JP2004149742A - Method for producing fuel - Google Patents

Method for producing fuel Download PDF

Info

Publication number
JP2004149742A
JP2004149742A JP2002319593A JP2002319593A JP2004149742A JP 2004149742 A JP2004149742 A JP 2004149742A JP 2002319593 A JP2002319593 A JP 2002319593A JP 2002319593 A JP2002319593 A JP 2002319593A JP 2004149742 A JP2004149742 A JP 2004149742A
Authority
JP
Japan
Prior art keywords
ocor
general formula
fuel
triglyceride
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002319593A
Other languages
Japanese (ja)
Other versions
JP4123899B2 (en
Inventor
Hiroo Sagami
博生 相模
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002319593A priority Critical patent/JP4123899B2/en
Publication of JP2004149742A publication Critical patent/JP2004149742A/en
Application granted granted Critical
Publication of JP4123899B2 publication Critical patent/JP4123899B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/74Recovery of fats, fatty oils, fatty acids or other fatty substances, e.g. lanolin or waxes

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a fuel from a triglyceride in high efficiency. <P>SOLUTION: An ester expressed by general formula (III) (CH<SB>2</SB>OCOR<SB>4</SB>)<SB>2</SB>CHOCOR<SB>4</SB>and an ester expressed by general formula (IV) R<SB>5</SB>OCOR<SB>1</SB>, general formula (V) R<SB>5</SB>OCOR<SB>2</SB>and general formula (VI) R<SB>5</SB>OCOR<SB>3</SB>are produced by the transesterification reaction of a triglyceride expressed by general formula (I) CH<SB>2</SB>OCOR<SB>1</SB>CHOCOR<SB>2</SB>CH<SB>2</SB>OCOR<SB>3</SB>with a carboxylic acid ester expressed by general formula (II) R<SB>4</SB>OCOR<SB>5</SB>(in the formulas, R<SB>1</SB>, R<SB>2</SB>and R<SB>3</SB>are each a saturated aliphatic or unsaturated aliphatic group having about 6-24 carbon atoms wherein the saturated aliphatic or unsaturated aliphatic group may contain hydroxy group; R<SB>4</SB>is a 1-3C alkyl; and R<SB>5</SB>is a 1-24C alkyl). The produced esters of general formulas (III) to (VI) can be used as a good fuel. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、合成油,植物油および動物油等の各種油脂,あるいは天ぷら油等の廃油より得られる燃料の製造方法に関する。
【0002】
【従来の技術】
灯油,軽油,重油等の化石液体燃料は、取り扱いの容易さや安価であることから、従来より一般に用いられているものであるが、近年資源の枯渇が問題となっており、かつ、燃焼により発生するSOやNO,CO等の生成物が大気汚染の原因ともなっている。このことから、近年では、植物油や動物油等の再生産可能な原料(バイオマス)を用いた燃料が開発されている。例えば、バイオマスを用いた燃料の代表的なものであるバイオディーゼルは、従来の石油液体燃料を用いた内燃機関と同じ内燃機関を使用可能であるとともに、排ガス放出量を大幅に低減させることが可能となる。
【0003】
このような燃料としては、通常、合成油,植物油および動物油等に含まれるトリグリセリドより合成されたエステルが用いられている。このエステルを製造する方法としては、例えば、トリグリセリドとメタノールおよびアルカリ触媒を反応させる方法や、トリグリセリドと超臨界メタノールを反応させる方法等がある(例えば、特許文献1,2参照)。
【0004】
ここで、特許文献1に記載されるような燃料の製造方法においては、アルカリ触媒が用いられるため、この製造方法で得られた燃料はアルカリの除去処理をおこなう必要がある。すなわち、アルカリが存在していると、遊離の脂肪酸あるいは脂肪酸化合物と反応してアルカリ石鹸となることから、得られた燃料をそのまま使用することは困難である。また、アルカリが存在した燃料は、燃料配管を腐食させる問題もある。
【0005】
また、特許文献1および特許文献2に記載されるような燃料の製造方法によると、原料である天然油脂(トリグリセリド)に対応する脂肪酸のメチルエステル化物が得られる。この脂肪酸のメチルエステル化物は燃料としてそのまま使用することが可能であるが、副産物としてグリセロールが生成する。グリセロールは燃料として使用することができないため、特許文献1および特許文献2に記載されるような方法で製造された生成物を燃料として用いるためには、燃料蒸留等の方法でこのグリセロールを除去する工程が必要となる。しかし、グリセロールの除去は困難な工程であり、かつ、回収されたグリセロールは廃棄されることとなるため、廃棄物を多く生じるとともに生産効率に劣る問題もあった。
【0006】
【特許文献1】
特開平10−237470号公報
【特許文献2】
特開2000−204392号公報
【0007】
【発明が解決しようとする課題】
本発明は上記の事情に鑑みてなされたもので、トリグリセリドを原料とした燃料を効率よく製造することを可能とする燃料の製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の燃料の製造方法は、一般式(I)CHOCORCHOCORCHOCORで表されるトリグリセリドと一般式(II)ROCORで表されるカルボン酸エステルとをエステル交換反応させて、一般式(III)(CHOCORCHOCORで表されるエステルと一般式(IV)ROCOR,一般式(V)ROCORおよび一般式(VI)ROCORで表されるエステルとを得ることを特徴とする。(式中、R,RおよびRは、約6〜24個の炭素原子を含有する飽和脂肪族または不飽和脂肪族を表し、この飽和脂肪族または不飽和脂肪族はヒドロキシ基を含む場合もある。また、式中、Rは炭素数1〜3のアルキル基,Rは炭素数1〜24のアルキル基を表す。)
上述したように、通常の製造方法によると、エステル交換反応の副産物として燃料として使用できないグリセロールが生成する。このため、製造工程にはグリセロールを分離する分離・精製工程が必要であったが、グリセロールを分離する工程は困難であるとともに高コストを要する工程であった。
【0009】
本発明の構成によると、トリグリセリドとカルボン酸エステルとにより生成する一般式(IV)〜(VI)のエステルは、通常の製造方法により製造される脂肪酸由来のエステル燃料と同様に燃料として使用することができ、かつ、一般式(III)のエステルもまた燃料として使用することができる。したがって、不要な反応生成物を生成することなく、製造工程を低減することが可能となる。燃料を効率よく製造することができる。また、不要な反応生成物が生成しないことから、燃料としての収率が著しく向上する。
【0010】
また、本発明の燃料の製造方法において、上記カルボン酸エステルは、酢酸メチル,酢酸エチル,酢酸プロピル,酢酸ブチル,プロピオン酸メチル,プロピオン酸エチル,プロピオン酸ブチル,酪酸メチル,酪酸エチルまたは酪酸ブチルから選ばれる少なくとも一種であることが好ましい。
【0011】
そして、上記エステル交換反応は130℃〜400℃の温度条件でおこなわれることが好ましい。
【0012】
【発明の実施の形態】
本発明の燃料の製造方法は、一般式(I)CHOCORCHOCORCHOCORで表されるトリグリセリドと一般式(II)ROCORで表されるカルボン酸エステルとをエステル交換反応させるものである。
【0013】
一般式(I)で表されるトリグリセリドは、R,RおよびRが約6〜24個の炭素原子を含有するものであれば良く、R,RおよびRは飽和脂肪族であってもよいし、モノ,ジ,トリ不飽和脂肪族であってもよい。さらに、R,RおよびRはヒドロキシ基を含むものであってもよい。ここで限定されるトリグリセリドのR〜Rの炭素数は、通常、トリグリセリドよりエステル交換反応で得られた一般式(IV)〜(VI)に示されるエステルが燃料として好適に使用されるといわれる範囲である。
【0014】
このようなトリグリセリドとしては、植物油や動物油等の天然油脂に含まれるものあるいは化学的に合成されたもの等種々のものを用いることができる。また、このトリグリセリドは精製されたものであっても良いし、未精製のもの、例えば植物油や動物油等を直接使用するものであっても良い。植物油および動物油としては、魚油、牛脂や豚脂等の獣油、サフラワー油,ひまわり油,アマニ油,大豆油,菜種油,綿実油,オリーブ油,パーム油,コーン油,ゴマ油,ヒマシ油等の植物油等の通常のものを使用することができる。これらの油脂は1種のみを使用することもできるし2種以上を混合して用いることもできる。さらに、これらの油脂は天ぷら油等の廃油であっても良い。
【0015】
一般式(II)で表されるカルボン酸エステルは、式中Rが炭素数1〜3のアルキル基,Rが炭素数1〜24のアルキル基となるものであればよい。Rがこの範囲のものは、後述するエステル交換反応によって得られる一般式(III)で表されるエステルを燃料として良好に使用することができる。Rがこれ以上になると、粘性が高くなり,揮発性が低くなり,着火性が高くなるため好ましくない。また、Rがこれ以上になる場合も同様に、粘性が高くなり,揮発性が低くなり,着火性が高くなるため好ましくない。参考までに、一般軽油の凝固点は−10℃であり沸点は170℃〜365℃であるが、本発明の燃料の製造方法においてRおよびRをこの範囲のものとすることで同等の性質を有する燃料を得ることができる。
【0016】
このようなカルボン酸エステルとしては酢酸メチル,酢酸プロピル,酢酸ブチル,プロピオンメチル,プロピオン酸エチル,プロピオン酸ブチル,酪酸メチル,酪酸エチル,酪酸ブチルを用いることが好ましく、酢酸メチルが特に好ましい。カルボン酸エステルとしてこれらのものを用いることで、より低沸点の燃料を合成可能となるからである。
【0017】
本発明の燃料の製造方法において、エステル交換反応は密閉・高温条件下等の通常の条件でおこなうことができ、温度条件は130℃〜400℃の範囲内であることが好ましい。温度条件がこれ以下であると良好なエステル交換反応が生じにくくなり温度条件がこれ以上であるとカルボン酸エステルの安定性が悪くなるため好ましくない。また、後述する実施例に示されるように、200℃以上の温度条件で、より良好にエステル交換反応が生じることから、200℃以上の温度条件であることがより好ましい。
【0018】
本発明の燃料の製造方法において、上述した一般式(I)で表されるトリグリセリドと一般式(II)で表されるカルボン酸エステルとのエステル交換反応によって、一般式(III)(CHOCORCHOCORで表されるエステルと一般式(IV)ROCOR,一般式(V)ROCORおよび一般式(VI)ROCORで表されるエステルとが得られる。
【0019】
上述したように、一般式(III)で表されるエステルはRがR炭素数1〜3のアルキル基であり、燃料として好適に使用されるものである。そして、一般式(IV)〜(VI)で表されるエステルは通常の燃料の製造方法で製造されるエステルと同様のものであり、これも燃料として好適に使用されるものである。すなわち、本発明の燃料の製造方法によると、得られた反応生成物はそのまま燃料として使用可能であることから、製造工程を低減するとともに燃料としての収率を顕著に向上させることができ、コストを低減することが可能となる。
【0020】
なお、本発明の燃料の製造方法において、トリグリセリド原料として廃油等を用いる場合には予めフィルタープレス等の既知の濾過機を用いて不純物を除去することが好ましい。この際、活性白土,珪藻土,ゼオライト,活性炭等の既知の濾材を用いることもできる。この濾材の量は廃油の種類や廃油中に含有される不純物の量等に応じて適宜設定することができる。
【0021】
【実施例】
以下、実施例により具体的に説明する。
【0022】
〔実施例1〕
本発明の実施例1の燃料の製造方法は、トリグリセリド原料としてひまわり油を用い、カルボン酸エステルとして酢酸メチルを用いた例である。
【0023】
ひまわり油20mg,酢酸メチル1gを反応管(SUS製,長さ100mm,内径3.8mm,外径6.35mm)内に密封した。
【0024】
この反応管を以下に示す各反応温度および各反応時間の条件で加熱してトリグリセリドとカルボン酸エステルのエステル交換反応をおこなった。加熱後、各々の反応管を室温まで冷却して反応物を回収した。
【0025】
本実施例1におけるエステル交換反応を下式に示す。
【0026】
【化1】

Figure 2004149742
【0027】
(1−1)
加熱温度;130℃,160℃,200℃,230℃,260℃,290℃
加熱時間;90分間
(1−2)
加熱温度;200℃
加熱時間;30分間,60分間,90分間,120分間,150分間,180分間
〔実施例2〕
本発明の実施例2の燃料の製造方法は、トリグリセリド原料として大豆油を用い、カルボン酸エステルとして酢酸メチルを用いた例である。本実施例2においても実施例1と同様に各反応温度および反応時間の条件で反応管を加熱し、トリグリセリドとカルボン酸エステルのエステル交換反応をおこない、実施例1と同様に冷却後反応物を回収した。
(2−1)
加熱温度;130℃,160℃,200℃,230℃,260℃,290℃
加熱時間;90分間
(2−2)
加熱温度;200℃
加熱時間;30分間,60分間,90分間,120分間,150分間,180分間
〈実施例3〉
本発明の実施例3の燃料の製造方法は、トリグリセリド原料として大豆油を用い、カルボン酸エステルとして酢酸メチルを用いた例である。本実施例3においても実施例1と同様に各反応温度および反応時間の条件で反応管を加熱し、トリグリセリドとカルボン酸エステルのエステル交換反応をおこない、実施例1と同様に冷却後反応物を回収した。
(3−1)
加熱温度;130℃,160℃,200℃,230℃,260℃,290℃
加熱時間;90分間
(3−2)
加熱温度;200℃
加熱時間;30分間,60分間,90分間,120分間,150分間,180分間
〔反応生成物分析試験〕
実施例1〜3で得られた各トリグリセリド原料由来の反応生成物を各々ガスクロマトグラフィーにより分析し、各反応生成物の生成量を分析した。ガスクロマトグラフ分析の条件は以下の通りである。
カラム;キャピラリカラムDB−1(30m)
オーブン;50→300℃(20min Hold)10℃/min Up
検出器;FID
なお、反応生成物の同定はGC−MSを用い、得られたマススペクトルでおこなった。実施例2−1(トリグリセリド原料;大豆油,加熱温度;260℃、加熱時間;90分)の反応生成物の同定結果を図1に示す。
【0028】
上記の分析試験により得られた各エステルの収率を計算した。収率は、各エステルの標準品による検量線をもちいて算出した。検量線作成に用いた各エステルの標準品としては、トリアセチン,パルミチン酸メチル,リノール酸メチル,オレイン酸メチル,ステアリン酸メチルなどを用いた。まず、各トリグリセリド原料に含まれる各トリグリセリドの理論値と、各トリグリセリドに含まれる脂肪酸骨格およびグリセロール骨格の理論値より、反応が完全におこなわれた場合の各エステルの各重量の理論値を算出する。次いで、反応生成物をガスクロマトグラフィにて分析し、実際に生成した各エステルの重量の実測値を得る。この各エステルの実測値と先に算出した各エステルの理論値とを用い、各々のエステルについて理論値を100%とした場合の収率を算出した。最後に各々の収率の平均をとり、反応生成物の収率とした。本反応生成物分析試験により得られた反応生成物の収率を図2および図3に示す。
【0029】
図1に示すように、本発明の実施例1〜3の燃料の製造方法で得られた生成物中にはトリアセチンおよび各種脂肪酸のメチルエステルが生成する。そして、図2に示すように、原料となるトリアセチンを含む油脂の種類によって差はあるものの、加熱時間90分の反応条件下において温度条件が200℃以上でより収率が向上し、加熱温度230℃以上で収率はほぼ100%となる。
【0030】
また、図3に示すように、本実施例1〜3の燃料の製造方法で得られた生成物中に含まれるトリアセチレンの収率は、上記と同様に油脂の種類によって差はあるものの、加熱温度200℃の温度条件下で加熱時間90分以上でより向上し、加熱時間120分以上でほぼ100%となる。
【0031】
これらの結果から、本発明の燃料の製造方法によると、燃料として使用できるトリアセチンおよび脂肪酸のメチルエステルが非常に高い収率で得られることがわかる。
【0032】
【発明の効果】
以上述べてきたように、本発明の燃料の製造方法によると、燃料として使用できるエステルを非常に高い収率で得ることができる。そして、収率が非常に高い、すなわち、燃料として使用できないグリセロール等の副産物が生成しないことから、分離・精製の煩雑な工程を必要とせず、トリグリセリドを原料とした燃料を効率よく製造することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施例2−1の反応生成物の同定結果である。
【図2】本発明の実施例1〜3の燃料の製造方法で得られたエステルの収率を表すグラフである。
【図3】本発明の実施例1〜3の燃料の製造方法で得られたエステルの収率を表すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a fuel obtained from various fats and oils such as synthetic oil, vegetable oil and animal oil, or waste oil such as tempura oil.
[0002]
[Prior art]
Fossil liquid fuels, such as kerosene, light oil, and heavy oil, have been commonly used for some time because they are easy to handle and inexpensive. However, in recent years, depletion of resources has become a problem, and it has been generated by combustion. Products such as SO X , NO X , and CO which cause air pollution. For this reason, in recent years, fuels using reproducible raw materials (biomass) such as vegetable oils and animal oils have been developed. For example, biodiesel, a typical example of fuel using biomass, can use the same internal combustion engine as conventional internal combustion engines using petroleum liquid fuel, and can significantly reduce exhaust gas emissions. It becomes.
[0003]
As such fuels, esters synthesized from triglycerides contained in synthetic oils, vegetable oils, animal oils and the like are usually used. Examples of the method for producing this ester include a method of reacting triglyceride with methanol and an alkali catalyst, and a method of reacting triglyceride with supercritical methanol (for example, see Patent Documents 1 and 2).
[0004]
Here, in the fuel production method described in Patent Document 1, since an alkali catalyst is used, the fuel obtained by this production method needs to be subjected to alkali removal treatment. That is, when an alkali is present, it reacts with a free fatty acid or a fatty acid compound to form an alkali soap. Therefore, it is difficult to use the obtained fuel as it is. Further, the fuel in which the alkali is present has a problem of corroding the fuel pipe.
[0005]
According to the fuel production methods described in Patent Literature 1 and Patent Literature 2, a methyl ester of a fatty acid corresponding to a natural fat or oil (triglyceride) as a raw material can be obtained. The methyl ester of this fatty acid can be used as a fuel as it is, but glycerol is produced as a by-product. Since glycerol cannot be used as a fuel, in order to use a product produced by a method described in Patent Documents 1 and 2 as a fuel, the glycerol is removed by a method such as fuel distillation. A process is required. However, the removal of glycerol is a difficult step, and the recovered glycerol is discarded, so that a large amount of waste is generated and the production efficiency is poor.
[0006]
[Patent Document 1]
JP 10-237470 A [Patent Document 2]
JP 2000-204392 A
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a fuel production method capable of efficiently producing a fuel using triglyceride as a raw material.
[0008]
[Means for Solving the Problems]
The method for producing a fuel of the present invention comprises transesterifying a triglyceride represented by the general formula (I) CH 2 OCOR 1 CHOCOR 2 CH 2 OCOR 3 with a carboxylic acid ester represented by the general formula (II) R 4 OCOR 5 By reacting, the ester represented by the general formula (III) (CH 2 OCOR 4 ) 2 CHOCOR 4 is reacted with the general formula (IV) R 5 OCOR 1 , the general formula (V) R 5 OCOR 2 and the general formula (VI) R 5 An ester represented by OCOR 3 is obtained. Wherein R 1 , R 2 and R 3 represent a saturated or unsaturated aliphatic containing about 6 to 24 carbon atoms, wherein the saturated or unsaturated aliphatic contains a hydroxy group In the formula, R 4 represents an alkyl group having 1 to 3 carbon atoms, and R 5 represents an alkyl group having 1 to 24 carbon atoms.)
As described above, according to the usual production method, glycerol which cannot be used as a fuel is produced as a by-product of the transesterification reaction. For this reason, the production process required a separation / purification step for separating glycerol, but the step for separating glycerol was difficult and required high cost.
[0009]
According to the constitution of the present invention, the esters of the general formulas (IV) to (VI) formed from triglycerides and carboxylic acid esters can be used as fuels in the same manner as fatty acid-derived ester fuels produced by a usual production method. And esters of the general formula (III) can also be used as fuel. Therefore, it is possible to reduce the number of manufacturing steps without generating unnecessary reaction products. Fuel can be produced efficiently. Further, since no unnecessary reaction product is generated, the yield as a fuel is significantly improved.
[0010]
Further, in the method for producing a fuel according to the present invention, the carboxylate is obtained from methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl propionate, ethyl propionate, butyl propionate, methyl butyrate, ethyl butyrate or butyl butyrate. It is preferably at least one selected.
[0011]
The transesterification reaction is preferably performed under a temperature condition of 130C to 400C.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The method for producing a fuel of the present invention comprises transesterifying a triglyceride represented by the general formula (I) CH 2 OCOR 1 CHOCOR 2 CH 2 OCOR 3 with a carboxylic acid ester represented by the general formula (II) R 4 OCOR 5 To react.
[0013]
The triglyceride represented by the general formula (I) may be such that R 1 , R 2 and R 3 contain about 6 to 24 carbon atoms, and R 1 , R 2 and R 3 are saturated aliphatic Or a mono-, di-, or tri-unsaturated aliphatic. Further, R 1 , R 2 and R 3 may contain a hydroxy group. The carbon number of R 1 to R 3 of the triglyceride limited here is usually such that the esters represented by the general formulas (IV) to (VI) obtained by transesterification from triglyceride are preferably used as a fuel. Range.
[0014]
As such a triglyceride, various substances such as those contained in natural fats and oils such as vegetable oils and animal oils and those chemically synthesized can be used. The triglyceride may be a purified one or an unpurified one, for example, a vegetable oil or an animal oil directly used. Vegetable oils and animal oils include animal oils such as fish oil, beef tallow and lard, safflower oil, sunflower oil, linseed oil, soybean oil, rapeseed oil, cottonseed oil, olive oil, palm oil, corn oil, sesame oil, castor oil, and other vegetable oils. Can be used. These fats and oils can be used alone or in combination of two or more. Further, these fats and oils may be waste oils such as tempura oil.
[0015]
The carboxylic acid ester represented by the general formula (II) may be any one in which R 4 is an alkyl group having 1 to 3 carbon atoms and R 5 is an alkyl group having 1 to 24 carbon atoms. When R 4 is in this range, an ester represented by the general formula (III) obtained by a transesterification reaction described later can be favorably used as a fuel. If R 4 is more than this, viscosity increases, volatility decreases, and ignitability increases, which is not preferable. Likewise, if R 5 is more, the viscosity becomes high, volatility is low, undesirably increases ignitability. For reference, general gas oil has a freezing point of -10 ° C and a boiling point of 170 ° C to 365 ° C, but the same properties can be obtained by setting R 4 and R 5 in this range in the fuel production method of the present invention. Can be obtained.
[0016]
As such a carboxylic acid ester, it is preferable to use methyl acetate, propyl acetate, butyl acetate, propionmethyl, ethyl propionate, butyl propionate, methyl butyrate, ethyl butyrate, and butyl butyrate, and particularly preferably methyl acetate. By using these as the carboxylic acid ester, a fuel having a lower boiling point can be synthesized.
[0017]
In the method for producing a fuel of the present invention, the transesterification reaction can be carried out under ordinary conditions such as closed and high temperature conditions, and the temperature condition is preferably in the range of 130 ° C to 400 ° C. If the temperature condition is lower than this, a favorable transesterification reaction hardly occurs, and if the temperature condition is higher than this, the stability of the carboxylic acid ester deteriorates, which is not preferable. In addition, as shown in Examples described later, the transesterification reaction occurs more favorably at a temperature condition of 200 ° C. or higher. Therefore, it is more preferable that the temperature condition is 200 ° C. or higher.
[0018]
In the method for producing a fuel according to the present invention, a transesterification reaction between the triglyceride represented by the general formula (I) and the carboxylic acid ester represented by the general formula (II) provides a general formula (III) (CH 2 OCOR). 4) 2 represented by esters with general formula CHOCOR 4 (IV) R 5 OCOR 1, the general formula (V) R 5 OCOR 2 and general formula (VI) is an ester represented by R 5 OCOR 3 is obtained.
[0019]
As described above, in the ester represented by the general formula (III), R 4 is R 4 , an alkyl group having 1 to 3 carbon atoms, and is preferably used as a fuel. The esters represented by the general formulas (IV) to (VI) are the same as the esters produced by the usual fuel production method, and are also suitably used as fuels. That is, according to the fuel production method of the present invention, the obtained reaction product can be used as fuel as it is, so that the production process can be reduced and the yield as fuel can be remarkably improved. Can be reduced.
[0020]
In the fuel production method of the present invention, when using waste oil or the like as a triglyceride raw material, it is preferable to remove impurities using a known filter such as a filter press in advance. At this time, a known filter medium such as activated clay, diatomaceous earth, zeolite, and activated carbon can be used. The amount of the filter medium can be appropriately set according to the type of waste oil, the amount of impurities contained in the waste oil, and the like.
[0021]
【Example】
Hereinafter, specific examples will be described.
[0022]
[Example 1]
The fuel production method of Example 1 of the present invention is an example in which sunflower oil is used as a triglyceride raw material and methyl acetate is used as a carboxylic acid ester.
[0023]
20 mg of sunflower oil and 1 g of methyl acetate were sealed in a reaction tube (made of SUS, length 100 mm, inner diameter 3.8 mm, outer diameter 6.35 mm).
[0024]
This reaction tube was heated at the following reaction temperatures and reaction times to carry out transesterification of triglyceride and carboxylic acid ester. After heating, each reaction tube was cooled to room temperature to collect a reaction product.
[0025]
The transesterification reaction in Example 1 is shown by the following formula.
[0026]
Embedded image
Figure 2004149742
[0027]
(1-1)
Heating temperature: 130 ° C, 160 ° C, 200 ° C, 230 ° C, 260 ° C, 290 ° C
Heating time: 90 minutes (1-2)
Heating temperature: 200 ° C
Heating time: 30 minutes, 60 minutes, 90 minutes, 120 minutes, 150 minutes, 180 minutes [Example 2]
The fuel production method of Example 2 of the present invention is an example in which soybean oil is used as a triglyceride raw material and methyl acetate is used as a carboxylic acid ester. In this Example 2, as in Example 1, the reaction tube was heated under the conditions of each reaction temperature and reaction time to carry out transesterification of triglyceride and carboxylic acid ester. Collected.
(2-1)
Heating temperature: 130 ° C, 160 ° C, 200 ° C, 230 ° C, 260 ° C, 290 ° C
Heating time: 90 minutes (2-2)
Heating temperature: 200 ° C
Heating time: 30 minutes, 60 minutes, 90 minutes, 120 minutes, 150 minutes, 180 minutes <Example 3>
The method for producing a fuel according to the third embodiment of the present invention is an example in which soybean oil is used as a triglyceride raw material and methyl acetate is used as a carboxylic acid ester. In Example 3, the reaction tube was heated under the conditions of each reaction temperature and reaction time as in Example 1 to perform transesterification of triglyceride and carboxylic acid ester. After cooling, the reaction product was cooled in the same manner as in Example 1. Collected.
(3-1)
Heating temperature: 130 ° C, 160 ° C, 200 ° C, 230 ° C, 260 ° C, 290 ° C
Heating time: 90 minutes (3-2)
Heating temperature: 200 ° C
Heating time: 30 minutes, 60 minutes, 90 minutes, 120 minutes, 150 minutes, 180 minutes [Reaction product analysis test]
The reaction products derived from the triglyceride raw materials obtained in Examples 1 to 3 were each analyzed by gas chromatography, and the amount of each reaction product was analyzed. The conditions for gas chromatography analysis are as follows.
Column: Capillary column DB-1 (30m)
Oven; 50 → 300 ℃ (20min Hold) 10 ℃ / min Up
Detector; FID
The reaction product was identified using GC-MS and the obtained mass spectrum. FIG. 1 shows the identification result of the reaction product of Example 2-1 (triglyceride raw material; soybean oil, heating temperature: 260 ° C., heating time: 90 minutes).
[0028]
The yield of each ester obtained by the above analytical test was calculated. The yield was calculated using a calibration curve of each ester as a standard. Triacetin, methyl palmitate, methyl linoleate, methyl oleate, methyl stearate, and the like were used as standard products of each ester used for preparing the calibration curve. First, from the theoretical value of each triglyceride contained in each triglyceride raw material and the theoretical value of the fatty acid skeleton and glycerol skeleton contained in each triglyceride, calculate the theoretical value of each weight of each ester when the reaction is completely performed. . Next, the reaction product is analyzed by gas chromatography to obtain the measured value of the weight of each ester actually formed. Using the measured value of each ester and the theoretical value of each ester previously calculated, the yield was calculated for each ester when the theoretical value was 100%. Lastly, the average of the respective yields was calculated to obtain the yield of the reaction product. FIGS. 2 and 3 show the yield of the reaction product obtained by the reaction product analysis test.
[0029]
As shown in FIG. 1, triacetin and methyl esters of various fatty acids are produced in the products obtained by the fuel production methods of Examples 1 to 3 of the present invention. Then, as shown in FIG. 2, although there is a difference depending on the kind of the fat or oil containing triacetin as a raw material, the yield is further improved at a temperature condition of 200 ° C. or more under the reaction conditions of a heating time of 90 minutes, and the heating temperature is 230 Above ℃, the yield is almost 100%.
[0030]
As shown in FIG. 3, although the yield of triacetylene contained in the products obtained by the fuel production methods of Examples 1 to 3 is different depending on the type of fats and oils as described above, Under a heating condition of a heating temperature of 200 ° C., the heating time is more improved when the heating time is 90 minutes or more, and becomes almost 100% when the heating time is 120 minutes or more.
[0031]
From these results, it can be seen that according to the fuel production method of the present invention, triacetin and a fatty acid methyl ester which can be used as a fuel can be obtained in a very high yield.
[0032]
【The invention's effect】
As described above, according to the fuel production method of the present invention, an ester that can be used as a fuel can be obtained in a very high yield. And since the yield is very high, that is, since by-products such as glycerol which cannot be used as a fuel are not generated, a complicated process of separation and purification is not required, and it is possible to efficiently produce a fuel using triglyceride as a raw material. It becomes possible.
[Brief description of the drawings]
FIG. 1 shows identification results of a reaction product of Example 2-1 of the present invention.
FIG. 2 is a graph showing the yield of an ester obtained by the method for producing a fuel of Examples 1 to 3 of the present invention.
FIG. 3 is a graph showing the yield of an ester obtained by the method for producing a fuel of Examples 1 to 3 of the present invention.

Claims (4)

一般式(I)CHOCORCHOCORCHOCORで表されるトリグリセリドと一般式(II)ROCORで表されるカルボン酸エステルとをエステル交換反応させて、一般式(III)(CHOCORCHOCORで表されるエステルと一般式(IV)ROCOR,一般式(V)ROCORおよび一般式(VI)ROCORで表されるエステルとを得ることを特徴とする燃料の製造方法。
(式中、R,RおよびRは、約6〜24個の炭素原子を含有する飽和脂肪族または不飽和脂肪族を表し、この飽和脂肪族または不飽和脂肪族はヒドロキシ基を含む場合もある。また、式中、Rは炭素数1〜3のアルキル基,Rは炭素数1〜24のアルキル基を表す。)
By subjecting a triglyceride represented by the general formula (I) CH 2 OCOR 1 CHOCOR 2 CH 2 OCOR 3 and a carboxylic acid ester represented by the general formula (II) R 4 OCOR 5 to a transesterification reaction, the general formula (III) An ester represented by (CH 2 OCOR 4 ) 2 CHOCOR 4 and an ester represented by the general formula (IV) R 5 OCOR 1 , the general formula (V) R 5 OCOR 2, and the general formula (VI) R 5 OCOR 3 A method for producing a fuel, comprising:
Wherein R 1 , R 2 and R 3 represent a saturated or unsaturated aliphatic containing about 6 to 24 carbon atoms, wherein the saturated or unsaturated aliphatic contains a hydroxy group In the formula, R 4 represents an alkyl group having 1 to 3 carbon atoms, and R 5 represents an alkyl group having 1 to 24 carbon atoms.)
前記カルボン酸エステルは、酢酸メチル,酢酸エチル,酢酸プロピル,酢酸ブチル,プロピオン酸メチル,プロピオン酸エチル,プロピオン酸ブチル,酪酸メチル,酪酸エチルまたは酪酸ブチルから選ばれる少なくとも一種である請求項1に記載の燃料の製造方法。The said carboxylic acid ester is at least 1 type chosen from methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl propionate, ethyl propionate, butyl propionate, methyl butyrate, ethyl butyrate, or butyl butyrate. Fuel production method. 前記エステル交換反応は130℃〜400℃の温度条件でおこなわれる請求項1または請求項2に記載の燃料の製造方法。The method for producing a fuel according to claim 1, wherein the transesterification reaction is performed under a temperature condition of 130 ° C. to 400 ° C. 4. 前記エステル交換反応は200℃〜400℃の温度条件でおこなわれる請求項1または請求項2に記載の燃料の製造方法。The method for producing a fuel according to claim 1, wherein the transesterification reaction is performed under a temperature condition of 200 ° C. to 400 ° C. 4.
JP2002319593A 2002-11-01 2002-11-01 Fuel production method Expired - Fee Related JP4123899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002319593A JP4123899B2 (en) 2002-11-01 2002-11-01 Fuel production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002319593A JP4123899B2 (en) 2002-11-01 2002-11-01 Fuel production method

Publications (2)

Publication Number Publication Date
JP2004149742A true JP2004149742A (en) 2004-05-27
JP4123899B2 JP4123899B2 (en) 2008-07-23

Family

ID=32462396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002319593A Expired - Fee Related JP4123899B2 (en) 2002-11-01 2002-11-01 Fuel production method

Country Status (1)

Country Link
JP (1) JP4123899B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005017075A1 (en) * 2003-08-18 2005-02-24 Incorporated Administrative Agency, National Agriculture And Bio-Oriented Research Organization Process for non-catalytically producing biodiesel fuel without yielding by-product
JP2006515376A (en) * 2002-12-12 2006-05-25 ポリメーリ エウローパ ソシエタ ペル アチオニ Use of a mixture of esters of fatty acids as fuel or solvent
WO2007043567A1 (en) * 2005-10-12 2007-04-19 Kyoto University Method for production of fatty acid alkyl ester
JP2007106689A (en) * 2005-10-12 2007-04-26 Kyoto Univ Method for producing fatty acid alkyl ester
WO2007058556A1 (en) * 2005-11-21 2007-05-24 Instytut Chemii Przemyslowej A new biofuel component and a method of obtaining new biofuel components
JP2008527154A (en) * 2005-01-19 2008-07-24 コグニス・アイピー・マネージメント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Compositions that can be used as biofuels
WO2008096187A1 (en) * 2007-02-06 2008-08-14 Thesz Janos Use of fuels or fuel additives based on triglycerides of modified structure and process for their preparation

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006515376A (en) * 2002-12-12 2006-05-25 ポリメーリ エウローパ ソシエタ ペル アチオニ Use of a mixture of esters of fatty acids as fuel or solvent
JP4716732B2 (en) * 2002-12-12 2011-07-06 ポリメーリ エウローパ ソシエタ ペル アチオニ Use of a mixture of esters of fatty acids as fuel or solvent
WO2005017075A1 (en) * 2003-08-18 2005-02-24 Incorporated Administrative Agency, National Agriculture And Bio-Oriented Research Organization Process for non-catalytically producing biodiesel fuel without yielding by-product
JP2008527154A (en) * 2005-01-19 2008-07-24 コグニス・アイピー・マネージメント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Compositions that can be used as biofuels
WO2007043567A1 (en) * 2005-10-12 2007-04-19 Kyoto University Method for production of fatty acid alkyl ester
JP2007106689A (en) * 2005-10-12 2007-04-26 Kyoto Univ Method for producing fatty acid alkyl ester
JP4543177B2 (en) * 2005-10-12 2010-09-15 国立大学法人京都大学 Method for producing fatty acid alkyl ester
WO2007058556A1 (en) * 2005-11-21 2007-05-24 Instytut Chemii Przemyslowej A new biofuel component and a method of obtaining new biofuel components
WO2008096187A1 (en) * 2007-02-06 2008-08-14 Thesz Janos Use of fuels or fuel additives based on triglycerides of modified structure and process for their preparation
JP2010518220A (en) * 2007-02-06 2010-05-27 ヤーノシュ テーズ Use of fuels or fuel additives based on modified structure triglycerides and processes for their preparation
EA016916B1 (en) * 2007-02-06 2012-08-30 Янош Тес Use of fuels or fuel additives based on triglycerides of modified structure

Also Published As

Publication number Publication date
JP4123899B2 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
Rahman et al. Biodiesel production from microalgae Spirulina maxima by two step process: Optimization of process variable
Çaylı et al. Increased yields in biodiesel production from used cooking oils by a two step process: Comparison with one step process by using TGA
Bindhu et al. Preparation and evaluation of biodiesel from Sterculia foetida seed oil
US8080679B2 (en) Direct conversion of biomass to biodiesel fuel
JP4716732B2 (en) Use of a mixture of esters of fatty acids as fuel or solvent
US20090131711A1 (en) Single-stage esterification of oils and fats
JP2010018810A (en) Single-phase process for producing fatty acid methyl ester from mixture of triglyceride and fatty acid
Pramanik et al. Preparation of biofuel from argemone seed oil by an alternative cost-effective technique
Kannahi et al. Production of biodiesel from edible and non-edible oils using Rhizopus oryzae and Aspergillus niger
Sbihi et al. Production and characterization of biodiesel from Camelus dromedarius (Hachi) fat
Nitièma-Yefanova et al. Ethyl biodiesel production from non-edible oils of Balanites aegyptiaca, Azadirachta indica, and Jatropha curcas seeds–laboratory scale development
Sousa et al. Transesterification of castor oil: Effect of the acid value and neutralization of the oil with glycerol
Aksoy Opium poppy (Papaver somniferum L.) oil for preparation of biodiesel: Optimization of conditions
JP4123899B2 (en) Fuel production method
US8450370B2 (en) Production of glycerol-related products from a high temperature reaction
WO2009133846A1 (en) Method for producing fatty acid alkyl ester and catalyst for production of fatty acid alkyl ester
WO2008053837A1 (en) Fuel
JP2005220227A (en) Biodiesel fuel and method for producing the same
JP4543177B2 (en) Method for producing fatty acid alkyl ester
JP3842273B2 (en) Process for producing fatty acid alkyl ester composition
JP5066325B2 (en) Method for producing fatty acid alkyl ester
AU2021103220A4 (en) A process for producing biodiesel from waste cooking oil by using transesterification
JP2008007658A (en) Method of manufacturing fatty acid ester composition
Tsai et al. Solid byproducts of Aurantiochytrium sp. oil made into the biodiesel
AU2021106404A4 (en) A frequently transesterification process of Jatropha curcus oil in the presence of a green solvent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees