JP2004149035A - Vehicle follow-driving control device - Google Patents

Vehicle follow-driving control device Download PDF

Info

Publication number
JP2004149035A
JP2004149035A JP2002317767A JP2002317767A JP2004149035A JP 2004149035 A JP2004149035 A JP 2004149035A JP 2002317767 A JP2002317767 A JP 2002317767A JP 2002317767 A JP2002317767 A JP 2002317767A JP 2004149035 A JP2004149035 A JP 2004149035A
Authority
JP
Japan
Prior art keywords
vehicle
driver
tension
information
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002317767A
Other languages
Japanese (ja)
Inventor
Kiichirou Sawamoto
基一郎 澤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002317767A priority Critical patent/JP2004149035A/en
Publication of JP2004149035A publication Critical patent/JP2004149035A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Regulating Braking Force (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Traffic Control Systems (AREA)
  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)
  • Controls For Constant Speed Travelling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vehicle follow-driving control device for preventing a drive from feeling any stress by performing the control matched to the driving feeling of the driver himself. <P>SOLUTION: A passage acceptance/rejection determination unit 8 determines whether or not a vehicle can pass the side of an object recognized by an external field recognition unit 7. When the vehicle can pass the side of the object, a tension estimation unit 13 estimates the degree of tension of a driver by using information on a preceding vehicle obtained from a preceding vehicle determination unit 6, information on the object present in the advancing direction of the subject vehicle obtained from the external field recognition unit 7, information on the dead angle zone of the driver estimated by a dead angle zone estimation unit 9, individual information on the driver input from an individual information input unit 10, climate condition around the subject vehicle determined by a climate determination unit 11, time information obtained from a time determination unit 12, and biological information of the driver obtained from a biological sensor 21. If the driver feels psychological oppression, a target value determination unit 14 and a vehicle condition control unit 15 control the vehicle-to-vehicle distance considering suppression of acceleration control. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、自車両の前方を走行する先行車両に追従して走行を行うための車両用追従走行制御装置に関する。
【0002】
【従来の技術】
従来、車両に搭載したレーダ装置や画像センサ等の先行車両認識手段により、自車両が追従するべき先行車両を検知すると共に、該先行車両との距離や相対速度を算出し、その検知情報を元に、先行車両との間でお互いの走行の妨害を行わないように、先行車両との車間距離制御を行う技術がある。
このような技術では、先行車両認識手段により得られた先行車両との距離や相対速度情報と、運転者が設定した車間設定値や車速設定値情報を元に、先行車両に対して車間距離を一定にするような追従走行制御を行う(例えば、特許文献1参照。)。
【0003】
また、自車両前方の静止物を検知すると共に、計測された距離や相対速度、更には方位角度等により、自車両が走行している最中に次々と検知された静止物の横位置を求めてマッピングし、更に道路左側静止物の横位置平均値と道路右側静止物の横位置平均値を算出して走行中の道路幅を推定するものもある。この技術では、推定した道路幅に対応する上限車速より、自車両の現状の車速が速すぎる場合、警報を出力する(例えば、特許文献2参照。)。
【0004】
【特許文献1】
特開平05−221253号公報
【特許文献2】
特開2001−243598号公報
【0005】
【発明が解決しようとする課題】
ところで、運転者が自ら車両を操作して、市街地などの障害物が多い道路を走行するような場合、運転者は追従するべき先行車両だけに着目せずに、駐車車両や右左折車両、対向車両、更にはガードレールといった路側障害物などにも着目している。そして、これら先行車両以外の障害物に対し、運転者は常に予知・予測を行ないながら運転を行い、その危険度に応じて、先行車両との加減速操作を行っている。
【0006】
しかし、特許文献1に記載されているような従来の車間距離制御技術では、市街地などの障害物の多い道路を走行するような場合でも、追従するべき先行車両との距離や相対速度のみを元に自車両の加減速制御を行うことになり、例えば駐車車両や対向車両などに対し、運転者が行うような予知・予測を考慮した車間距離制御は行うことができないという問題があった。
一方、特許文献2に記載の技術では、自車両前方の道路の交通状況に対して、自車両の現状の車速が速すぎる場合、警報を出力して運転者に注意を喚起させるものの、逆に、制御装置が自車両前方の道路の交通状況に対して、自車両の現状の車速は適正であると判断した場合、運転者が道路の交通状況をどのように感じていても、減速するような制御は行わないため、運転者が自分の運転感覚とのズレにストレスを感じてしまうことがあるという問題があった。
【0007】
本発明は、上記課題に鑑みてなされたもので、運転者自身の運転感覚に合わせた制御を行い、運転者にストレスを感じさせない車両用追従走行制御装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記課題を解決するために、請求項1の発明に係る車両用追従走行制御装置は、自車両に搭載されると共に、少なくとも該自車両の前方に存在する物体の状態を示す物体情報を検知可能な物体検知手段(例えば実施の形態のレーダ装置1、レーダ検知出力部2、画像センサ3、画像センサ検知出力部4)と、前記自車両が走行する自車軌跡を算出する自車推定軌跡算出手段(例えば実施の形態の自車軌跡推定部5)と、前記物体情報と前記自車軌跡に基づいて、前記物体の中から前記自車両が追従するべき先行車両を判定する先行車判定手段(例えば実施の形態の先行車決定処理部6)と、前記自車両が前記先行車両に対して追従走行を行うように、前記自車両の加減速制御を行う車両制御手段(例えば実施の形態の目標値決定部14、車両状態制御部15)とを備えた車両用追従走行制御装置において、前記物体情報に基づいて、前記物体の中から、前記自車両の進行方向に存在すると共に、前記先行車両を除外した着目物体を認識する外界認識手段(例えば実施の形態の外界認識部7)と、前記着目物体の側方を、前記自車両が通過可能か否か判定する通過可否判定手段(例えば実施の形態の通過可否判定部8)と、前記着目物体の側方を、前記自車両が通過する際の前記自車両の運転者の緊張度合を推定する緊張度推定手段(例えば実施の形態の緊張度推定部13)とを備え、前記車両制御手段は、前記自車両が前記着目物体の側方を通過可能と判定された場合であっても、前記運転者の緊張度合が所定の値以上と推定された場合には、前記自車両の加速を制限することを特徴とする。
【0009】
以上の構成を備えた車両用追従走行制御装置は、物体検知手段により検知された物体の物体情報に基づいて、物体の中から先行車判定手段を用いて自車両が追従するべき先行車両を判定し、自車両が該先行車両に対して追従走行するように、車両制御手段により自車両の加速制御あるいは減速制御を行う。この時、外界認識手段により、進行方向に存在する先行車両を除く着目物体を認識し、通過可否判定手段により、物体情報に基づいて自車両が着目物体の側方を通過可能か否か判定すると共に、緊張度推定手段により、自車両が着目物体の側方を通過した場合の自車両の運転者の緊張度合を推定する。そして、車両制御手段が着目物体の側方を通過可能と判定した場合であっても、運転者の緊張度合が所定の値以上と推定された場合には、自車両の加速を制限することで、自車両の進行方向に存在する着目物体が自車両の走行に影響を与えそうな時に、自車両が着目物体を無視して先行車両のみに追従することを防止し、自車両の運転者の運転感覚に沿った走行制御を行うことができる。
【0010】
請求項2の発明に係る車両用追従走行制御装置は、請求項1に記載の車両用追従走行制御装置において、前記緊張度推定手段が、前記物体情報に含まれる情報であって、前記着目物体との距離、または前記着目物体の速度、または前記着目物体の移動ベクトル、または前記着目物体の大きさ、または前記着目物体の側方通過時の相対距離、または前記着目物体との相対速度の少なくともいずれか1つに基づいて前記運転者の緊張度合を推定することを特徴とする。
以上の構成を備えた車両用追従走行制御装置は、緊張度推定手段が、少なくとも物体情報に含まれる着目物体に関する具体的な情報のいずれか1つに基づいて運転者の緊張度合を推定することで、運転者の緊張度合を、実際に運転者が体験するいろいろな交通状況から具体的かつ正確に推定することができる。
【0011】
請求項3の発明に係る車両用追従走行制御装置は、請求項1、または請求項2に記載の車両用追従走行制御装置において、前記物体情報と前記自車軌跡に基づいて、前記運転者の視認死角領域を推定する死角領域推定手段(例えば実施の形態の死角領域推定部9)を備え、前記緊張度推定手段が、前記視認死角領域に基づいて前記運転者の緊張度合を推定することを特徴とする。
以上の構成を備えた車両用追従走行制御装置は、死角領域推定手段を用いて自車両の運転者の視認死角領域を推定し、緊張度推定手段が、視認死角領域に基づいて運転者の緊張度合を推定することで、実際に運転者が体験する交通状況に応じた正確な緊張度合の推定を行うことができる。
【0012】
請求項4の発明に係る車両用追従走行制御装置は、請求項1から請求項3のいずれかに記載の車両用追従走行制御装置において、前記緊張度推定手段が、前記先行車両との距離または相対速度の少なくともいずれか1つに基づいて前記運転者の緊張度合を推定することを特徴とする。
以上の構成を備えた車両用追従走行制御装置は、着目物体のみならず、追従走行する先行車両との距離や相対速度に基づいて運転者の緊張度合を推定することで、機械的に先行車両の動きを追従するだけでなく、自車両の運転者が先行車両の動きに対して感じる緊張度合に基づいた走行制御を行うことができる。
【0013】
請求項5の発明に係る車両用追従走行制御装置は、請求項1から請求項4のいずれかに記載の車両用追従走行制御装置において、前記緊張度推定手段が、予め記憶されている前記運転者に固有の情報に基づいて前記運転者の緊張度合を推定することを特徴とする。
以上の構成を備えた車両用追従走行制御装置は、予め記憶されている運転者に固有の情報に基づいて運転者の緊張度合を推定することで、運転者それぞれの個性に沿った走行制御を行うことができる。
【0014】
請求項6の発明に係る車両用追従走行制御装置は、請求項1から請求項5のいずれかに記載の車両用追従走行制御装置において、前記運転者の生体情報を検出する生体センサ(例えば実施の形態の生体センサ21)を備え、前記緊張度推定手段が、前記生体情報に基づいて前記運転者の緊張度合を推定することを特徴とする。
以上の構成を備えた車両用追従走行制御装置は、運転者の生体情報に基づいて運転者の緊張度合を推定することで、運転者の緊張度合を、運転者のその時の状態から具体的かつ正確に推定することができる。
【0015】
請求項7の発明に係る車両用追従走行制御装置は、請求項6に記載の車両用追従走行制御装置において、前記生体センサが、心拍数センサ、または血圧センサ、または呼吸センサ、または運転者表情監視センサのいずれかであることを特徴とする。
以上の構成を備えた車両用追従走行制御装置は、いずれかの生体センサによって、運転者のその時の状態を具体的に数値化して把握することができる。
【0016】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態について説明する。
図1は、本発明の一実施の形態の車両用追従走行制御装置の構成を示すブロック図である。
図1において、符号1は、本実施の形態の車両用追従走行制御装置において、自車両の周囲にレーダ波を送信すると共に、物体に反射したレーダ波の反射波を受信するために自車両の前方に搭載されたレーダ装置であって、レーダ検知出力部2は、レーダ装置1に設けられると共に、レーダ装置1が受信した反射波を用いて、自車両前方に存在する物体を検知する。
また、画像センサ3は、自車両の周囲の画像を取得するために自車両の前方に搭載された撮像用のセンサであって、画像センサ検知出力部4は、画像センサ3に設けられると共に、画像センサ3が取得した画像を用いて、自車両前方に存在する物体を検知する。
【0017】
一方、本実施の形態の車両用追従走行制御装置は、CPU(中央演算装置)を備えた車載のECU(Electronic Control Unit )により実現される処理部として、自車軌跡推定部5、先行車決定処理部6、外界認識部7、通過可否判定部8、死角領域推定部9、個人情報入力部10、天候判断部11、時間判断部12、緊張度推定部13、目標値決定部14、車両状態制御部15、車両情報指示部16を備えている。
ここで、自車軌跡推定部5は、GPS(Global Positioning System )や道路交通情報通信システムから情報を受信しながら地図データベースを検索して自車両の走行する道路情報等の交通状況を出力するナビゲーション装置17、自車両の速度を算出する車速センサ18、自車両のヨーレートを算出するヨーレートセンサ19、自車両のステアリングの傾きから自車両の進行方向を算出する舵角センサ20からの情報を用いて、自車軌跡を算出する処理部である。
【0018】
また、先行車決定処理部6は、自車軌跡推定部5において算出した自車軌跡に基づいて、レーダ検知出力部2、または画像センサ検知出力部4によって検知された自車両前方の物体の中から、自車両が追従するべき先行車両を検知すると共に、検知された先行車両と自車両との距離及び両者の相対速度を含む物体情報を算出する処理部である。
外界認識部7は、レーダ検知出力部2、または画像センサ検知出力部4によって検知された自車両前方の物体の中から、自車両の進行方向に存在する先行車両以外の着目物体を認識する。
【0019】
また、通過可否判定部8は、外界認識部7と自車軌跡推定部5からの情報に基づいて、自車両がその進行方向に検知された先行車両以外の着目物体の側方を通過可能か否かを判定する。
一方、死角領域推定部9は、外界認識部7と自車軌跡推定部5からの情報に基づいて、自車両の進行方向に存在する物体によって、自車両の運転者から死角となり得る領域を推定する。
【0020】
更に、個人情報入力部10は、自車両の運転者の好みや性格などの個人情報を入力させる処理部である。
また、天候判断部11は、雨滴センサ(図示せず)からの情報や、ナビゲーション装置17が受信する道路交通情報通信システムの情報に基づいて、晴天あるいは雨天など、自車両周囲の天候状態を判断する処理部である。
そして、時間判断部12は、昼夜などの時間情報について判断する処理部である。
【0021】
また、本実施の形態の車両用追従走行制御装置は、運転者の生体情報を取得するために、例えば自車両のステアリングに設けられた生体センサ21を具備しており、緊張度推定部13は、先行車決定処理部6より得られた先行車両に関する情報、外界認識部7により得られた自車両の進行方向に存在する物体の情報、死角領域推定部9により推定された自車両の運転者から死角となり得る領域の情報、個人情報入力部10を用いて入力された運転者の好みや性格などの個人情報、天候判断部11により判断された自車両周囲の天候状態、時間判断部12により得られた昼夜などの時間情報、及び生体センサ21により得られた運転者の生体情報の少なくともいずれか1つを用いて、自車両の運転者の最新の緊張度合を推定する処理部である。
【0022】
なお、ここで生体センサ21としては、具体的に、運転者の心臓の心拍数を測定する心拍数センサ、または運転者の血圧を測定する血圧センサ、または運転者の呼吸数を測定する呼吸センサ、または運転者の表情の変化を検知する運転者表情監視センサ等の各種センサが挙げられる。
【0023】
また、目標値決定部14は、自車両の運転者または搭乗者により設定された追従車間距離に基づいて、自車両が追従するべき先行車両との目標車間距離、及び目標車速、更には自車両の加減速の度合を示す加減速ゲインを決定する処理部であって、車両状態制御部15は、それらを元にアクセルのON/OFFやブレーキのON/OFF等、車両の各部の制御を行う。
【0024】
更に、本実施の形態の車両用追従走行制御装置は、自車両の搭乗者への表示手段として、スピーカ等の音声表示装置を備えた音声出力部22と、CRT(Cathode Ray Tube)ディスプレイ装置や液晶表示装置等の画像表示装置を備えた画像表示部23とを具備しており、車両情報指示部16を介して、目標値決定部14において決定した情報を、音声出力部22や画像表示部23を用いて運転者等の自車両の搭乗者へ通知する。
【0025】
次に、本実施の形態の動作について図面を参照して説明する。
図2は、本実施の形態の車両用追従走行制御装置の動作を示すフローチャートであって、図2において、先行車決定処理部6は、追従するべき先行車両が存在するか否かを判定する(ステップS1)。
ステップS1において、追従するべき先行車両が存在する場合(ステップS1のYES)、外界認識部7は、追従するべき先行車両と自車両との間の所定範囲内に着目物体が存在するか否かを判定する(ステップS2)。
また、ステップS1において、追従するべき先行車両が存在しない場合(ステップS1のNO)、外界認識部7は、自車両からの所定範囲内に着目物体が存在するか否かを判定する(ステップS3)。
【0026】
もし、ステップS2において、追従するべき先行車両と自車両との間の所定範囲内に着目物体が存在する場合(ステップS2のYES)、またはステップS3において、自車両からの所定範囲内に着目物体が存在する場合(ステップS3のYES)、通過可否判定部8によって、着目物体の側方を通過可能か否かを判定する(ステップS4)。
【0027】
一方、ステップS2において、追従するべき先行車両と自車両との間の所定範囲内に着目物体が存在しない場合(ステップS2のNO)、及びステップS3において、自車両からの所定範囲内に着目物体が存在しない場合(ステップS3のNO)、目標値決定部14及び車両状態制御部15は、通常の車間距離制御を行う(ステップS5)。
また、ステップS4において、着目物体の側方を通過可能でない場合(ステップS4のNO)、目標値決定部14及び車両状態制御部15は、通常の車間距離制御を行う(ステップS5)。
【0028】
一方、ステップS4において、着目物体の側方を通過可能である場合(ステップS4のYES)、緊張度推定部13が、先行車決定処理部6より得られた先行車両に関する情報、外界認識部7により得られた自車両の進行方向に存在する物体の情報、死角領域推定部9により推定された自車両の運転者から死角となり得る領域の情報、個人情報入力部10を用いて入力された運転者の好みや性格などの個人情報、天候判断部11により判断された自車両周囲の天候状態、時間判断部12により得られた昼夜などの時間情報、及び生体センサ21により得られた運転者の生体情報の少なくともいずれか1つを用いて、自車両の運転者の最新の緊張度合を推定する(ステップS6)。なお、緊張度推定部13により運転者の緊張度合を推定する運転者心理判定処理については、詳細を後述する。
【0029】
そして、緊張度推定部13は、自車両の運転者が着目物体に心理的圧迫を感じ、緊張しているか否かを判定する(ステップS7)。
ステップS6において、自車両の運転者が着目物体に心理的圧迫を感じていない場合(ステップS7のNO)、目標値決定部14及び車両状態制御部15は、通常の車間距離制御を行う(ステップS5)。
また、ステップS6において、自車両の運転者が着目物体に心理的圧迫を感じて緊張している場合(ステップS7のYES)、目標値決定部14及び車両状態制御部15は、加速制御の抑制を考慮した車間距離制御を行う(ステップS8)。
【0030】
次に、図面を参照して、緊張度推定部13により運転者の緊張度合を推定する運転者心理判定処理について説明する。
図3は、本実施の形態の車両用追従走行制御装置の緊張度推定部13による運転者心理判定処理動作を示すフローチャートである。
まず、表1に示すような、自車両の走行速度に応じて決定される自車速係数y1を算出する(ステップS11)。
【0031】
【表1】

Figure 2004149035
【0032】
次に、表2に示すような、先行車両との距離に基づく係数y21と、先行車両との相対速度に基づく係数y22とにより、下記(1)式で決定される追従先行車係数y2を算出する(ステップS12)。
y2=y21+y22 ・・・(1)
【0033】
【表2】
Figure 2004149035
【0034】
そして、表3に示すような、着目物体までの距離に基づく係数y31と、着目物体の移動ベクトルに基づく係数y32と、図4に示す着目物体31の端と自車両30の走行エリア36との距離差(着目物体端圧迫度)に基づく係数y33と、着目物体との相対速度に基づく係数y34とにより、下記(2)式で決定される着目物体係数y3を算出する(ステップS13)。
y3=y31+y32+y33+y34 ・・・(2)
【0035】
【表3】
Figure 2004149035
【0036】
また、表4に示すような、現在の時間に基づく係数y41と、自車両周囲の天候に基づく係数y42とにより、下記(3)式で決定される運転者視認距離係数y4を算出する(ステップS14)。
y4=y41+y42 ・・・(3)
【0037】
【表4】
Figure 2004149035
【0038】
次に、表5に示すような、予め記憶されている運転者の性格により決定される運転者性格係数y5を算出する(ステップS15)。
【0039】
【表5】
Figure 2004149035
【0040】
更に、表6に示すように、予め記憶されている運転者の運転技術により決定される運転技術係数y6を算出する(ステップS16)。
【0041】
【表6】
Figure 2004149035
【0042】
また、表7に示すような、着目物体の幅に基づく係数y71と、着目物体の高さに基づく係数y72と、図4に示す着目物体31の端と自車両30の走行エリア36との距離差(着目物体端圧迫度)に基づく係数y73とにより、下記(4)式で決定される運転者死角領域係数y7を算出する(ステップS17)。
y7=y71+y72+y73 ・・・(4)
【0043】
【表7】
Figure 2004149035
【0044】
そして最後に、上述の各係数y1〜y7により、運転者圧迫度yを下記(5)式により算出する(ステップS18)。
y=k1×y1+k2×y2+k3×y3+k4×y4+k5×y5+k6×y6+k7×y7 ・・・(5)
なお、k1〜k7は、それぞれの係数に対する重み係数である。
【0045】
また、運転者圧迫度yが算出されたら、算出されや運転者圧迫度yが所定値以上であるか否かを判定し(ステップS19)、運転者圧迫度yが所定値以上であった場合(ステップS19のYES)、運転車心理圧迫状態であると判断する(ステップS20)。
一方、ステップS19において、運転者圧迫度yが所定値以上でなかった場合(ステップS19のNO)、運転車心理圧迫状態ではないと判断する(ステップS21)。
なお、運転者圧迫度yは、上述の全ての係数を総合して算出する方法の他に、運転者の緊張度合を推定するのに重要な要素となる係数についてのみ特化して算出しても良い。
【0046】
以上説明したように、本実施の形態の車両用追従走行制御装置は、通過可否判定部8によって、外界認識部7が認識した着目物体の側方を通過可能か否かを判定する。そして、着目物体の側方を通過可能である場合、緊張度推定部13が、先行車決定処理部6から得た先行車両に関する情報、外界認識部7から得た自車両の進行方向に存在する物体の情報、死角領域推定部9により推定された運転者の死角領域の情報、個人情報入力部10から入力された運転者の個人情報、天候判断部11により判断された自車両周囲の天候状態、時間判断部12から得た時間情報、及び生体センサ21から得た運転者の生体情報等を用いて、運転者の緊張度合を推定する。そして、運転者が着目物体に心理的圧迫を感じている場合、目標値決定部14及び車両状態制御部15は、加速制御の抑制を考慮した車間距離制御を行う。
【0047】
具体的には、例えば図5に示すように、片側2車線道路32において、自車両30が右側車線にて先行車両33を追従走行中、左側車線を走行する大型車両34が工事現場35を回避するために、一時的に右側車線寄りに走行するような場合、通常の車間距離制御では、自車両30の走行エリア36が確保されていれば、先行車両33に対して追従走行制御を行う。しかし、この時運転者にとっては、自車線側に寄ってくる大型車両34が気になる存在であり、心理的圧迫を感じることが考えられる。
【0048】
同様に、例えば図6に示すように、片側1車線道路37において、自車両30が先行車両33を追従走行中、路側側の工事現場35を回避するために、一時的に右側にずれて走行するような場合、通常の車間距離制御では、自車両30の走行エリア36が確保されていれば、先行車両33に対して追従走行制御を行う。しかし、この時運転者は、工事現場35を迂回走行するという予想外の操作によって、工事現場35通過時に心理的圧迫を感じることが考えられる。
【0049】
また、例えば図7に示すように、片側1車線道路38において、自車両30が先行車両33を追従走行中、対向してくる大型車両34が駐車車両39a、39b、39cを回避するために、一時的に自車両30の走行車線にはみ出して走行するような場合、通常の車間距離制御では、自車両30の走行エリア36が確保されていれば、先行車両33に対して追従走行制御を行う。しかし、この時運転者にとっては、このように対向する大型車両34がはみ出してくることは予想外であり、この大型車両34に対し、運転者は心理的圧迫を感じることが考えられる。
【0050】
従って、上述のような心理的状態において、自車両30が先行車両33に追従して加速制御を行うと、運転者はストレスを感じてしまう。
そこで、本実施の形態の車両用追従走行制御装置では、自車両30と先行車両33との間の所定エリアに、先行車両33以外の物体が存在し、かつその物体に対して運転者が心理的圧迫を感じると判断されたときには、物体側方を通過可能と判断された場合であっても、自車両30の車間距離制御において少なくとも加速制御は行わない。
【0051】
これにより、例えば駐車車両や対向車両などに対し、運転者が行うような予知・予測を考慮し、現状の車速が速すぎる場合、警報を出力して運転者に注意を喚起させるだけでなく、制御装置が自車両前方の道路の交通状況に対して、自車両の現状の車速は適正であると判断した場合でも、運転者が感じる交通状況への心理的圧迫を認識して、運転者の運転感覚とのズレがないように車間距離制御を行うことで、運転者にストレスを感じさせない車両用追従走行制御装置を実現することができるという効果が得られる。
【0052】
【発明の効果】
以上の如く、請求項1に記載の車両用追従走行制御装置によれば、自車両の進行方向に存在する着目物体が自車両の走行に影響を与えそうな時に、自車両が着目物体を無視して先行車両のみに追従することを防止し、自車両の運転者の運転感覚に沿った走行制御を行うことができる。
従って、先行車両ばかりでなく、自車両の進行方向にある物体にも着目することで、自車両の運転者の運転感覚とのズレがない車間距離制御を行い、運転者にストレスを感じさせずに車両を走行させる車両用追従走行制御装置を実現することができるという効果が得られる。
【0053】
請求項2及び請求項3に記載の車両用追従走行制御装置によれば、運転者の緊張度合を、実際に運転者が体験するいろいろな交通状況から具体的かつ正確に推定することができる。
従って、自車両の運転者の緊張度合を推定する際に、いろいろな交通状況の中から特に重要な要素となる交通状況のみに特化して緊張度合を推定したり、あるいは複数の交通状況を総合的に評価して緊張度合を推定することで、自車両の運転者の運転感覚とのズレがない車間距離制御を行い、運転者にストレスを感じさせずに車両を走行させる車両用追従走行制御装置を実現することができるという効果が得られる。
【0054】
請求項4に記載の車両用追従走行制御装置によれば、機械的に先行車両の動きを追従するだけでなく、自車両の運転者が先行車両の動きに対して感じる緊張度合に基づいた走行制御を行うことができる。
従って、先行車両に対する追従走行においても、運転者にストレスを感じさせない車両用追従走行制御装置を実現することができるという効果が得られる。
【0055】
請求項5に記載の車両用追従走行制御装置によれば、運転者それぞれの個性に沿った走行制御を行うことができる。
従って、運転者自身が自分の個性を設定することで、自分の思い通りの車間距離制御を実行することができると共に、いろいろなタイプの運転者に対応可能な車両用追従走行制御装置を実現することができるという効果が得られる。
【0056】
請求項6及び請求項7に記載の車両用追従走行制御装置によれば、運転者の緊張度合を、運転者のその時の状態から数値化して具体的かつ正確に推定することができる。
従って、自車両の運転者の緊張度合を推定する際に、自車両周囲のいろいろな交通状況だけでなく、実際に運転者自身の状態に合わせた車間距離制御を行い、運転者にストレスを感じさせずに車両を走行させる車両用追従走行制御装置を実現することができるという効果が得られる。
【図面の簡単な説明】
【図1】本発明の一実施の形態の車両用追従走行制御装置の構成を示すブロック図である。
【図2】同実施の形態の車両用追従走行制御装置の動作を示すフローチャートである。
【図3】同実施の形態の車両用追従走行制御装置の緊張度推定部による運転者心理判定処理動作を示すフローチャートである。
【図4】着目物体の端と自車両走行エリアとの距離差(着目物体端圧迫度)を示す図である。
【図5】自車両の運転者が心理的圧迫を感じる交通状況の一例を示す図である。
【図6】自車両の運転者が心理的圧迫を感じる交通状況の一例を示す図である。
【図7】自車両の運転者が心理的圧迫を感じる交通状況の一例を示す図である。
【符号の説明】
1 レーダ装置(物体検知手段)
2 レーダ検知出力部(物体検知手段)
3 画像センサ(物体検知手段)
4 画像センサ検知出力部(物体検知手段)
5 自車軌跡推定部(自車推定軌跡算出手段)
6 先行車決定処理部(先行車判定手段)
7 外界認識部(外界認識手段)
8 通過可否判定部(通過可否判定手段)
9 死角領域推定部(死角領域推定手段)
10 個人情報入力部
11 天候判断部
12 時間判断部
13 緊張度推定部(緊張度推定手段)
14 目標値決定部(車両制御手段)
15 車両状態制御部(車両制御手段)
16 車両情報指示部
17 ナビゲーション装置
18 車速センサ
19 ヨーレートセンサ
20 舵角センサ
21 生体センサ
22 音声出力部
23 画像表示部[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle follow-up traveling control device for traveling following a preceding vehicle traveling in front of a host vehicle.
[0002]
[Prior art]
Conventionally, a preceding vehicle to be followed by a preceding vehicle is detected by a preceding vehicle recognizing means such as a radar device or an image sensor mounted on the vehicle, and a distance or a relative speed to the preceding vehicle is calculated. In addition, there is a technique for controlling the inter-vehicle distance with a preceding vehicle so as not to disturb each other's running with the preceding vehicle.
In such a technology, the distance between the vehicle and the preceding vehicle is calculated based on the distance and relative speed information from the preceding vehicle obtained by the preceding vehicle recognition means and the information on the following distance and the vehicle speed set value set by the driver. Following running control is performed so as to be constant (for example, see Patent Document 1).
[0003]
In addition to detecting stationary objects in front of the host vehicle, the lateral position of the stationary objects detected one after another while the host vehicle is running is determined from the measured distance, relative speed, and azimuth angle. There is also a method of estimating the width of a running road by calculating the average of the lateral position of the stationary object on the left side of the road and the average of the lateral position of the stationary object on the right side of the road. According to this technique, an alarm is output when the current vehicle speed of the host vehicle is too high than the upper limit vehicle speed corresponding to the estimated road width (for example, see Patent Document 2).
[0004]
[Patent Document 1]
JP 05-22253 A
[Patent Document 2]
JP 2001-243598 A
[0005]
[Problems to be solved by the invention]
By the way, when the driver operates the vehicle by himself and drives on a road with many obstacles such as an urban area, the driver does not pay attention only to the preceding vehicle to be followed, and does not pay attention to the parked vehicle or the vehicle turning right or left. It also focuses on vehicles and roadside obstacles such as guardrails. The driver drives the vehicle while always performing prediction and prediction on obstacles other than the preceding vehicle, and performs acceleration / deceleration operations with the preceding vehicle according to the degree of danger.
[0006]
However, in the conventional inter-vehicle distance control technology as described in Patent Document 1, even when traveling on a road with many obstacles such as an urban area, only the distance and the relative speed to the preceding vehicle to be followed are based on the distance. In such a case, acceleration / deceleration control of the own vehicle is performed, and there is a problem that the inter-vehicle distance control in consideration of the prediction and prediction performed by the driver cannot be performed on, for example, a parked vehicle or an oncoming vehicle.
On the other hand, in the technology described in Patent Literature 2, if the current vehicle speed of the host vehicle is too high with respect to the traffic condition on the road ahead of the host vehicle, an alarm is output to alert the driver, but conversely, If the control device determines that the current vehicle speed of the host vehicle is appropriate for the traffic condition of the road ahead of the host vehicle, the driver may decelerate no matter how the driver feels the traffic condition of the road. However, there is a problem that the driver may feel stress due to a deviation from his / her driving sensation because the control is not performed.
[0007]
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide a vehicle following travel control device that performs control in accordance with the driver's own driving feeling and does not cause the driver to feel stress.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the vehicle following traveling control device according to the invention of claim 1 is mounted on the own vehicle and can detect object information indicating at least a state of an object in front of the own vehicle. Vehicle detection means (for example, the radar device 1, the radar detection output unit 2, the image sensor 3, and the image sensor detection output unit 4 of the embodiment) and a vehicle estimation trajectory for calculating the vehicle trajectory on which the vehicle travels Means (for example, the own vehicle trajectory estimating unit 5 of the embodiment), and a preceding vehicle determining means for determining a preceding vehicle to be followed by the own vehicle from the objects based on the object information and the own vehicle trajectory ( For example, a preceding vehicle determination processing unit 6 according to the embodiment and a vehicle control unit (for example, a target according to the embodiment) that performs acceleration / deceleration control of the own vehicle so that the own vehicle follows the preceding vehicle. Value determination unit 14, vehicle And the following control device for a vehicle including the state control unit 15), based on the object information, the object of interest that exists in the traveling direction of the own vehicle and excludes the preceding vehicle from the objects. External world recognition means for recognizing (for example, the external world recognition unit 7 of the embodiment) and passability determination means for determining whether or not the own vehicle can pass the side of the object of interest (for example, the passability determination of the embodiment) Unit 8) and a tension estimating unit (for example, the tension estimating unit 13 in the embodiment) for estimating the degree of tension of the driver of the own vehicle when the own vehicle passes the side of the object of interest. The vehicle control means, even if it is determined that the own vehicle can pass the side of the object of interest, if the degree of tension of the driver is estimated to be a predetermined value or more Which limits the acceleration of the host vehicle. To.
[0009]
The vehicle following travel control device having the above configuration determines a preceding vehicle to be followed by the own vehicle from among the objects using the preceding vehicle determining unit based on the object information of the object detected by the object detecting unit. Then, the vehicle control means performs acceleration control or deceleration control of the own vehicle so that the own vehicle follows the preceding vehicle. At this time, the object of interest excluding the preceding vehicle existing in the traveling direction is recognized by the external world recognition means, and whether or not the own vehicle can pass the side of the object of interest is determined by the passability determination means based on the object information. At the same time, the degree of tension of the driver of the own vehicle when the own vehicle passes the side of the object of interest is estimated by the degree of tension estimating means. Then, even when the vehicle control means determines that the driver can pass the side of the object of interest, the acceleration of the own vehicle is limited by limiting the acceleration of the own vehicle when the degree of driver's tension is estimated to be equal to or more than a predetermined value. When the object of interest existing in the traveling direction of the own vehicle is likely to affect the traveling of the own vehicle, it prevents the own vehicle from ignoring the object of interest and following only the preceding vehicle and preventing the driver of the own vehicle from operating. Driving control according to the driving feeling can be performed.
[0010]
According to a second aspect of the present invention, in the vehicle follow-up cruise control device according to the first aspect, the tension estimating means is information included in the object information, and And the speed of the object of interest, or the movement vector of the object of interest, or the size of the object of interest, or the relative distance of the object of interest when passing laterally, or at least the relative speed with the object of interest It is characterized in that the degree of tension of the driver is estimated based on any one of them.
In the vehicle following traveling control device having the above configuration, the tension estimating means estimates the driver's tension based on at least one of the specific information on the target object included in the object information. Thus, the driver's degree of tension can be specifically and accurately estimated from various traffic conditions actually experienced by the driver.
[0011]
According to a third aspect of the present invention, there is provided a vehicle following travel control device according to the first or second aspect, wherein the driver's tracking of the driver is performed based on the object information and the own vehicle trajectory. It is provided with a blind spot area estimating means (for example, the blind spot area estimating unit 9 of the embodiment) for estimating a visible blind spot area, and the tension estimating means estimates the degree of tension of the driver based on the visible blind spot area. Features.
The vehicle following traveling control device having the above configuration estimates the blind spot area of the driver of the own vehicle using the blind spot area estimating means, and the tension estimating means estimates the driver's tension based on the visible blind spot area. By estimating the degree, it is possible to accurately estimate the degree of tension in accordance with the traffic situation actually experienced by the driver.
[0012]
According to a fourth aspect of the present invention, there is provided a vehicle follow-up cruise control device according to any one of the first to third aspects, wherein the tension estimating means includes a distance or a distance from the preceding vehicle. The degree of tension of the driver is estimated based on at least one of the relative speeds.
The vehicle following travel control device having the above configuration is capable of mechanically estimating the driver's tension based on not only the object of interest but also the distance and relative speed with respect to the preceding vehicle that is following the subject vehicle. In addition to following the movement of the vehicle, traveling control based on the degree of tension felt by the driver of the own vehicle with respect to the movement of the preceding vehicle can be performed.
[0013]
According to a fifth aspect of the present invention, in the vehicle following travel control device according to any one of the first to fourth aspects, the tension estimating means may store the driving degree in advance. The degree of tension of the driver is estimated based on information unique to the driver.
The follow-up cruise control device for a vehicle having the configuration described above performs cruise control in accordance with each driver's individuality by estimating the degree of driver's tension based on driver-specific information stored in advance. It can be carried out.
[0014]
According to a sixth aspect of the present invention, there is provided a vehicle follow-up running control device according to any one of the first to fifth aspects, wherein a biometric sensor (for example, And the tension estimating means estimates the degree of tension of the driver based on the biological information.
The vehicle following travel control device having the above configuration estimates the degree of the driver's tension based on the driver's biological information, and thereby, the driver's degree of tension is more specific and based on the driver's state at that time. It can be accurately estimated.
[0015]
According to a seventh aspect of the present invention, in the vehicle follow-up cruise control device according to the sixth aspect, the biometric sensor is a heart rate sensor, a blood pressure sensor, a respiration sensor, or a driver expression. It is one of the monitoring sensors.
In the vehicle follow-up traveling control device having the above configuration, the state of the driver at that time can be specifically digitized and grasped by any of the biological sensors.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a configuration of a vehicle following travel control device according to one embodiment of the present invention.
In FIG. 1, reference numeral 1 denotes a vehicle following travel control device of the present embodiment, which transmits a radar wave around the own vehicle and receives a reflected wave of the radar wave reflected by an object of the own vehicle. A radar device mounted in the front, and a radar detection output unit 2 is provided in the radar device 1 and detects an object existing in front of the host vehicle by using a reflected wave received by the radar device 1.
The image sensor 3 is an imaging sensor mounted in front of the own vehicle to acquire an image around the own vehicle, and the image sensor detection output unit 4 is provided in the image sensor 3, Using the image acquired by the image sensor 3, an object existing in front of the host vehicle is detected.
[0017]
On the other hand, the vehicle follow-up cruise control device according to the present embodiment includes a vehicle trajectory estimating unit 5 and a preceding vehicle deciding unit as processing units implemented by an on-board ECU (Electronic Control Unit) having a CPU (Central Processing Unit). Processing unit 6, external world recognition unit 7, passability determination unit 8, blind spot area estimation unit 9, personal information input unit 10, weather determination unit 11, time determination unit 12, tension estimation unit 13, target value determination unit 14, vehicle A state control unit 15 and a vehicle information instruction unit 16 are provided.
Here, the own vehicle trajectory estimating unit 5 searches the map database while receiving information from a GPS (Global Positioning System) or a road traffic information communication system, and outputs a traffic condition such as road information on which the own vehicle travels. Using information from a device 17, a vehicle speed sensor 18 for calculating the speed of the host vehicle, a yaw rate sensor 19 for calculating the yaw rate of the host vehicle, and a steering angle sensor 20 for calculating the traveling direction of the host vehicle from the inclination of the steering of the host vehicle. , Which is a processing unit that calculates the vehicle locus.
[0018]
In addition, the preceding vehicle determination processing unit 6 performs processing based on the own vehicle trajectory calculated by the own vehicle trajectory estimating unit 5 in the object ahead of the own vehicle detected by the radar detection output unit 2 or the image sensor detection output unit 4. , A processing unit that detects a preceding vehicle to be followed by the own vehicle and calculates object information including a distance between the detected preceding vehicle and the own vehicle and a relative speed between the two.
The outside world recognition unit 7 recognizes an object of interest other than the preceding vehicle existing in the traveling direction of the own vehicle from the objects ahead of the own vehicle detected by the radar detection output unit 2 or the image sensor detection output unit 4.
[0019]
The passability determination unit 8 determines whether the own vehicle can pass the side of the object of interest other than the preceding vehicle detected in the traveling direction based on information from the external world recognition unit 7 and the own vehicle trajectory estimation unit 5. Determine whether or not.
On the other hand, the blind spot area estimating unit 9 estimates an area that can be a blind spot from the driver of the own vehicle by an object existing in the traveling direction of the own vehicle based on information from the external world recognition unit 7 and the own vehicle trajectory estimating unit 5. I do.
[0020]
Further, the personal information input unit 10 is a processing unit for inputting personal information such as the preference and character of the driver of the own vehicle.
In addition, the weather determination unit 11 determines the weather state around the host vehicle, such as clear weather or rainy weather, based on information from a raindrop sensor (not shown) or information on a road traffic information communication system received by the navigation device 17. This is a processing unit.
The time determination unit 12 is a processing unit that determines time information such as day and night.
[0021]
In addition, the vehicle following travel control device of the present embodiment includes, for example, a biological sensor 21 provided on the steering of the host vehicle in order to acquire biological information of the driver. Information on the preceding vehicle obtained from the preceding vehicle determination processing unit 6, information on the object existing in the traveling direction of the own vehicle obtained by the external world recognition unit 7, the driver of the own vehicle estimated by the blind spot area estimation unit 9 From the area that can be a blind spot, personal information such as the driver's preference and personality input using the personal information input unit 10, the weather state around the vehicle determined by the weather determination unit 11, and the time determination unit 12. The processing unit estimates the latest degree of tension of the driver of the own vehicle using at least one of the obtained time information such as day and night and the biological information of the driver obtained by the biological sensor 21.
[0022]
Here, as the biological sensor 21, specifically, a heart rate sensor for measuring the heart rate of the driver's heart, a blood pressure sensor for measuring the driver's blood pressure, or a respiration sensor for measuring the driver's respiratory rate Or various sensors such as a driver's facial expression monitoring sensor that detects a change in the driver's facial expression.
[0023]
In addition, the target value determination unit 14 determines a target inter-vehicle distance with a preceding vehicle to be followed by the own vehicle and a target vehicle speed, based on the following inter-vehicle distance set by a driver or a passenger of the own vehicle. Is a processing unit that determines an acceleration / deceleration gain indicating the degree of acceleration / deceleration of the vehicle, and the vehicle state control unit 15 controls various parts of the vehicle such as ON / OFF of an accelerator and ON / OFF of a brake based on the gain. .
[0024]
Further, the vehicle follow-up cruise control device according to the present embodiment includes a sound output unit 22 having a sound display device such as a speaker as a display means for the occupant of the vehicle, a CRT (Cathode Ray Tube) display device, And an image display unit 23 having an image display device such as a liquid crystal display device. The information determined by the target value determination unit 14 via the vehicle information instruction unit 16 is transmitted to the audio output unit 22 or the image display unit. 23 to notify the driver of the vehicle such as a driver.
[0025]
Next, the operation of the present embodiment will be described with reference to the drawings.
FIG. 2 is a flowchart showing the operation of the vehicle following travel control device of the present embodiment. In FIG. 2, the preceding vehicle determination processing unit 6 determines whether there is a preceding vehicle to follow. (Step S1).
In step S1, when there is a preceding vehicle to be followed (YES in step S1), the external recognition unit 7 determines whether or not the target object is within a predetermined range between the preceding vehicle to be followed and the host vehicle. Is determined (step S2).
If there is no preceding vehicle to follow in step S1 (NO in step S1), the outside world recognizing unit 7 determines whether an object of interest exists within a predetermined range from the own vehicle (step S3). ).
[0026]
If the object of interest is present in a predetermined range between the preceding vehicle to be followed and the host vehicle in step S2 (YES in step S2), or in step S3, the object of interest is within a predetermined range from the host vehicle. Exists (YES in step S3), the passability determination unit 8 determines whether or not it is possible to pass the side of the object of interest (step S4).
[0027]
On the other hand, in step S2, if the target object does not exist within the predetermined range between the preceding vehicle to be followed and the host vehicle (NO in step S2), and in step S3, the target object falls within the predetermined range from the host vehicle. Does not exist (NO in step S3), the target value determination unit 14 and the vehicle state control unit 15 perform normal inter-vehicle distance control (step S5).
If it is not possible to pass the side of the object of interest in step S4 (NO in step S4), the target value determination unit 14 and the vehicle state control unit 15 perform normal inter-vehicle distance control (step S5).
[0028]
On the other hand, if it is possible to pass the side of the object of interest in step S4 (YES in step S4), the tension estimating unit 13 outputs the information on the preceding vehicle obtained from the preceding vehicle determination processing unit 6 and the external recognition unit 7 The information of the object existing in the traveling direction of the own vehicle obtained by the above, the information of the area that can be a blind spot from the driver of the own vehicle estimated by the blind spot area estimating unit 9, the driving input using the personal information input unit 10 Information such as the taste and personality of the driver, the weather condition around the own vehicle determined by the weather determination unit 11, the time information such as day and night obtained by the time determination unit 12, and the driver's information obtained by the biometric sensor 21. The latest tension degree of the driver of the own vehicle is estimated using at least one of the biological information (step S6). The driver psychological determination process for estimating the driver's degree of tension by the degree of tension estimating unit 13 will be described later in detail.
[0029]
Then, the tension estimating unit 13 determines whether the driver of the own vehicle feels psychological pressure on the object of interest and is nervous (step S7).
In step S6, when the driver of the own vehicle does not feel any psychological pressure on the object of interest (NO in step S7), the target value determination unit 14 and the vehicle state control unit 15 perform normal inter-vehicle distance control (step S6). S5).
Also, in step S6, when the driver of the own vehicle feels nervous due to the psychological pressure on the object of interest (YES in step S7), the target value determination unit 14 and the vehicle state control unit 15 suppress the acceleration control. Is performed in consideration of the vehicle speed (step S8).
[0030]
Next, with reference to the drawings, a driver psychological determination process in which the degree of tension of the driver is estimated by the degree of tension estimation unit 13 will be described.
FIG. 3 is a flowchart showing a driver psychological determination processing operation by the tension estimating unit 13 of the vehicle following travel control device of the present embodiment.
First, an own vehicle speed coefficient y1 determined according to the running speed of the own vehicle as shown in Table 1 is calculated (step S11).
[0031]
[Table 1]
Figure 2004149035
[0032]
Next, a following vehicle coefficient y2 determined by the following equation (1) is calculated from a coefficient y21 based on the distance to the preceding vehicle and a coefficient y22 based on the relative speed with the preceding vehicle as shown in Table 2. (Step S12).
y2 = y21 + y22 (1)
[0033]
[Table 2]
Figure 2004149035
[0034]
Then, as shown in Table 3, the coefficient y31 based on the distance to the target object, the coefficient y32 based on the movement vector of the target object, and the end of the target object 31 and the travel area 36 of the vehicle 30 shown in FIG. A target object coefficient y3 determined by the following equation (2) is calculated from a coefficient y33 based on the distance difference (target object end compression degree) and a coefficient y34 based on the relative speed with respect to the target object (step S13).
y3 = y31 + y32 + y33 + y34 (2)
[0035]
[Table 3]
Figure 2004149035
[0036]
Also, as shown in Table 4, a coefficient y4 based on the current time and a coefficient y42 based on the weather around the host vehicle are used to calculate a driver visible distance coefficient y4 determined by the following equation (3) (step). S14).
y4 = y41 + y42 (3)
[0037]
[Table 4]
Figure 2004149035
[0038]
Next, a driver personality coefficient y5 determined by the driver's personality stored in advance as shown in Table 5 is calculated (step S15).
[0039]
[Table 5]
Figure 2004149035
[0040]
Further, as shown in Table 6, a driving skill coefficient y6 determined based on the driving skill of the driver stored in advance is calculated (step S16).
[0041]
[Table 6]
Figure 2004149035
[0042]
Also, as shown in Table 7, a coefficient y71 based on the width of the target object, a coefficient y72 based on the height of the target object, and a distance between the end of the target object 31 and the traveling area 36 of the own vehicle 30 shown in FIG. A driver blind spot area coefficient y7 determined by the following equation (4) is calculated from a coefficient y73 based on the difference (the degree of compression of the object end pressure of interest) (step S17).
y7 = y71 + y72 + y73 (4)
[0043]
[Table 7]
Figure 2004149035
[0044]
And finally, the driver's compression degree y is calculated by the following equation (5) using the above-mentioned coefficients y1 to y7 (step S18).
y = k1 × y1 + k2 × y2 + k3 × y3 + k4 × y4 + k5 × y5 + k6 × y6 + k7 × y7 (5)
Note that k1 to k7 are weight coefficients for the respective coefficients.
[0045]
When the driver's compression degree y is calculated, it is determined whether the calculated or the driver's compression degree y is equal to or more than a predetermined value (step S19). (YES in step S19), it is determined that the driving vehicle is in a psychological pressure state (step S20).
On the other hand, in step S19, when the driver's compression degree y is not equal to or larger than the predetermined value (NO in step S19), it is determined that the driver's vehicle is not in a psychological compression state (step S21).
It should be noted that, in addition to the method of calculating all the coefficients described above in total, the driver compression degree y may be calculated by specializing only a coefficient that is an important element for estimating the degree of driver's tension. good.
[0046]
As described above, in the vehicle following traveling control device of the present embodiment, the passability determination unit 8 determines whether or not the vehicle can pass the side of the object of interest recognized by the external world recognition unit 7. If it is possible to pass the side of the object of interest, the tension estimating unit 13 exists in the traveling direction of the own vehicle obtained from the information on the preceding vehicle obtained from the preceding vehicle determination processing unit 6 and the external vehicle recognition unit 7. Information on the object, information on the driver's blind area estimated by the blind area estimation unit 9, personal information of the driver input from the personal information input unit 10, weather conditions around the own vehicle determined by the weather determination unit 11 Using the time information obtained from the time determination unit 12, the driver's biological information obtained from the biological sensor 21, and the like, the degree of driver's tension is estimated. Then, when the driver feels psychological pressure on the target object, the target value determination unit 14 and the vehicle state control unit 15 perform inter-vehicle distance control in consideration of suppression of acceleration control.
[0047]
Specifically, for example, as shown in FIG. 5, on a two-lane road 32 on one side, while the own vehicle 30 follows the preceding vehicle 33 in the right lane, the large vehicle 34 traveling in the left lane avoids the construction site 35. Therefore, in a case where the vehicle temporarily travels toward the right lane, in normal inter-vehicle distance control, if the traveling area 36 of the own vehicle 30 is secured, the following traveling control is performed on the preceding vehicle 33. However, at this time, the driver is worried about the large vehicle 34 approaching the own lane, and may feel psychological pressure.
[0048]
Similarly, as shown in FIG. 6, for example, while the own vehicle 30 follows the preceding vehicle 33 on the one-lane road 37 on one side, the vehicle 30 temporarily shifts to the right to avoid the construction site 35 on the road side. In such a case, in the normal inter-vehicle distance control, if the traveling area 36 of the own vehicle 30 is secured, the following traveling control is performed on the preceding vehicle 33. However, at this time, the driver may feel psychological pressure when passing through the construction site 35 due to an unexpected operation of traveling around the construction site 35.
[0049]
Also, as shown in FIG. 7, for example, on the one-lane road 38 on one side, while the own vehicle 30 follows the preceding vehicle 33, the large vehicle 34 on the opposite side avoids the parking vehicles 39a, 39b, 39c. In a case where the vehicle temporarily runs out of the traveling lane of the own vehicle 30, in the normal inter-vehicle distance control, if the traveling area 36 of the own vehicle 30 is secured, the following traveling control is performed on the preceding vehicle 33. . However, at this time, it is unexpected for the driver that the large vehicle 34 opposing in this way protrudes, and the driver may feel psychological pressure on the large vehicle 34.
[0050]
Therefore, when the host vehicle 30 performs the acceleration control while following the preceding vehicle 33 in the above-described psychological state, the driver feels stress.
Therefore, in the vehicle following travel control device of the present embodiment, an object other than the preceding vehicle 33 exists in a predetermined area between the host vehicle 30 and the preceding vehicle 33, and the driver is mentally responsive to the object. When it is determined that a target pressure is felt, at least the acceleration control is not performed in the inter-vehicle distance control of the host vehicle 30 even if it is determined that the vehicle can pass the side of the object.
[0051]
Thus, for example, in consideration of the prediction and prediction performed by the driver, for example, for a parked vehicle or an oncoming vehicle, if the current vehicle speed is too fast, not only is an alarm output to alert the driver, Even if the control device determines that the current vehicle speed of the host vehicle is appropriate for the traffic conditions on the road ahead of the host vehicle, it recognizes the psychological pressure on the traffic conditions felt by the driver, and By performing the inter-vehicle distance control so that there is no deviation from the driving sensation, it is possible to obtain an effect that it is possible to realize a vehicle following travel control device that does not cause the driver to feel stress.
[0052]
【The invention's effect】
As described above, according to the vehicle following traveling control device of the first aspect, when the target object existing in the traveling direction of the own vehicle is likely to affect the traveling of the own vehicle, the own vehicle ignores the target object. As a result, it is possible to prevent the vehicle from following only the preceding vehicle, and to perform traveling control according to the driving feeling of the driver of the own vehicle.
Therefore, by focusing not only on the preceding vehicle but also on the objects in the traveling direction of the own vehicle, inter-vehicle distance control is performed without deviation from the driving feeling of the own vehicle driver, and the driver does not feel stress. The following effect can be obtained.
[0053]
According to the vehicle follow-up traveling control device according to the second and third aspects, the degree of driver's tension can be specifically and accurately estimated from various traffic conditions actually experienced by the driver.
Therefore, when estimating the degree of tension of the driver of the own vehicle, the degree of tension is estimated by focusing only on traffic conditions that are particularly important elements from various traffic conditions, or a plurality of traffic conditions are integrated. Vehicle-equipped follow-up control that performs inter-vehicle distance control without deviation from the driving sensation of the driver of the host vehicle by estimating the degree of tension by estimating the degree of tension and driving the vehicle without causing the driver to feel stress The effect that the device can be realized is obtained.
[0054]
According to the vehicle follow-up traveling control device of the fourth aspect, not only does the vehicle follow the movement of the preceding vehicle mechanically, but also the traveling based on the degree of tension felt by the driver of the own vehicle with respect to the movement of the preceding vehicle. Control can be performed.
Therefore, even when the vehicle is following the preceding vehicle, it is possible to realize a vehicle following travel control device that does not cause the driver to feel stress.
[0055]
According to the vehicle follow-up cruise control device of the fifth aspect, it is possible to perform cruise control according to the individuality of the driver.
Therefore, the driver himself / herself can set his / her own personality, thereby performing the inter-vehicle distance control as desired and realizing a vehicle-based follow-up traveling control device that can respond to various types of drivers. Is obtained.
[0056]
According to the vehicle follow-up traveling control device according to the sixth and seventh aspects, the degree of driver's tension can be quantified from the current state of the driver, and can be specifically and accurately estimated.
Therefore, when estimating the degree of tension of the driver of the own vehicle, not only various traffic conditions around the own vehicle but also inter-vehicle distance control according to the driver's own condition is performed, and the driver feels stress. An effect is obtained that a vehicle follow-up traveling control device that allows the vehicle to travel without causing the vehicle to travel can be realized.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a vehicle following travel control device according to an embodiment of the present invention.
FIG. 2 is a flowchart showing an operation of the vehicle following travel control device of the embodiment.
FIG. 3 is a flowchart showing a driver psychological determination processing operation by a tension estimating unit of the vehicle following travel control device of the embodiment.
FIG. 4 is a diagram showing a distance difference between the end of the object of interest and the travel area of the host vehicle (the degree of compression of the object of interest end).
FIG. 5 is a diagram showing an example of a traffic situation in which a driver of the own vehicle feels psychological pressure.
FIG. 6 is a diagram showing an example of a traffic situation in which a driver of the own vehicle feels psychological pressure.
FIG. 7 is a diagram illustrating an example of a traffic situation in which a driver of the own vehicle feels psychological pressure.
[Explanation of symbols]
1 radar device (object detection means)
2 Radar detection output unit (object detection means)
3 Image sensor (object detection means)
4 Image sensor detection output unit (object detection means)
5 Own vehicle trajectory estimating unit (own vehicle estimated trajectory calculating means)
6 preceding vehicle determination processing unit (preceding vehicle determination means)
7. External recognition unit (external recognition means)
8 Passability determination unit (passability determination means)
9 Blind spot area estimation unit (Blind spot area estimation means)
10 Personal information input section
11 Weather judgment section
12 hours judgment part
13 Tension estimation unit (Tension estimation means)
14 Target value determination unit (vehicle control means)
15 Vehicle state control unit (vehicle control means)
16 Vehicle information indicating section
17 Navigation device
18 Vehicle speed sensor
19 Yaw rate sensor
20 steering angle sensor
21 Biological Sensor
22 Audio output unit
23 Image display section

Claims (7)

自車両に搭載されると共に、少なくとも該自車両の前方に存在する物体の状態を示す物体情報を検知可能な物体検知手段と、
前記自車両が走行する自車軌跡を算出する自車推定軌跡算出手段と、
前記物体情報と前記自車軌跡に基づいて、前記物体の中から前記自車両が追従するべき先行車両を判定する先行車判定手段と、
前記自車両が前記先行車両に対して追従走行を行うように、前記自車両の加減速制御を行う車両制御手段と
を備えた車両用追従走行制御装置において、
前記物体情報に基づいて、前記物体の中から、前記自車両の進行方向に存在すると共に、前記先行車両を除外した着目物体を認識する外界認識手段と、
前記着目物体の側方を、前記自車両が通過可能か否か判定する通過可否判定手段と、
前記着目物体の側方を、前記自車両が通過する際の前記自車両の運転者の緊張度合を推定する緊張度推定手段と
を備え、
前記車両制御手段は、前記自車両が前記着目物体の側方を通過可能と判定された場合であっても、前記運転者の緊張度合が所定の値以上と推定された場合には、前記自車両の加速を制限する
ことを特徴とする車両用追従走行制御装置。
Object detection means mounted on the own vehicle and capable of detecting object information indicating a state of an object present at least in front of the own vehicle,
Own vehicle estimated trajectory calculation means for calculating the own vehicle trajectory on which the own vehicle runs,
A preceding vehicle determining means for determining a preceding vehicle to be followed by the own vehicle from the objects based on the object information and the own vehicle trajectory;
A vehicle control unit that performs acceleration / deceleration control of the host vehicle so that the host vehicle performs a following run with respect to the preceding vehicle;
Based on the object information, from among the objects, in the traveling direction of the own vehicle, and outside world recognition means for recognizing a target object excluding the preceding vehicle,
Passability determining means for determining whether or not the host vehicle can pass on the side of the object of interest,
The side of the object of interest, a tension estimating means for estimating the degree of tension of the driver of the own vehicle when the own vehicle passes,
Even if it is determined that the host vehicle can pass through the side of the object of interest, the vehicle control means may determine that the driver's tension is greater than or equal to a predetermined value. A follow-up running control device for a vehicle, which limits acceleration of the vehicle.
前記緊張度推定手段が、前記物体情報に含まれる情報であって、前記着目物体との距離、または前記着目物体の速度、または前記着目物体の移動ベクトル、または前記着目物体の大きさ、または前記着目物体の側方通過時の相対距離、または前記着目物体との相対速度の少なくともいずれか1つに基づいて前記運転者の緊張度合を推定する
ことを特徴とする請求項1に記載の車両用追従走行制御装置。
The tension degree estimating means is information included in the object information, the distance to the target object, or the speed of the target object, or the movement vector of the target object, or the size of the target object, or 2. The vehicle according to claim 1, wherein the degree of tension of the driver is estimated based on at least one of a relative distance of the object of interest when passing laterally or a relative speed with the object of interest. 3. Following running control device.
前記物体情報と前記自車軌跡に基づいて、前記運転者の視認死角領域を推定する死角領域推定手段を備え、
前記緊張度推定手段が、前記視認死角領域に基づいて前記運転者の緊張度合を推定する
ことを特徴とする請求項1、または請求項2に記載の車両用追従走行制御装置。
A blind spot area estimating unit that estimates a blind spot area of the driver based on the object information and the vehicle trajectory;
The vehicle follow-up running control device according to claim 1 or 2, wherein the degree of tension estimating unit estimates the degree of tension of the driver based on the visible blind spot area.
前記緊張度推定手段が、前記先行車両との距離または相対速度の少なくともいずれか1つに基づいて前記運転者の緊張度合を推定する
ことを特徴とする請求項1から請求項3のいずれかに記載の車両用追従走行制御装置。
4. The apparatus according to claim 1, wherein the tension estimation unit estimates the driver's tension based on at least one of a distance to the preceding vehicle and a relative speed. 5. The follow-up cruise control device for a vehicle according to the above.
前記緊張度推定手段が、予め記憶されている前記運転者に固有の情報に基づいて前記運転者の緊張度合を推定する
ことを特徴とする請求項1から請求項4のいずれかに記載の車両用追従走行制御装置。
The vehicle according to any one of claims 1 to 4, wherein the degree of tension estimating unit estimates the degree of tension of the driver based on pre-stored information unique to the driver. For follow-up running control device.
前記運転者の生体情報を検出する生体センサを備え、
前記緊張度推定手段が、前記生体情報に基づいて前記運転者の緊張度合を推定する
ことを特徴とする請求項1から請求項5のいずれかに記載の車両用追従走行制御装置。
A biological sensor that detects biological information of the driver;
The vehicle follow-up running control device according to any one of claims 1 to 5, wherein the degree of tension estimating unit estimates the degree of tension of the driver based on the biological information.
前記生体センサが、心拍数センサ、または血圧センサ、または呼吸センサ、または運転者表情監視センサのいずれかである
ことを特徴とする請求項6に記載の車両用走行制御装置。
The vehicle travel control device according to claim 6, wherein the biological sensor is one of a heart rate sensor, a blood pressure sensor, a respiration sensor, and a driver's expression monitoring sensor.
JP2002317767A 2002-10-31 2002-10-31 Vehicle follow-driving control device Withdrawn JP2004149035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002317767A JP2004149035A (en) 2002-10-31 2002-10-31 Vehicle follow-driving control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002317767A JP2004149035A (en) 2002-10-31 2002-10-31 Vehicle follow-driving control device

Publications (1)

Publication Number Publication Date
JP2004149035A true JP2004149035A (en) 2004-05-27

Family

ID=32461073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002317767A Withdrawn JP2004149035A (en) 2002-10-31 2002-10-31 Vehicle follow-driving control device

Country Status (1)

Country Link
JP (1) JP2004149035A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006154967A (en) * 2004-11-25 2006-06-15 Nissan Motor Co Ltd Risk minimum locus generating device, and dangerous situation warning device using it
JP2006307798A (en) * 2005-05-02 2006-11-09 Toyota Motor Corp Running control device
JP2007133673A (en) * 2005-11-10 2007-05-31 Toyota Motor Corp Driver mentality judging device
WO2008126389A1 (en) * 2007-04-02 2008-10-23 Panasonic Corporation Safe driving assisting device
JP2010134829A (en) * 2008-12-08 2010-06-17 Toyota Motor Corp Course evaluation device
US20100324753A1 (en) * 2009-06-17 2010-12-23 Toyota Jidosha Kabushiki Kaisha Vehicle, system including the same, vehicle motion producing method
KR101011133B1 (en) 2008-09-04 2011-01-26 재단법인대구경북과학기술원 Method and apparatus for controlling a vehicle
JP2011159108A (en) * 2010-02-01 2011-08-18 Denso Corp Awakening support device
JP2018026023A (en) * 2016-08-11 2018-02-15 株式会社デンソー Recognition device and recognition method
JP2018058588A (en) * 2013-10-30 2018-04-12 株式会社デンソー Travel control device, server, and on-vehicle device
JP2019043405A (en) * 2017-09-04 2019-03-22 日産自動車株式会社 Drive assist method and drive assist apparatus
CN113370962A (en) * 2021-07-28 2021-09-10 上海电机学院 Emergency automatic parking system based on driver state
WO2022211318A1 (en) * 2021-04-02 2022-10-06 삼성전자 주식회사 Method and device for improving autonomous driving profile of autonomous vehicle

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4604683B2 (en) * 2004-11-25 2011-01-05 日産自動車株式会社 Hazardous situation warning device
JP2006154967A (en) * 2004-11-25 2006-06-15 Nissan Motor Co Ltd Risk minimum locus generating device, and dangerous situation warning device using it
JP2006307798A (en) * 2005-05-02 2006-11-09 Toyota Motor Corp Running control device
JP2007133673A (en) * 2005-11-10 2007-05-31 Toyota Motor Corp Driver mentality judging device
JPWO2008126389A1 (en) * 2007-04-02 2010-07-22 パナソニック株式会社 Safe driving support device
US8725309B2 (en) 2007-04-02 2014-05-13 Panasonic Corporation Safety driving support apparatus
EP2133851A1 (en) * 2007-04-02 2009-12-16 Panasonic Corporation Safe driving assisting device
WO2008126389A1 (en) * 2007-04-02 2008-10-23 Panasonic Corporation Safe driving assisting device
EP2133851A4 (en) * 2007-04-02 2011-10-12 Panasonic Corp Safe driving assisting device
CN101652802B (en) * 2007-04-02 2012-07-18 松下电器产业株式会社 Safe driving assisting device
KR101011133B1 (en) 2008-09-04 2011-01-26 재단법인대구경북과학기술원 Method and apparatus for controlling a vehicle
JP2010134829A (en) * 2008-12-08 2010-06-17 Toyota Motor Corp Course evaluation device
US20100324753A1 (en) * 2009-06-17 2010-12-23 Toyota Jidosha Kabushiki Kaisha Vehicle, system including the same, vehicle motion producing method
JP2011159108A (en) * 2010-02-01 2011-08-18 Denso Corp Awakening support device
JP2018058588A (en) * 2013-10-30 2018-04-12 株式会社デンソー Travel control device, server, and on-vehicle device
JP2018026023A (en) * 2016-08-11 2018-02-15 株式会社デンソー Recognition device and recognition method
WO2018030159A1 (en) * 2016-08-11 2018-02-15 株式会社デンソー Recognition device and recognition method
JP2019043405A (en) * 2017-09-04 2019-03-22 日産自動車株式会社 Drive assist method and drive assist apparatus
WO2022211318A1 (en) * 2021-04-02 2022-10-06 삼성전자 주식회사 Method and device for improving autonomous driving profile of autonomous vehicle
CN113370962A (en) * 2021-07-28 2021-09-10 上海电机学院 Emergency automatic parking system based on driver state

Similar Documents

Publication Publication Date Title
US10875545B2 (en) Autonomous driving system
CN107207013B (en) Automatic driving control apparatus, automatic driving control method, and program
JP6237685B2 (en) Vehicle control device
JP5888407B2 (en) Driving assistance device
JP6555647B2 (en) Vehicle driving support system and vehicle driving support method
JP2015219830A (en) Drive assist system
US11628860B2 (en) Autonomous driving system that can eliminate a system distrust state of the driver
JP6269360B2 (en) Driving support system and driving support method
US20080186154A1 (en) Method and Device for Driver Support
JP2017151782A (en) Automatic driving device
JP4182131B2 (en) Arousal level determination device and arousal level determination method
JP2017151703A (en) Automatic driving device
JP4946005B2 (en) Driver psychological state determination device and driver psychological state determination system
JP2004149035A (en) Vehicle follow-driving control device
CN110606081A (en) Moving body assistance system and moving body assistance method
US12033403B2 (en) Vehicle control device, vehicle control method, and storage medium
US20190147264A1 (en) Concentration determination apparatus, concentration determination method, and program for concentration determination
JP6648551B2 (en) Automatic driving device
JP2004306647A (en) Vehicular traveling control device
US20220306150A1 (en) Control device, control method, and storage medium
JP2007133588A (en) Driver&#39;s psychology judgment apparatus
US10766412B1 (en) Systems and methods for notifying other road users of a change in vehicle speed
WO2018163536A1 (en) Driver body condition recovery support device, method and program
EP4344636A1 (en) Driver state determination apparatus
US20240317275A1 (en) Vehicle control device for vehicle capable of autonomous driving and manual driving

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110