固定されている。電動機12は、ロータ及びステータを主たる構成要素として、シャフト11cを出力軸としてターボチャージャ11のハウジングの内部に構築されている。電動機12では、ECU28から三相の各巻線に電力が順次供給されると磁界が順次発生し、この三相に発生する磁界とロータの磁石との磁界との相互作用によってロータが回転する。
【0037】
タービン13は、第2排気系16からの排気エネルギを利用して電動機14で発電を行う。また、タービン13は、強加速時にはターボチャージャ11での過給をアシストするために、電動機14によって強制的に背圧を下げる方向に回転する。タービン13では、排気流路16cにタービンホイール13aが配設されており、タービンホイール13aがシャフト13bに連結されている。このシャフト13cの中央部には、電動機14の一構成要素であるロータ(図示せず)が固定されている。
【0038】
電動機14は、三相交流モータであり、バッテリ29を充電又は電動機12に電力供給するとともに強加速時にはタービン13を強制的に回転させる。電動機14は、電動機12と同様の構成及び作用を有し、シャフト13bを出力軸としてタービン13のハウジングの内部に構築されている。
【0039】
図1乃至図5を参照して、ECU28について説明する。図2は、各電動機に対する制御を示す図である。図3は、エンジン回転数に応じた背圧差を示すマップである。図4は、背圧差に応じた点火時期の補正マップである。図5は、背圧差に応じた空燃比の補正マップである。
【0040】
ECU28は、CPU[Central Processing Unit]、ROM[Read Only Memory]、RAM[Random Access Memory]等からなる電子制御ユニットである。ECU28は、エアフローメータ18、空燃比センサ22,24やバッテリ充電量センサ(図示せず)、エンジン回転数センサ(図示せず)、アクセルペダル開度センサ(図示せず)、ターボチャージャ11の回転数センサ(図示せず)、タービン13の回転数センサ(図示せず)等の各種センサが接続され、各種センサからの検出値に基づいて各種制御値等を設定し、エンジンシステム1の各部を制御する。
【0041】
ECU28では、アクセルペダルの開度や踏込速度等に基づいてスロットルバルブ20の開度を設定し、スロットルバルブ20の開度を制御する。また、ECU28では、アクセルペダルの開度や踏込速度等に基づいて各気筒10a〜10dでの空燃比を決定するとともに決定した空燃比に基づいて各気筒10a〜10dへの燃料噴射量及び吸入空気量を設定し、電子制御式の燃料噴射装置(図示せず)及びサージタンク21を制御する。この際、ECU28では、空燃比センサ22,24で検出した空燃比に基づいて、決定した空燃比になるようにフィードバック制御している。さらに、ECU28では、各気筒10a〜10dでの燃焼状態を制御するために燃焼制御値を設定し、エンジン10の各部を制御する。燃焼制御値としては、空燃比の他に、点火時期、燃料の噴射時期、可変バルブ機構を有する場合にはそのバルブのリフト量や開閉時期、EGRを有する場合にはそのバルブ開度等がある。
【0042】
特に、ECU28では、2気筒10a,10dと2気筒10b,10cとでリーン運転とリッチ運転とを別々に行うために、2気筒毎にリーン運転時の空燃比とリッチ運転時の空燃比とを設定する。この際、ECU28では、ノックス浄化触媒27の触媒温度を上昇させる場合には、第1排気系15の気筒10b,10c側をリッチ運転の空燃比に設定するとともに第2排気系16の気筒10a,10d側をリーン運転の空燃比に設定する。このように、ターボチャージャ11側をリッチ運転として排気温を高く(すなわち、排気エネルギを大きく)することにより、排気エネルギが大きい側から排気エネルギを回転エネルギとして直接回収して、変換ロスを少なくする。ちなみに、タービン13側をリッチ運転として電動機14で排気エネルギを電気エネルギとして回収した場合、その電気エネルギを電動機12で回転エネルギに変換すると、電気エネルギを一旦変換する分の変換ロスが発生する。
【0043】
また、ECU28では、アクセルペダルの開度や踏込速度及びエンジン回転数等に基づいて運転状態を決定し、この運転状態に応じて電動機12及び電動機14に対して制御を行っている。運転状態は、電動機12,14でのアシスト動作/発電動作を切り換えるための制御の基本であり、図2に示すようにドライバからの加速要求に応じて、特大加速状態、大加速状態、中加速状態、緩加速状態、減速状態がある。ECU28では、運転状態に応じて必要な過給圧を決定し、決定した過給圧に応じて電動機12によるアシスト量又は発電量を決定するとともに電動機14によるアシスト量(タービン13の強制回転)又は発電量を決定する。
【0044】
なお、エンジンシステム1は、電動機12、14のアシスト動作/発電動作を制御するために、各電動機12,14に対応してDC−DCコンバータ(図示せず)及びインバータ(図示せず)を備えている。各DC−DCコンバータは、バッテリ29とインバータとの間に接続され、バッテリ29とインバータとで出入力される直流電力を変換する。また、各DC−DCコンバータは、トランジスタ(図示せず)を備えており、このトランジスタのオン/オフによって電動機12又は電動機14の発電量を調整する。各DC−DCコンバータでは、ECU28からのゲート信号に基づいてトランジスタがオン/オフし、トランジスタがオンしている時間が回生可能時間の場合には電動機12又は電動機14で発電した電力をバッテリ29に出力する。各インバータは、6つのFET[Field Effect Transistor](図示せず)を備えており、この6つのFETによって電動機12又は電動機14の三相の巻線に対して上側アーム及び下側アームを各々構成している。各インバータでは、ECU28からの6つのゲート信号に基づいて各相の上側アーム又は下側アームが通電し、電動機12又は電動機14の三相の巻線に電力を各々供給する。
【0045】
特大加速状態は、急速に大きな加速トルクが要求されている状態であり、電動機12によるターボチャージャ11に対するアシストのみならず、電動機14によるターボチャージャ11に対するアシストも行う。電動機12によるアシスト量は、最大量に設定される。電動機14によるアシストは、電動機14が電動駆動してタービンホイール13aを背圧が低下する方向に回転させると、第1気筒10a及び第4気筒10dの残留ガスが減少することによってエンジン10の吸入空気量が増加し、その吸入空気量の増加に応じてエンジン10の出力が増大することである。そこで、電動機14によるアシスト量は、タービンホイール13aを背圧が低下する方向に回転させることができる程度に設定される。この制御時には、バッテリ29では、電動機12及び電動機14に電力を供給するので、放電する。
【0046】
大加速状態は、大きな加速トルクが要求されている状態であり、電動機12ではターボチャージャ11に対するアシストを行い、電動機14では発電してバッテリ29に対して充電を行う。電動機12によるアシスト量は、エンジンの回転数、アクセルペダルの開度や踏込速度及び現在の過給圧等に応じて大きな量が設定される。電動機14による発電量は、バッテリ充電量等に応じて設定される。この制御時には、バッテリ29では、電動機12には電力を供給するとともに電動機14から充電されるが、電動機12による電力消費量が大きいのでトータルとしては放電する。
【0047】
中加速状態は、中程度の加速トルクが要求されている状態であり、電動機12ではターボチャージャ11に対するアシストを行い、電動機14では発電した電力を電動機12に供給する。電動機12によるアシスト量は、エンジンの回転数、アクセルペダルの開度や踏込速度及び現在の過給圧等に応じて中程度の量が設定される。電動機14による発電量は、電動機12によるアシスト量等に応じて設定される。この制御時には、バッテリ29では、電動機12,14に対して充放電しない。
【0048】
緩加速状態は、小さな加速トルク要求されている状態から定常状態に至る状態であり、電動機12ではアシスト及び発電を行わず、電動機14では発電してバッテリ29に充電を行う。電動機12ではアシスト及び発電を行わないので、ターボチャージャ11では排気エネルギに応じた過給圧を発生する。電動機14による発電量は、バッテリ充電量等に応じて設定される。この制御時には、バッテリ29では、電動機14から充電される。
【0049】
減速状態は、加速トルクの要求のない定常状態から減速状態に至る状態であり、電動機12,14共に発電してバッテリ29に充電を行う。電動機12,14の発電量は、バッテリ充電量等に応じて設定される。この制御時には、バッテリ29では、電動機12,14から充電される
【0050】
さらに、ECU28では、電動機12,14に対してバッテリ充電量に基づいて制御を行っている。ECU28では、バッテリ29が満充電の場合には、バッテリ29に充電を行う緩加速状態又は減速状態でも電動機12,14による発電を禁止して充電を行わない。この場合、緩加速状態の場合、電動機14による発電を禁止すると排気エネルギを消費できないので、電動機14が過回転する可能性がある。この過回転によるメカ的なトラブルを防止するために、ECU28では、電動機14に発電させ、その発電電力を電動機12に供給し、電動機12で電力を消費するように制御してもよい。この際、ドライバとしては小さい加速要求しか行っていないので、電動機12によるアシストによって過給圧が増加することによる加速ショックをドライバに与えないようにする必要がある。そこで、ECU28では、電動機14による発電量を過給圧変化速度が一定値以下になる発電量に設定し、電動機12のアシストによる過給圧の変化速度を抑制する。あるいは、スロットルバルブ20の開度を絞ることによる空気量を低下させる手段や点火遅角等によるトルクを低下する手段等を利用して、過給圧の変化速度を抑えてもよい。なお、ECU28では、緩加速状態の場合に、電動機12,14による発電を禁止、あるいは、電動機14による発電電力を電動機12に供給する制御を、バッテリ29の充電状態が所定以上の充電状態であることを基準に行うようにしてもよい。ここで、所定以上の充電状態としては、満充電の9割の充電状態等を選択することができる。
【0051】
また、ECU28では、電動機12,14に対して2系統の第1排気系15と第2排気系16との背圧差に基づいて制御を行っている。ECU28では、特大加速状態以外の運転状態の時に背圧差が上限背圧差以上の場合には、タービン13の回転数がターボチャージャ11の回転数に対して所定回転数以内となるように制御する。背圧差が上限背圧差以上になると、各気筒10a〜10dでの燃焼状態が変化し、第1排気系15の気筒10b,10cと第2排気系16の気筒10a,10dとのトルク差が発生したり、あるいは、制御値からの適合ずれによる異常燃焼が発生する。そこで、上記のように回転数差を所定範囲内に制御することにより、背圧差が上限背圧差より小さくなり、背圧差が各気筒10a〜10dでの燃焼状態に影響を及ぼさなくなる。所定回転数は、背圧差が上限背圧差より小さくなるような値に設定され、ターボチャージャ11とタービン13との回転数差に対して上限回転数差(プラス値)と下限回転数差(マイナス値)とで規定される。ECU28では、ターボチャージャ11の回転数からタービン13の回転数を減算する。そして、ECU28では、その回転数差が上限回転数差以上の場合にはタービン13の回転数を上昇させるように電動機14の発電量又はアシスト量を設定し、その回転数差が下限回転数差以下の場合にはタービン13の回転数を低下させるように電動機14の発電量又はアシスト量を設定する。ちなみに、タービン13の回転数を調整する場合、発電量を増減することによってタービン13の回転数を増減させることもできるが、電動機14にバッテリ29から電力を供給して電動機14による電動駆動によりタービン13を強制的に回転させる場合もあり、その場合には発電量でなく、アシスト量が設定される。
【0052】
なお、背圧差は、直接検出することができないので、エンジン回転数等によって推定される。そのために、ECU28は、例えば、図3に示すマップMP1を保持している。MAP1は、エンジン回数数から推定される背圧差を示している。マップMP1から判るように、低回転域では背圧差は一定の小さいな値であり、回転数が増すに従って背圧差も増し、増加率も段階的に大きくなる。MAP1には、上限背圧差回転数が示されており、このエンジン回転数から推定される背圧差が上限背圧差となる。
【0053】
また、ECU28では、特大加速状態の時に第1排気系15と第2排気系16との背圧差が上限背圧差以上の場合あるいは特大加速状態以外の運転状態の時に上記した回転数制御を行っても第1排気系15と第2排気系16との背圧差が上限背圧差以上の場合、背圧差に応じて各気筒10a〜10dに対する燃焼制御値を変える。このように制御することによって、背圧差が大きい場合でも、各気筒10a〜10d間でのトルク差や異常燃焼の発生を防止することができる。なお、タービン13の回転数がターボチャージャ11の回転数に対して所定回転数以内となるように制御しても、電動機14のメカ的な不具合や制御上の遅れ等によって背圧差を上限背圧差未満にできない場合がある。
【0054】
そのために、ECU28では、図4に示すような燃焼制御値としての点火時期を変えるためのマップMP2,MP3,MP4を保持しており、背圧差に応じて3つのマップMP2,MP3,MP4を切り換える。マップMP2(実線)は、背圧差が正常時の点火時期ベースマップであり、負荷が小さい領域では負荷が増加するのに従って点火時期を遅らせていき、中程度の領域では負荷が増加するのに従って点火時期を遅らせるがその遅らせる割合を小さくし、大きい領域では負荷が増加するのに従って点火時期を早める。マップMP3(一点鎖線)は、背圧差が小さい場合の点火時期補正マップであり、マップMP2に対して変化の傾向は同様であるが、全体的に点火時期が遅くなる補正を行うためのマップである。マップMP4(破線)は、背圧差が大きい場合の点火時期補正マップであり、マップMP2に対して変化の傾向は同様であるが、全体的に点火時期が速くなる補正を行うためのマップである。なお、負荷は、エンジン回転数や吸入空気量等である。背圧差は、上記したようにマップMP1からエンジン回転数等から推定されたものを使用する(図3参照)。
【0055】
あるいは、ECU28では、図5に示すような燃焼制御値としての空燃比を変えるためのマップMP5,MP6,MP7を保持しており、背圧差に応じて3つのマップMP5,MP6,MP7を切り換える。マップMP5(実線)は、背圧差が正常時の空燃比ベースマップであり、負荷が小さい領域では空燃比が理想空燃比よりリッチな空燃比であり、大きい領域では空燃比が理想空燃比である。マップMP6(一点鎖線)は、背圧差が小さい場合の空燃比補正マップであり、マップMP5に対して、負荷が小さい領域ではリーン側の空燃比であり、大きい領域ではリッチ側の空燃比であり、小さい領域と大きい領域とで空燃比の変化幅が小さい。マップMP7(破線)は、背圧差が大きい場合の空燃比補正マップであり、マップMP5に対して、負荷が小さい領域ではリッチ側の空燃比であり、大きい領域ではリーン側の空燃比であり、小さい領域と大きい領域とで空燃比の変化幅が大きい。
【0056】
次に、図1乃至図5を参照して、エンジンシステム1における動作をECU28でのターボチャージャ11、タービン13及び電動機12,14に対する制御を中心に説明する。ここでは、運転状態制御、バッテリ充電量制御、背圧差制御、燃焼制御値制御について説明する。特に、背圧差制御については、図6のフローチャートに沿って説明する。図6は、背圧差制御を示すフローチャートである。
【0057】
まず、運転状態制御について説明する。運転状態制御は、電動機12,14に対する基本制御であり、ECU28において所定時間毎に繰り返し実行される。
【0058】
ECU28では、アクセルペダルの操作量及びエンジン回転数等を各種センサから取得し、アクセルペダルの開度や踏込速度及びエンジン回転数等に基づいて運転状態を判定する(図2参照)。
【0059】
特大加速状態と判定した場合、ECU28では、電動機12によるアシスト量を最大量に設定するとともに電動機14によるアシスト量を背圧を低下させるためのアシスト量に設定する。そして、ECU28では、各アシスト量に応じて各インバータに対するゲート信号を生成する。各インバータでは、電動機12,14に各々電力を供給する。すると、電動機12では、最大回転数で電動駆動し、ターボチャージャ11の回転をアシストする。一方、電動機14では、電動駆動し、タービン13を背圧を低下させる方向に回転させる。そのため、第1気筒10a及び第4気筒10dの残留ガスが減少し、エンジン10の吸入空気量が増加する。その結果、ターボチャージャ11では電動機12,14のアシスト及び排気エネルギを受けるので、過給圧が急激に大きくなり、急速に大きな加速トルクが発生する。
【0060】
大加速状態と判定した場合、ECU28では、電動機12によるアシスト量を大きな量に設定するとともに電動機14による発電量を設定する。そして、ECU28では、アシスト量に応じてインバータに対するゲート信号を生成する。インバータでは、電動機12に電力を供給する。すると、電動機12では、アシスト量に応じて電動駆動し、ターボチャージャ11の回転をアシストする。その結果、ターボチャージャ11では電動機12のアシスト及び排気エネルギを受けたるので、過給圧が大きくなり、大きな加速トルクが発生する。また、ECU28では、発電量に応じてDC−DCコンバータに対するゲート信号を生成する。タービン13では排気エネルギを回転エネルギに変換しており、電動機14では、そのタービン13の回転エネルギにより発電し、DC−DCコンバータを介してバッテリ29に充電する。
【0061】
中加速状態と判定した場合、ECU28では、電動機12によるアシスト量を中程度の量に設定するとともに電動機14による発電量を電動機12によるアシスト量に応じて設定する。そして、ECU28では、アシスト量に応じてインバータに対するゲート信号を生成する。インバータでは、電動機12に電力を供給する。すると、電動機12では、アシスト量に応じて電動駆動し、ターボチャージャ11の回転をアシストする。その結果、ターボチャージャ11では電動機12のアシスト及び排気エネルギを受けるので、過給圧が大きくなり、中程度の加速トルクが発生する。また、タービン13では排気エネルギを回転エネルギに変換しており、電動機14では、そのタービン13の回転エネルギにより発電し、インバータを介して電動機12に電力を供給する。
【0062】
緩加速状態と判定した場合、ECU28では、電動機12によるアシスト量をゼロに設定するとともに電動機14による発電量を設定する。すると、ターボチャージャ11では排気エネルギに応じた過給圧を発生し、小さな加速トルクが発生するかあるいは加速トルクが発生しない。また、ECU28では、発電量に応じてDC−DCコンバータに対するゲート信号を生成する。タービン13では排気エネルギを回転エネルギに変換しており、電動機14では、そのタービン13の回転エネルギにより発電し、DC−DCコンバータを介してバッテリ29に充電する。
【0063】
減速状態と判定した場合、ECU28では、電動機12,14による発電量を各々設定する。ECU28では、各発電量に応じて各DC−DCコンバータに対するゲート信号を生成する。ターボチャージャ11及びタービン13では排気エネルギを回転エネルギに変換しており、電動機12,14では、その各回転エネルギにより発電し、各DC−DCコンバータを介してバッテリ29に充電する。
【0064】
次に、バッテリ充電量制御について説明する。バッテリ充電量制御は、電動機12,14からバッテリ29に充電する際の制御であり、ECU28において運転状態が緩加速状態又は減速状態と判定した場合に実行される。
【0065】
ECU28では、バッテリ充電量センサからバッテリ充電量を取得し、バッテリ充電量が満充電か否かを判定する。満充電でない場合、ECU28では、運転状態に基づく上記の制御を行う。
【0066】
満充電の場合、ECU28では、緩加速状態と判定しても電動機14による発電量をゼロに設定するとともに、減速状態と判定しても電動機12,14による発電量をゼロに設定する。そして、ECU28では、発電量がゼロに応じた各DC−DCコンバータに対するゲート信号を生成する。そのため、緩加速状態の場合には電動機14での発電が禁止され、減速状態の場合には電動機12,14での発電が禁止され、バッテリ29への充電は行われない。
【0067】
特に、緩加速状態の場合、ECU28では、電動機14による発電量を過給圧変化速度が一定値以下になる程度の発電量に設定する場合もある。タービン13では排気エネルギを回転エネルギに変換しており、電動機14では、そのタービン13の回転エネルギにより発電し、インバータを介して電動機12に電力を供給する。すると、電動機12では、電動機14での発電量に応じて電動駆動し、ターボチャージャ11の回転をアシストする。そのため、ターボチャージャ11では電動機12のアシスト及び排気エネルギを受けるので、過給圧が少し大きくなり、多少加速トルクが発生する。
【0068】
次に、背圧差制御について説明する。背圧差制御は、ECU28において特大加速状態以外の運転状態と判定された場合に実行される。
【0069】
ECU28では、エンジン回転数センサからエンジン回転数を取得する(S1)。
【0070】
そして、ECU28では、エンジン回転数が上限背圧差回転数以上か否かを判定する(S2)(図3参照)。S2にてエンジン回転数が上限背圧差回転数未満の場合には、ECU28では、背圧差制御を終了する。
【0071】
S2にてエンジン回転数が上限背圧差回転数以上の場合、ECU28では、各回転数センサからターボチャージャ11の回転数及びタービン13の回転数を取得する(S3)。
【0072】
そして、ECU28では、ターボチャージャ11の回転数からタービン13の回転数を減算し、回転数差を算出する(S4)。
【0073】
続いて、ECU28では、回転数差が上限回転数差以上か否かを判定する(S5)。
【0074】
S5にて回転数差が上限回転数差以上の場合、ECU28では、タービン13の回転数を上昇させるように電動機14の発電量又はアシスト量を設定する(S6)。すると、電動機14では、減少した発電量に応じて発電又は電動駆動する。その電動機14の作用により、タービン13の回転数が、増加し、ターボチャージャ11の回転数に近づいていく。その結果、第1排気系15と第2排気系16との背圧差が小さくなっていく。
【0075】
S5にて回転数差が上限回転数差未満の場合、ECU28では、回転数差が下限回転数差以下か否かを判定する(S7)。S7にて回転数差が下限回転数差より大きい場合、ECU28では、背圧差制御を終了する。
【0076】
S7にて回転数差が下限回転数差以下の場合、ECU28では、タービン13の回転数を低下させるように電動機14の発電量又はアシスト量を設定する(S8)。すると、電動機14では、増加した発電量に応じて発電又は電動駆動する。その電動機14の作用により、タービン13の回転数が、低下し、ターボチャージャ11の回転数に近づいていく。その結果、第1排気系15と第2排気系16との背圧差が小さくなっていく。
【0077】
このように背圧差を上限背圧差以下に制御することによって、各気筒10a〜10dでの燃焼状態が安定し、異常燃焼や各気筒10a〜10dでのトルク差が発生しない。
【0078】
最後に、燃焼制御値制御について説明する。燃焼制御値制御は、ECU28において特大加速状態と判定した時に背圧差が上限背圧差以上の場合又は特大加速状態以外の運転状態と判定した時に背圧差制御を行っても背圧差が上限背圧差以上の場合に実行される。
【0079】
ECU28では、エンジン回転数から背圧差を推定する。そして、ECU28では、背圧差に応じて点火時期マップMP2〜MP4を選択し(図4参照)、その選択した点火時期マップと負荷に基づいて点火時期を設定する。さらに、ECU28では、設定した点火時期により各気筒10a〜10dの燃焼を制御する。あるいは、ECU28では、背圧差に応じて空燃比マップMP5〜MP7を選択し(図5参照)、その選択した空燃比マップと負荷に基づいて空燃比を設定する。さらに、ECU28では、設定した空燃比により各気筒10a〜10dの燃焼を制御する。このように燃焼制御値を背圧差に応じて補正することによって、各気筒10a〜10dでの燃焼状態が安定し、異常燃焼や各気筒10a〜10dでのトルク差が発生しない。
【0080】
このエンジンシステム1によれば、第1排気系15に電動機12を備えるターボチャージャ11を設けるとともに第2排気系16に電動機14を備えるタービン13を設けることによって、ターボチャージャ11でしか吸入空気を過給しないので、2つの吸気系を結合して合流させる必要がない。そのため。吸気系の構造を簡単化でき、部品点数も削減することができる。
【0081】
特に、エンジンシステム1では、排気通路が短くコンパクトな第1排気系15に電動機12を備えるターボチャージャ11を設けることによって、排気エネルギが大きい側でターボチャージャ11により排気エネルギを回転エネルギに直接変換する。また、エンジンシステム1(ECU28)では、ターボチャージャ11側の気筒10b,10cでリッチ運転を行うとともにタービン13側の気筒10a,10dでリーン運転を行うように制御し、リッチな空燃比により排気エネルギが大きい側でターボチャージャ11により排気エネルギを回転エネルギに直接変換する。そのため、排気エネルギをタービン13側で一旦電気エネルギに変換してから回転エネルギに変換する場合に比べて、変換ロスが少なく、燃費効率が良い。
【0082】
また、エンジンシステム1(ECU28)によれば、運転状態に応じて電動機12,14のアシスト動作/発電動作を切り換え制御しているので、ドライバの加速トルク要求に応じて最適な出力が得られるとともに燃費効率も良い。
【0083】
また、エンジンシステム1(ECU28)によれば、バッテリ29が満充電の場合には電動機12,14からの充電を禁止するので、バッテリ29が過充電されることがない。さらに、エンジンシステム1(ECU28)によれば、バッテリ29が満充電の場合には電動機14の発電電力を電動機12で消費することもできるので、タービン13の過回転を防止することもできる。この際、エンジンシステム1(ECU28)では、電動機14から発電電力を制限しながら供給するので、過給圧が緩やかに変化し、ドライバに加速ショックを与えない。
【0084】
また、エンジンシステム1(ECU28)によれば、背圧差を上限背圧差以下になるようにタービン13の回転数を制御しているので、燃焼効率が良くなり、燃費が向上する。さらに、エンジンシステム1(ECU28)によれば、燃焼制御値を背圧差に応じて補正制御しているので、特大加速状態やタービン13の回転数制御によって背圧差が小さくならない場合でも燃焼効率を向上させ、燃費の向上を図ることができる。
【0085】
以上、本発明に係る実施の形態について説明したが、本発明は上記実施の形態に限定されることなく様々な形態で実施される。
【0086】
例えば、本実施の形態では2系統の排気系を有するL4型のリーンバーンエンジンに適用したが、L6型のリーンバーンエンジンやV型の左右両側に排気系を有するエンジン等の他の型のエンジンにも適用可能であり、また、3系統、4系統と2系統以外の複数の排気系を有するエンジンにも適用可能である。
【0087】
また、本実施の形態では制御装置を1個のECUで構成したが、複数の制御装置で構成してもよく、例えば、エンジンのECUと電動機のコントローラとを別体として構成してもよい。
【0088】
また、本実施の形態では排気系間の背圧差が上限背圧差以上となる場合にはタービンの回転数がターボチャージャの回転数に対して所定回転数以内になるように制御したが、ターボチャージャの回転数を制御してもよい、あるいは、両方の回転数を制御してもよい。
【0089】
また、本実施の形態ではエンジン回転数によって排気系間の背圧差を推定したが、エアフローメータで検出した吸気空気量等の他のものから推定してもよい。
【0090】
また、本実施の形態では各気筒での燃焼状態を制御するための燃焼制御値を点火時期又は空燃比としたが、燃料の噴射時期、可変バルブ機構におけるバルブのリフト量や開閉時期、EGRにおけるバルブ開度等の他の燃焼制御値でもよいし、複数の燃焼制御値により燃焼状態を制御してもよい。
【0091】
また、本実施の形態では点火時期や空燃比等の燃焼制御値を示すマップを2次元マップとしたが、エンジン回転数及び吸入空気量に対する点火時期等を示す3次元マップとしてもよい。
【0092】
【発明の効果】
本発明によれば、吸気系の構造を簡単化できるとともに、部品点数も削減できる。
【図面の簡単な説明】
【図1】本実施の形態に係るエンジンシステムの構成図である。
【図2】本実施の形態に係る各電動機に対する制御を示す図である。
【図3】本実施の形態に係るエンジン回転数に応じた背圧差を示すマップである。
【図4】本実施の形態に係る背圧差に応じた点火時期の補正マップである。
【図5】本実施の形態に係る背圧差に応じた空燃比の補正マップである。
【図6】本実施の形態に係る背圧差制御を示すフローチャートである。
【符号の説明】
1…エンジンシステム、10…エンジン、11…ターボチャージャ、11a…タービンホイール、11b…コンプレッサホイール、11c…シャフト、12…電動機、13…タービン、13a…タービンホイール、13b…シャフト、14…電動機、15…第1排気系、15a…第2排気流路、15c…第3排気流路、15c…排気流路、16…第2排気系、16a…第1排気流路、16b…第4排気流路、16c…排気流路、17…吸気系、17…吸気流路、18…エアフローメータ、19…インタークーラ、20…スロットルバルブ、21…サージタンク、22,24…空燃比センサ、23,25…排気浄化触媒、26…排気流路、27…ノックス浄化触媒、28…ECU,29…バッテリ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a control device for an internal combustion engine including a turbocharger with a motor.
[0002]
[Prior art]
The turbocharger supercharges the intake air amount of the engine in order to obtain high-output engine output characteristics. However, in the case of the turbocharger, since the exhaust energy of the engine is used, the rise of the supercharging pressure in the low rotation speed region where the exhaust energy is small is poor, and the engine output characteristics in the low rotation speed region are poor compared to the high rotation speed region. Therefore, a turbocharger with a motor has been developed in which an electric motor (motor) is incorporated in a turbine / compressor of the turbocharger, and the turbine / compressor is forcibly driven by the motor to obtain a desired supercharging pressure.
[0003]
In a V-type engine or an L (serial) -type lean burn engine, the exhaust system may be divided into two systems, and each exhaust system is provided with an exhaust purification catalyst. When a turbocharger with a motor is provided in an engine having such a configuration, each exhaust system is provided with a turbine side of the turbocharger with a motor on the upstream side of the exhaust purification catalyst (see Patent Document 1).
[0004]
[Patent Document 1]
JP-A-5-65830
[0005]
[Problems to be solved by the invention]
However, when the engine is provided with two turbochargers with an electric motor, since each turbocharger has a compressor, two intake systems are configured corresponding to each compressor. Therefore, the air supercharged by each compressor must be combined (that is, two intake systems must be connected), which complicates the structure of the intake system.
[0006]
Accordingly, the present invention provides a control device for an internal combustion engine having a plurality of exhaust systems and a turbocharger with a motor in which the structure of an intake system is simplified in an internal combustion engine in which a turbine is provided in each exhaust system. Make it an issue.
[0007]
[Means for Solving the Problems]
A control device for an internal combustion engine including a turbocharger with a motor according to the present invention is a control device for an internal combustion engine having a plurality of exhaust systems, wherein the internal combustion engine has a turbocharger with a motor having a turbine and a compressor in one exhaust system, The other exhaust system includes a turbine and a turbine with a motor having only a turbine among the compressors, and controls the motor of the turbocharger with the motor and the motor of the turbine with the motor.
[0008]
In the control device for an internal combustion engine including the turbocharger with a motor, a turbine of a turbocharger with a motor having a turbine and a compressor is provided in one exhaust system, and a turbine of a turbine with a motor having only a turbine in the other exhaust system. Controls the electric motor of the turbocharger with electric motor and the electric motor of the turbine with electric motor. Since only the air supercharged by the compressor of the turbocharger with a motor needs to be sucked into this internal combustion engine, there is no need to combine a plurality of intake systems, and the structure of the intake system can be simplified. In addition, the turbine with an electric motor has only a turbine and does not have a compressor.
[0009]
The control device for an internal combustion engine including the turbocharger with an electric motor according to the present invention may be configured to electrically drive the electric motor of the turbine with the electric motor when the acceleration request is equal to or more than a predetermined value.
[0010]
In the control device for an internal combustion engine including the turbocharger with a motor, when the acceleration request based on the accelerator pedal operation of the driver is equal to or more than a predetermined value, in order to rotate the turbine of the turbine with the motor in a direction in which the back pressure in the exhaust system decreases, The electric motor of the motor-equipped turbine is electrically driven. As the back pressure decreases, the residual gas in the cylinder on the other exhaust system side decreases, so that the amount of intake air to the internal combustion engine increases and the output of the internal combustion engine increases. That is, even the turbine with the electric motor assists the output of the internal combustion engine.
[0011]
The control device for an internal combustion engine including the turbocharger with a motor according to the present invention is configured such that, when the battery is in a charged state equal to or more than a predetermined state when the electric power is generated by the motor of the turbine with the motor, the electric power generated by the motor of the turbine with the motor is supplied to the motor. You may comprise so that it may be consumed by the electric drive of the electric motor of a turbocharger.
[0012]
In the control device for an internal combustion engine including the turbocharger with a motor, when the battery of the turbine with the motor has a charged state that is equal to or higher than a predetermined value when power is required to be generated by the motor of the turbine with the motor to consume exhaust energy, the motor of the turbine with the motor is required. The electric power generated by the electric motor is consumed by the electric drive of the electric motor of the turbocharger with the electric motor. By performing such control, it is possible to prevent deterioration of the battery due to overcharging, and to suppress overspeed of the motor-equipped turbine due to prohibition of power generation.
[0013]
The control device for an internal combustion engine provided with the turbocharger with a motor according to the present invention may be configured such that a rotational speed difference between the turbocharger with a motor and the turbine with a motor is within a predetermined range.
[0014]
In the control device for an internal combustion engine including the turbocharger with an electric motor, the electric motor of the turbocharger with the electric motor or / and the electric motor of the turbine with the electric motor are controlled so that the rotation speed difference between the turbocharger with the electric motor and the turbine with the electric motor falls within a predetermined range. Control to reduce the back pressure difference between the exhaust systems. When the back pressure difference between the exhaust systems increases, the combustion state between the cylinders of the internal combustion engine changes, so that a torque difference between cylinders, abnormal combustion, and the like occur. Therefore, by setting the rotation speed within a predetermined range, abnormal combustion or the like is prevented beforehand, the combustion efficiency is optimized, and the fuel efficiency is improved.
[0015]
Note that the predetermined range is a rotation speed difference between the turbocharger with electric motor and the turbine with electric motor to such an extent that an abnormality does not occur in the combustion state of each cylinder due to a back pressure difference between the exhaust systems.
[0016]
The control device for an internal combustion engine including the turbocharger with an electric motor according to the present invention may be configured to correct a combustion control value of the internal combustion engine according to a back pressure difference between one exhaust system and the other exhaust system. . As the combustion control value, an ignition timing and an air-fuel ratio are preferable.
[0017]
In the control device for an internal combustion engine including the turbocharger with an electric motor, the combustion control value of the internal combustion engine is corrected according to the back pressure difference between one exhaust system and the other exhaust system, thereby improving the combustion state in each cylinder. Keep it in good condition. Therefore, even if the back pressure difference between the exhaust systems cannot be suppressed by the control based on the difference in the number of times due to a control delay, a mechanical trouble of the electric motor, or the like, a torque difference between cylinders, abnormal combustion, and the like can be prevented.
[0018]
The combustion control value can change the combustion state of the internal combustion engine, and includes, for example, ignition timing, air-fuel ratio, injection timing, valve lift and opening / closing timing of a variable valve mechanism, and EGR [Exhaust Gas Recirculation]. ] And the like.
[0019]
The control device for an internal combustion engine provided with the turbocharger with an electric motor according to the present invention includes an exhaust purification catalyst provided downstream of a plurality of exhaust systems in the internal combustion engine. It is preferable that the air-fuel ratio of the cylinder of the system be made rich and the air-fuel ratio of the cylinder of the other exhaust system be made lean.
[0020]
In the control device for an internal combustion engine including the turbocharger with a motor, when increasing the catalyst temperature of the exhaust purification catalyst provided downstream of each exhaust system, the air-fuel ratio of the cylinder of the exhaust system on the turbocharger with the motor side is made rich. At the same time, the air-fuel ratio of the cylinder in the exhaust system of the turbine with a motor is made lean. At this time, the exhaust purification catalyst oxidizes when the air-fuel ratio is lean and reduces when the air-fuel ratio is rich to purify the exhaust gas, and the unburned gas and oxygen are supplied to increase the catalyst temperature. By controlling in this way, the target supercharging pressure is obtained by directly converting the exhaust energy to the rotational energy by the turbocharger with the electric motor from the side where the exhaust temperature is high due to the rich air-fuel ratio (that is, the exhaust energy is large). Energy efficiency is increased. By the way, a case where a target turbocharging pressure is obtained after converting exhaust energy into electric energy by a motor-equipped turbine, supplying the electric energy to a turbocharger with an electric motor, and further converting the electric energy into rotational energy with an electric motor , The conversion efficiency lowers the energy efficiency.
[0021]
In the control device for an internal combustion engine including the turbocharger with an electric motor according to the present invention, it is preferable that one of the exhaust systems is an exhaust system having a shorter length from the combustion chamber of each cylinder to the turbine.
[0022]
In the control device for an internal combustion engine having the turbocharger with a motor, the exhaust system on the motor turbocharger side is an exhaust system having a shorter length from the combustion chamber to the turbine, so that the exhaust system has a higher exhaust heat than an exhaust system with a longer exhaust system. Is not radiated, so that the exhaust temperature increases. Therefore, the target supercharging pressure can be obtained by directly converting the exhaust energy to the rotational energy by the turbocharger with a motor from the side where the exhaust temperature is high (that is, the exhaust energy is large), and the energy efficiency is increased.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a control device for an internal combustion engine including a turbocharger with a motor according to the present invention will be described with reference to the drawings.
[0024]
In the present embodiment, the control device according to the present invention is applied to an ECU [Electronic Control Unit] of an in-line four-cylinder lean-burn engine mounted on an automobile. The engine system according to the present embodiment includes two exhaust systems and an exhaust purification catalyst in each exhaust system in order to perform a lean operation and a rich operation for every two cylinders. Out of the inner two cylinders, and the second exhaust system exhausts the outer two cylinders. In the engine system according to the present embodiment, a turbocharger with a motor is provided in the first exhaust system, and a turbine with a motor is provided in the second exhaust system.
[0025]
With reference to FIG. 1, a configuration of an
[0026]
The
[0027]
The
[0028]
The
[0029]
Further, in the
[0030]
In the
[0031]
In the
[0032]
In the
[0033]
The exhaust
[0034]
Further, after the two
[0035]
The
[0036]
The electric motor 12 is a three-phase AC motor, assists the supercharging pressure of the
[0037]
The
[0038]
The
[0039]
The
[0040]
The
[0041]
The
[0042]
In particular, in the
[0043]
Further, the
[0044]
Note that the
[0045]
The oversized acceleration state is a state in which a large acceleration torque is rapidly required, and not only assists the
[0046]
The large acceleration state is a state in which a large acceleration torque is required. The electric motor 12 assists the
[0047]
The medium acceleration state is a state in which a moderate acceleration torque is required. The electric motor 12 assists the
[0048]
The slow acceleration state is a state in which a small acceleration torque is demanded to a steady state. The electric motor 12 does not perform assist and power generation, and the
[0049]
The deceleration state is a state from a steady state where there is no request for acceleration torque to a deceleration state. Both the
[0050]
Further, the
[0051]
Further, the
[0052]
Since the back pressure difference cannot be directly detected, it is estimated based on the engine speed and the like. For this purpose, the
[0053]
In addition, the
[0054]
For this purpose, the
[0055]
Alternatively, the
[0056]
Next, with reference to FIGS. 1 to 5, the operation of the
[0057]
First, the operation state control will be described. The operation state control is a basic control for the
[0058]
The
[0059]
When it is determined that the vehicle is in the oversized acceleration state, the
[0060]
When it is determined that the vehicle is in the large acceleration state, the
[0061]
When it is determined that the vehicle is in the middle acceleration state, the
[0062]
If it is determined that the vehicle is in the slow acceleration state, the
[0063]
When it is determined that the vehicle is in the deceleration state, the
[0064]
Next, the battery charge control will be described. The battery charge control is a control for charging the
[0065]
The
[0066]
In the case of full charge, the
[0067]
In particular, in the case of the moderate acceleration state, the
[0068]
Next, the back pressure difference control will be described. The back pressure difference control is executed when the
[0069]
The
[0070]
Then, the
[0071]
If the engine speed is equal to or higher than the upper limit back pressure difference speed in S2, the
[0072]
Then, the
[0073]
Subsequently, the
[0074]
If the rotational speed difference is equal to or greater than the upper limit rotational speed difference in S5, the
[0075]
If the rotational speed difference is less than the upper limit rotational speed difference in S5, the
[0076]
When the rotational speed difference is equal to or smaller than the lower limit rotational speed difference in S7, the
[0077]
By controlling the back pressure difference to be equal to or less than the upper limit back pressure difference, the combustion state in each of the
[0078]
Finally, combustion control value control will be described. The combustion control value control is performed when the back pressure difference is equal to or more than the upper limit back pressure difference when the
[0079]
The
[0080]
According to the
[0081]
In particular, in the
[0082]
Further, according to the engine system 1 (ECU 28), since the assist operation / power generation operation of the
[0083]
Further, according to the engine system 1 (ECU 28), when the
[0084]
Further, according to the engine system 1 (ECU 28), since the rotation speed of the
[0085]
As described above, the embodiments according to the present invention have been described, but the present invention is not limited to the above embodiments, but may be embodied in various forms.
[0086]
For example, in the present embodiment, the present invention is applied to an L4 type lean burn engine having two exhaust systems, but other types of engines such as an L6 type lean burn engine and an engine having exhaust systems on both left and right sides of a V type. The present invention is also applicable to an engine having a plurality of exhaust systems other than three systems, four systems, and two systems.
[0087]
In the present embodiment, the control device is configured by one ECU, but may be configured by a plurality of control devices. For example, the ECU of the engine and the controller of the electric motor may be configured separately.
[0088]
Further, in the present embodiment, when the back pressure difference between the exhaust systems is equal to or more than the upper limit back pressure difference, the turbine speed is controlled to be within a predetermined speed with respect to the turbocharger speed. May be controlled, or both of them may be controlled.
[0089]
Further, in the present embodiment, the back pressure difference between the exhaust systems is estimated based on the engine speed, but may be estimated from other factors such as the intake air amount detected by the air flow meter.
[0090]
Further, in the present embodiment, the combustion control value for controlling the combustion state in each cylinder is the ignition timing or the air-fuel ratio, but the fuel injection timing, the valve lift and opening / closing timing of the variable valve mechanism, and the EGR Another combustion control value such as a valve opening may be used, or the combustion state may be controlled by a plurality of combustion control values.
[0091]
Further, in the present embodiment, the map indicating the combustion control values such as the ignition timing and the air-fuel ratio is a two-dimensional map, but may be a three-dimensional map indicating the ignition timing with respect to the engine speed and the intake air amount.
[0092]
【The invention's effect】
According to the present invention, the structure of the intake system can be simplified, and the number of parts can be reduced.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an engine system according to the present embodiment.
FIG. 2 is a diagram showing control for each electric motor according to the present embodiment.
FIG. 3 is a map showing a back pressure difference according to an engine speed according to the present embodiment.
FIG. 4 is a correction map of an ignition timing according to a back pressure difference according to the present embodiment.
FIG. 5 is a correction map of an air-fuel ratio according to a back pressure difference according to the present embodiment.
FIG. 6 is a flowchart showing back pressure difference control according to the present embodiment.
[Explanation of symbols]
DESCRIPTION OF
Claims (9)
前記内燃機関は、
一方の排気系にタービン及びコンプレッサを有する電動機付ターボチャージャと、
他方の排気系にタービン及びコンプレッサのうちタービンのみを有する電動機付タービンと
を備え、
前記電動機付ターボチャージャの電動機及び前記電動機付タービンの電動機を制御することを特徴とする電動機付ターボチャージャを備える内燃機関の制御装置。In a control device for an internal combustion engine having a plurality of exhaust systems,
The internal combustion engine,
A turbocharger with a motor having a turbine and a compressor in one exhaust system,
The other exhaust system includes a turbine with a motor having only the turbine among the turbine and the compressor,
A control device for an internal combustion engine including a turbocharger with a motor, wherein the control device controls a motor of the turbocharger with a motor and a motor of a turbine with the motor.
前記排気浄化触媒の触媒温度を上昇させる時に、前記一方の排気系の気筒の空燃比をリッチにするとともに前記他方の排気系の気筒の空燃比をリーンにすることを特徴とする請求項1〜7のいずれか1項に記載する電動機付ターボチャージャを備える内燃機関の制御装置。The internal combustion engine includes an exhaust purification catalyst downstream of the plurality of exhaust systems,
The method according to claim 1, wherein, when raising the catalyst temperature of the exhaust purification catalyst, the air-fuel ratio of the one exhaust system cylinder is made rich and the air-fuel ratio of the other exhaust system cylinder is made lean. A control device for an internal combustion engine, comprising the turbocharger with a motor according to any one of claims 7 to 13.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002316376A JP4178912B2 (en) | 2002-10-30 | 2002-10-30 | Control device for internal combustion engine provided with turbocharger with electric motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002316376A JP4178912B2 (en) | 2002-10-30 | 2002-10-30 | Control device for internal combustion engine provided with turbocharger with electric motor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004150348A true JP2004150348A (en) | 2004-05-27 |
JP4178912B2 JP4178912B2 (en) | 2008-11-12 |
Family
ID=32460107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002316376A Expired - Fee Related JP4178912B2 (en) | 2002-10-30 | 2002-10-30 | Control device for internal combustion engine provided with turbocharger with electric motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4178912B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004034314A1 (en) * | 2004-07-15 | 2006-02-02 | Volkswagen Ag | Arrangement with an internal combustion engine |
JP2008031942A (en) * | 2006-07-31 | 2008-02-14 | Mazda Motor Corp | Engine with supercharger |
JP2008038606A (en) * | 2006-08-01 | 2008-02-21 | Mazda Motor Corp | Engine with supercharger |
EP2096277A1 (en) | 2008-02-27 | 2009-09-02 | MAGNETI MARELLI POWERTRAIN S.p.A. | Supercharged internal-combustion engine |
JP2010216484A (en) * | 2008-04-04 | 2010-09-30 | Masao Masuyama | Reduction of loss of output of heat engine |
US20160138463A1 (en) * | 2014-11-17 | 2016-05-19 | Arnold Magnetic Technologies | System and method for providing multiple voltage buses on a single vehicle |
JP2017122393A (en) * | 2016-01-06 | 2017-07-13 | 本田技研工業株式会社 | Internal combustion engine control device |
JP2017145716A (en) * | 2016-02-16 | 2017-08-24 | マツダ株式会社 | Turbocharged engine |
JP2018017200A (en) * | 2016-07-29 | 2018-02-01 | 本田技研工業株式会社 | Controller of internal combustion engine |
-
2002
- 2002-10-30 JP JP2002316376A patent/JP4178912B2/en not_active Expired - Fee Related
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004034314A1 (en) * | 2004-07-15 | 2006-02-02 | Volkswagen Ag | Arrangement with an internal combustion engine |
US7757489B2 (en) | 2004-07-15 | 2010-07-20 | Volkswagen Aktiengesellschaft | Engine configuration including an internal combustion engine |
JP2008031942A (en) * | 2006-07-31 | 2008-02-14 | Mazda Motor Corp | Engine with supercharger |
JP2008038606A (en) * | 2006-08-01 | 2008-02-21 | Mazda Motor Corp | Engine with supercharger |
EP2096277A1 (en) | 2008-02-27 | 2009-09-02 | MAGNETI MARELLI POWERTRAIN S.p.A. | Supercharged internal-combustion engine |
JP2010216484A (en) * | 2008-04-04 | 2010-09-30 | Masao Masuyama | Reduction of loss of output of heat engine |
US20160138463A1 (en) * | 2014-11-17 | 2016-05-19 | Arnold Magnetic Technologies | System and method for providing multiple voltage buses on a single vehicle |
JP2017122393A (en) * | 2016-01-06 | 2017-07-13 | 本田技研工業株式会社 | Internal combustion engine control device |
CN107035554A (en) * | 2016-01-06 | 2017-08-11 | 本田技研工业株式会社 | The control device of internal combustion engine |
US10364786B2 (en) | 2016-01-06 | 2019-07-30 | Honda Motor Co., Ltd. | Controller and internal combustion engine system |
JP2017145716A (en) * | 2016-02-16 | 2017-08-24 | マツダ株式会社 | Turbocharged engine |
JP2018017200A (en) * | 2016-07-29 | 2018-02-01 | 本田技研工業株式会社 | Controller of internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
JP4178912B2 (en) | 2008-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2165059B1 (en) | Internal combustion engine exhaust gas control system and control method of internal combustion engine exhaust gas control system | |
JP4380674B2 (en) | Supercharging pressure control device | |
US9821795B2 (en) | Hybrid vehicle and control method for hybrid vehicle | |
JP4844342B2 (en) | Vehicle control device | |
JP5217995B2 (en) | Control device for internal combustion engine | |
WO2010079609A1 (en) | Control device for vehicle | |
JP4103539B2 (en) | Control device for internal combustion engine provided with turbocharger with generator | |
JP4182846B2 (en) | Control device for internal combustion engine | |
JP2005163667A (en) | Control method for internal combustion engine in hybrid vehicle | |
JP3846223B2 (en) | Control device for vehicle having internal combustion engine with supercharger and transmission | |
JP7028329B2 (en) | Vehicle control method and vehicle control device | |
JP4178912B2 (en) | Control device for internal combustion engine provided with turbocharger with electric motor | |
KR102146868B1 (en) | Hybrid vehicle | |
JP6430270B2 (en) | Electric regenerative turbocharger | |
JP2003239754A (en) | Supercharging pressure controller | |
JP4086005B2 (en) | Warm-up control method of low compression ratio engine in diesel hybrid vehicle | |
JP2008155682A (en) | Control device of internal combustion engine | |
JPH10288063A (en) | Idling control device for hybrid engine | |
JP2008075574A (en) | Supercharging control device | |
JP2005069029A (en) | Controller of internal combustion engine | |
JP2003322038A (en) | Internal-combustion engine control device | |
JP7477049B2 (en) | Hybrid vehicle control method and hybrid vehicle control device | |
JP2006046297A (en) | Controller for hybrid vehicle | |
JP7342816B2 (en) | Series hybrid vehicle exhaust treatment system | |
JP7395007B2 (en) | Vehicle control method and vehicle control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050908 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080805 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080818 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110905 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |