JP2004148732A - Apparatus for manufacturing molding of fiber-reinforced photo-hardening resin - Google Patents

Apparatus for manufacturing molding of fiber-reinforced photo-hardening resin Download PDF

Info

Publication number
JP2004148732A
JP2004148732A JP2002318024A JP2002318024A JP2004148732A JP 2004148732 A JP2004148732 A JP 2004148732A JP 2002318024 A JP2002318024 A JP 2002318024A JP 2002318024 A JP2002318024 A JP 2002318024A JP 2004148732 A JP2004148732 A JP 2004148732A
Authority
JP
Japan
Prior art keywords
light
fiber
reinforced
photocurable resin
bag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002318024A
Other languages
Japanese (ja)
Inventor
Hiromi Ishikawa
裕美 石川
Makiko Iida
牧子 飯田
Makoto Nakajo
誠 中条
Tetsuya Nakamura
哲也 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakura Rubber Co Ltd
Original Assignee
Sakura Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakura Rubber Co Ltd filed Critical Sakura Rubber Co Ltd
Priority to JP2002318024A priority Critical patent/JP2004148732A/en
Publication of JP2004148732A publication Critical patent/JP2004148732A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for manufacturing a molding of a fiber-reinforced photo-hardening resin having mechanical characteristics comparable with those of current moldings of fiber-reinforced thermosetting epoxy resins in a short time without a large installation. <P>SOLUTION: The apparatus is for manufacturing a molding of a fiber-reinforced photo-hardening resin by applying light to a reinforcing fiber impregnated with a photo-hardening resin in which a reinforcing fiber is impregnated with a radical-polymerizable photo-hardening resin and has a light-transmissive die, a light-transmissive bag arranged on the pricipal surface of the die to form a tightly closed space for housing the resin-impregnated reinforcing fiber, a vacuum exhausting means attached to the bag in such a way that the bag is communicated with the closed space and light sources arranged respectively on the sides of the die and bag. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、繊維強化光硬化樹脂成形品の製造装置に関する。
【0002】
【従来の技術】
従来、繊維強化プラスチックはガラスのような強化繊維の積層物等に熱硬化性樹脂を含浸した熱硬化性樹脂含浸強化繊維を金属型や耐熱性の樹脂型にセットし、熱硬化させることにより製造されている。
【0003】
しかしながら、このような繊維強化プラスチックの製造にはオートクレーブ、硬化炉等の大型設備が必要になる問題があった。
【0004】
一方、光硬化性樹脂は反応機構の相違によってラジカル重合型とカチオン重合型に大別されるが、紫外線のエネルギーを利用したラジカル重合型が主流になっている。ラジカル重合型の光硬化性樹脂は、硬化速度が速いという長所を有するものの、酸素による硬化阻害が生じる。このため、ラジカル重合型の光硬化性樹脂の用途が制限されていた。
【0005】
【発明が解決しようとする課題】
本発明は、大型な設備を必要とせずに従来の繊維強化熱硬化エポキシ樹脂成形品と遜色のない機械的特性を有する繊維強化光硬化樹脂成形品を短時間で製造することが可能な製造装置を提供しようとするものである。
【0006】
【課題を解決するための手段】
本発明に係る繊維強化光硬化樹脂成形品の製造装置は、強化繊維にラジカル重合型の光硬化性樹脂を含浸させた光硬化性樹脂含浸強化繊維に光を照射して繊維強化光硬化樹脂成形品を製造する装置であって、
光透過性型と、
前記光透過性型の主面に配置され、前記光硬化性樹脂含浸強化繊維が収納される密閉空間を形成するため光透過性バッグと、
前記光透過性バッグに前記密閉空間と連通するように取り付けられた真空排気手段と、
前記光透過性型および前記光透過性バッグの側にそれぞれ配置された光源と
を具備したことを特徴とするものである。
【0007】
本発明に係る別の繊維強化光硬化樹脂成形品の製造装置は、強化繊維にラジカル重合型の光硬化性樹脂を含浸させ、光を照射して繊維強化光硬化樹脂成形品を製造する装置であって、
光透過性型と、
前記光透過性型の主面に配置され、前記強化繊維が収納されると共に、前記光硬化性樹脂が注入される密閉空間を形成するため光透過性バッグと、
前記光透過性バッグに前記密閉空間と連通するように取り付けられた光硬化性樹脂の注入手段と、
前記光透過性バッグに前記密閉空間と連通するように取り付けられた真空排気手段と、
前記光透過性型および前記光透過性バッグの側にそれぞれ配置された光源と
を具備したことを特徴とするものである。
【0008】
【発明の実施の形態】
以下、本発明に係る繊維強化光硬化樹脂成形品の製造装置を図面を参照して詳細に説明する。
【0009】
(第1実施形態)
図1は、この第1実施形態に係る繊維強化光硬化樹脂成形品の製造装置を示す概略図である。
【0010】
図1中の1は、例えばポリカーボネートからなる板状の光透過性型である。例えばポリアクリル樹脂フィルムからなる光透過性バッグ2は、前記光透過性型1の主面にその主面周囲に接着された枠状シーラント材3を介して取り付けられ、前記光透過性型1と光透過性バッグ2の間に光硬化性樹脂含浸強化繊維を収納するための密閉空間4を形成している。
【0011】
排気管5は、前記光透過性バッグ2の端部に支持部材6を介して前記密閉空間4と連通するように取り付けられている。図示しない真空ポンプは、前記排気管5に連結されている。エッジブリーダ7は、前記密閉空間4内にその中に収納される光硬化性樹脂含浸強化繊維を押圧・固定するために配置されている。
【0012】
2つの光源、例えばメタルハライドランプ8、9は前記光透過性型1および前記光透過性バッグ2にそれぞれ対向するように配置されている。
【0013】
なお、前記光透過性型1はポリカーボネートに代えてガラス、またはポリアクリル樹脂等の他の光透過性プラスチックから作ってもよい。
【0014】
前記光透過性バッグ2は、ポリアクリル樹脂フィルムに代えて別の光透過性プラスチックフィルムから作ってもよい。
【0015】
前記光源は、メタルハライドランプに代えてハロゲンランプ、キセノンランプ、水銀ランプ等を用いてもよい。
【0016】
次に、前述した図1に示す製造装置を用いて繊維強化光硬化樹脂成形品の製造を説明する。
【0017】
まず、強化繊維にラジカル重合型の光硬化性樹脂を含浸させた光硬化性樹脂含浸強化繊維を作製する。この光硬化性樹脂含浸強化繊維10を光透過性型1上に下部離型紙11を介してセットする。つづいて、エッジブリーダ7により前記光硬化性樹脂含浸強化繊維10の上面周辺を押圧、固定した後、前記光硬化性樹脂含浸強化繊維10上面に上部離型紙12を配置する。ひきつづき、光透過性バッグ2を前記光透過性型1の主面にその主面周囲に接着された枠状シーラント材3を介して取り付け、前記光透過性型1と光透過性バッグ2の間に形成された密閉空間4に前記下部離型紙11、光硬化性樹脂含浸強化繊維10および上部離型紙12を収納する。
【0018】
次いで、図示しない真空ポンプを作動して前記密閉空間4内の空気を前記バッグ2の端部に支持部材6を介して取り付けられた排気管5を通して排気する。前記密閉空間4内の空気がほぼ全量排気された時点で2つのメタルハライドランプ8,9を点灯して前記光透過性型1および前記光透過性バッグ2を通して紫外線を光硬化性樹脂含浸強化繊維10の上下面に照射する。このとき、光硬化性樹脂含浸強化繊維10が収納される密閉空間4は空気が排気された酸素フリーの雰囲気で、その光硬化性樹脂含浸強化繊維10の光硬化性樹脂が光硬化されて繊維強化光硬化樹脂成形品が製造される。
【0019】
この後、前記密閉空間4内を大気圧に戻し、前記光透過性バッグ2を取り除き、繊維強化光硬化樹脂成形品を上下の離型紙12,11と共に取り出した後、これら離型紙12,11を剥離して繊維強化光硬化樹脂成形品を取り出す。
【0020】
前記強化繊維としては、例えばガラス繊維またはガラス繊維からなる織布、不織布を用いることができる。
【0021】
前記ラジカル重合型の光硬化性樹脂は、a)エステル、エーテルアクルレート、ウレタンアクルレート、エポキシアクリレート、アミノ樹脂アクリレート、アクリル樹脂アクリレート、不飽和ポリエステルなどの光重合性プレポリマー(オリゴマー);b)2−エチルヘキシルアクリレートのような一官能性、ネオペンチルグリコールジアクリレートのようなニ官能性、メリメチロールプロパントリアクリレートのような多官能性などの光重合成希釈剤(モノマー);およびc)ベンゾエーテル系などの光重合開始剤を主たる成分とする。
【0022】
以上、第1実施形態の製造装置によれば光透過性型1と光透過性バッグ2の間に形成された密閉空間4に光硬化性樹脂含浸強化繊維をセットした状態でその中の空気を排気して酸素フリーの雰囲気で、光源である2つのメタルハライドランプ8,9からの紫外線照射により前記光硬化性樹脂含浸強化繊維のラジカル重合型の光硬化性樹脂を光硬化することができる。その結果、ラジカル重合型の光硬化性樹脂を酸素による光硬化反応阻害を受けることなく、安定かつ短時間で硬化できるため、繊維強化熱硬化エポキシ樹脂成形品と遜色のない引張特性、曲げ特性を有する繊維強化光硬化樹脂成形品を製造することができる。
【0023】
また、第1実施形態の製造装置はオートクレーブ、硬化炉等の大型設備が不要であるため、小型化、低コスト化を実現できる。
【0024】
(実施例1)
まず、ガラスクロス(鐘紡社製商品名;KS1581)を6層重ね、このガラスクロス積層物をラジカル重合型の光硬化性樹脂であるビニルエステル樹脂(昭和高分子社製商品名;LC−720)に浸漬して含浸させ、ガラスクロス:ビニルエステル樹脂の重量比率が60:40のビニルエステル樹脂含浸ガラスクロス積層物を作製した。
【0025】
次いで、前述した図1に示す製造装置を用い、前記ビニルエステル樹脂含浸ガラスクロス積層物を2枚の剥離紙に挟んで光透過性型1と光透過性バッグ2の間に形成した密閉空間4内に収納し、図示しない真空ポンプを作動して前記密閉空間4内の空気を前記バッグ2の端部に支持部材6を介して取り付けられた排気管5を通して排気し、前記密閉空間4内の空気がほぼ全量排気された時点で2つのメタルハライドランプ8,9を点灯して前記光透過性型1および前記光透過性バッグ2を通して紫外線をビニルエステル樹脂含浸ガラスクロス積層物の上下面に10分間照射することにより6層ガラスクロス強化ビニルエステル樹脂成形品を製造した。
【0026】
得られた実施例1の6層ガラスクロス強化ビニルエステル樹脂成形品をJISK7054の引張試験に従って引張強度およびこの引張強度から計算される引張弾性率を求めた。その結果、実施例1の成形品は引張強度が24.5kgf/mm、引張弾性率が1700kgf/mmの値を示し、6層ガラスクロス強化熱硬化エポキシ樹脂成形品の引張強度が25.6kgf/mm、引張弾性率が1900kgf/mmと遜色のない引張特性を有することが確認された。
【0027】
(実施例2)
ガラスクロス(鐘紡社製商品名;KS1581)を8層重ね、このガラスクロス積層物をラジカル重合型の光硬化性樹脂であるビニルエステル樹脂(昭和高分子社製商品名;LC−720)に浸漬して含浸させて作製したガラスクロス:ビニルエステル樹脂の重量比率が60:40のビニルエステル樹脂含浸ガラスクロス積層物を用い、かつ2つのメタルハライドランプ8,9からの紫外線の照射時間を10分間にした以外、実施例1と同様な方法により8層ガラスクロス強化ビニルエステル樹脂成形品を製造した。
【0028】
得られた実施例2の8層ガラスクロス強化ビニルエステル樹脂成形品をASTMD790の曲げ試験に従って曲げ強度およびこの曲げ強度から計算される曲げ弾性率を求めた。その結果、実施例2の成形品は曲げ強度が21.4kgf/mm、曲げ弾性率が1750kgf/mmの値を示し、8層ガラスクロス強化熱硬化エポキシ樹脂成形品の曲げ強度が24.3kgf/mm、曲げ弾性率が1800kgf/mmと遜色のない曲げ特性を有することが確認された。
【0029】
(実施例3)
まず、ガラスクロス(鐘紡社製商品名;KS1581)を6層重ね、このガラスクロス積層物をラジカル重合型の光硬化性樹脂であるエポキシ樹脂(ダウ・ケミカル社製商品名;UVR−6110)に浸漬して含浸させ、ガラスクロス:エポキシ樹脂の重量比率が60:40のエポキシ樹脂含浸ガラスクロス積層物を作製した。
【0030】
次いで、前述した図1に示す製造装置を用い、前記エポキシ樹脂含浸ガラスクロス積層物を2枚の剥離紙に挟んで光透過性型1と光透過性バッグ2の間に形成した密閉空間4内に収納し、図示しない真空ポンプを作動して前記密閉空間4内の空気を前記バッグ2の端部に支持部材6を介して取り付けられた排気管5を通して排気し、前記密閉空間4内の空気がほぼ全量排気された時点で2つのメタルハライドランプ8,9を点灯して前記光透過性型1および前記光透過性バッグ2を通して紫外線をビニルエステル樹脂含浸ガラスクロス積層物の上下面に3分間照射することにより6層ガラスクロス強化エポキシ樹脂成形品を製造した。
【0031】
得られた実施例2の6層ガラスクロス強化エポキシ樹脂成形品をJISK7054の引張試験に従って引張強度およびこの引張強度から計算される引張弾性率を求めた。その結果、実施例3の成形品は引張強度が23.5kgf/mm、引張弾性率が1700kgf/mmの値を示し、6層ガラスクロス強化熱硬化エポキシ樹脂成形品の引張強度が25.6kgf/mm、引張弾性率が1900kgf/mmと遜色のない引張特性を有することが確認された。
【0032】
(実施例4)
ガラスクロス(鐘紡社製商品名;KS1581)を8層重ね、このガラスクロス積層物をラジカル重合型の光硬化性樹脂であるエポキシ樹脂(ダウ・ケミカル社製商品名;UVR−6110)に浸漬して含浸させて作製したガラスクロス:エポキシ樹脂の重量比率が60:40のエポキシ樹脂含浸ガラスクロス積層物を用い、かつ2つのメタルハライドランプ8,9からの紫外線の照射時間を3分間にした以外、実施例1と同様な方法により8層ガラスクロス強化エポキシ樹脂成形品を製造した。
【0033】
得られた実施例4の8層ガラスクロス強化エポキシ樹脂成形品をASTMD790の曲げ試験に従って曲げ強度およびこの曲げ強度から計算される曲げ弾性率を求めた。その結果、実施例4の成形品は曲げ強度が24.6kgf/mm、曲げ弾性率が1750kgf/mmの値を示し、8層ガラスクロス強化熱硬化エポキシ樹脂成形品の曲げ強度が24.3kgf/mm、曲げ弾性率が1800kgf/mmと遜色のない曲げ特性を有することが確認された。
【0034】
(第2実施形態)
図2は、この第2実施形態に係る繊維強化光硬化樹脂成形品の製造装置を示す概略図である。
【0035】
図2中の21は、主面に凹部22を有する例えばポリカーボネートからなるブロック状の光透過性型である。例えばポリアクリル樹脂フィルムからなる光透過性バッグ23は、前記光透過性型21の主面および凹部22に沿ってその主面周囲に接着された枠状シーラント材24を介して取り付けられ、前記光透過性型21と光透過性バッグ23の間に密閉空間25を形成している。
【0036】
排気管26は、前記光透過性バッグ23の右端部に前記密閉空間25と連通するように取り付けられている。図示しない真空ポンプは、前記排気管26に連結されている。ラジカル重合型の光硬化性樹脂が収容されたタンク27はその底部に注入管28が連結され、この注入管28は前記光透過性バッグ23の左端部に前記密閉空間25と連通するように取り付けられている。バルブ29は、前記注入管28に介装されている。
【0037】
2つの光源、例えばメタルハライドランプ30、31は前記光透過性型21および前記光透過性バッグ23にそれぞれ対向するように配置されている。
【0038】
なお、前記光透過性型21はポリカーボネートに代えてガラス、またはポリアクリル樹脂等の他の光透過性プラスチックから作ってもよい。前記光透過性型の形状は凹部を有するブロック状に限らず、凸部を有するブロック状、平板状にしてもよい。
【0039】
前記光透過性バッグ23は、ポリアクリル樹脂フィルムに代えて別の光透過性プラスチックフィルムから作ってもよい。
【0040】
前記光源は、メタルハライドランプに代えてハロゲンランプ、キセノンランプ、水銀ランプ等を用いてもよい。
【0041】
次に、前述した図2に示す製造装置を用いて繊維強化光硬化樹脂成形品の製造を説明する。
【0042】
まず、光透過性型21の凹部22内に強化繊維32を任意の層重ねてセットする。つづいて、光透過性バッグ23を前記光透過性型21の主面および凹部22内面に沿ってその主面周囲に接着された枠状シーラント材24を介して取り付け、前記光透過性型21と光透過性バッグ23の間に形成された密閉空間25に前記強化繊維32を収納する。
【0043】
次いで、図示しない真空ポンプを作動して前記密閉空間25内の空気を排気管26を通して排気する。前記密閉空間25内の空気がほぼ全量排気された時点で注入管28のバルブ29を開き、タンク27内に収容されたラジカル重合型の光硬化性樹脂を注入管28を通して前記密閉空間25に注入して光硬化性樹脂を前記強化繊維32に含浸させることにより前記密閉空間25内に光硬化性樹脂含浸強化繊維を作製する。つづいて、2つのメタルハライドランプ30,31を点灯して前記光透過性型21および前記光透過性バッグ23を通して紫外線を光硬化性樹脂含浸強化繊維の上下面に照射する。このとき、光硬化性樹脂含浸強化繊維が収納される密閉空間25は空気が排気された酸素フリーの雰囲気で、その光硬化性樹脂含浸強化繊維の光硬化性樹脂が硬化されて繊維強化光硬化樹脂成形品が製造される。
【0044】
この後、前記光透過性バッグ23を取り除き、繊維強化光硬化樹脂成形品を前記光透過性型21から取り出す。
【0045】
前記強化繊維および前記ラジカル重合型の光硬化性樹脂は、前記第1実施形態で説明したのと同様なものを用いることができる。
【0046】
以上、第2実施形態の製造装置によれば光透過性型21と光透過性バッグ23の間に形成された密閉空間25に強化繊維32をセットした状態でその中の空気を排気し、その密閉空間25内にタンク29、注入管28からラジカル重合型の光硬化性樹脂を注入することにより前記密閉空間25内に光硬化性樹脂含浸強化繊維を形成でき、この後の2つのメタルハライドランプ30,31からの紫外線照射において前記密閉空間25が酸素フリーの雰囲気で光硬化性樹脂含浸強化繊維のラジカル重合型の光硬化性樹脂を硬化できる。その結果、ラジカル重合型の光硬化性樹脂を酸素による光硬化反応阻害を受けることなく、安定かつ短時間で硬化できるため、繊維強化熱硬化エポキシ樹脂成形品と遜色のない引張特性、曲げ特性を有する繊維強化光硬化樹脂成形品を量産的に製造することができる。
【0047】
また、第2実施形態の製造装置はオートクレーブ、硬化炉等の大型設備が不要であるため、小型化、低コスト化を実現できる。
【0048】
【発明の効果】
以上詳述したように本発明によれば、大型な設備を必要とせずに従来の繊維強化熱硬化エポキシ樹脂成形品と遜色のない引張特性、曲げ特性のような機械的特性を有する繊維強化光硬化樹脂成形品を短時間で製造することが可能な製造装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る繊維強化光硬化樹脂成形品の製造装置を示す概略図。
【図2】本発明の第2実施形態に係る繊維強化光硬化樹脂成形品の製造装置を示す概略図。
【符号の説明】
1,21…光透過性型、
2,23…光透過性バッグ、
4,25…密閉空間、
5,26…排気管、
8,9,30,31…光源(メタルハライドランプ)、
10…光硬化性樹脂含浸強化繊維、
27…タンク、
28…注入管、
32…強化繊維。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus for manufacturing a fiber-reinforced photocurable resin molded product.
[0002]
[Prior art]
Conventionally, fiber-reinforced plastics are manufactured by setting a thermosetting resin-impregnated reinforcing fiber in which a thermosetting resin is impregnated into a laminate of reinforcing fibers such as glass in a metal mold or a heat-resistant resin mold, and then thermosetting. Have been.
[0003]
However, the production of such a fiber reinforced plastic has a problem that a large facility such as an autoclave and a curing furnace is required.
[0004]
On the other hand, photocurable resins are roughly classified into radical polymerization type and cation polymerization type according to the difference in reaction mechanism, and radical polymerization type using energy of ultraviolet rays is mainly used. The radical polymerization type photocurable resin has an advantage that the curing speed is high, but the curing is inhibited by oxygen. For this reason, use of the radical polymerization type photocurable resin has been limited.
[0005]
[Problems to be solved by the invention]
The present invention provides a manufacturing apparatus capable of manufacturing a fiber-reinforced photocurable resin molded product having mechanical properties comparable to those of a conventional fiber-reinforced thermosetting epoxy resin molded product in a short time without requiring large-scale equipment. It is intended to provide.
[0006]
[Means for Solving the Problems]
The apparatus for producing a fiber-reinforced photocurable resin molded product according to the present invention is a fiber-reinforced photocurable resin molding by irradiating light to a photocurable resin-impregnated reinforcing fiber obtained by impregnating a reinforcing fiber with a radical polymerization type photocurable resin. An apparatus for manufacturing an article,
Light transmissive type,
A light-transmitting bag disposed on the main surface of the light-transmitting mold to form a closed space in which the photocurable resin-impregnated reinforcing fibers are stored,
Vacuum evacuation means attached to the light-permeable bag so as to communicate with the closed space,
A light source disposed on the side of the light transmissive type and the light transmissive bag.
[0007]
Another apparatus for producing a fiber-reinforced photocurable resin molded product according to the present invention is an apparatus for impregnating a reinforcing fiber with a radical polymerization type photocurable resin and irradiating light to produce a fiber-reinforced photocurable resin molded product. So,
Light transmissive type,
A light-transmitting bag is disposed on the main surface of the light-transmitting type, and the reinforcing fibers are housed therein to form a closed space into which the photocurable resin is injected.
Injection means of a photocurable resin attached to the light-permeable bag so as to communicate with the closed space,
Vacuum evacuation means attached to the light-permeable bag so as to communicate with the closed space,
A light source disposed on the side of the light transmissive type and the light transmissive bag.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an apparatus for manufacturing a fiber-reinforced photocurable resin molded product according to the present invention will be described in detail with reference to the drawings.
[0009]
(1st Embodiment)
FIG. 1 is a schematic view showing an apparatus for manufacturing a fiber-reinforced photocurable resin molded product according to the first embodiment.
[0010]
Reference numeral 1 in FIG. 1 denotes a plate-shaped light transmitting type made of, for example, polycarbonate. For example, a light-transmitting bag 2 made of a polyacrylic resin film is attached to a main surface of the light-transmitting mold 1 via a frame-shaped sealant material 3 adhered around the main surface. A closed space 4 for storing a photo-curable resin-impregnated reinforcing fiber is formed between the light-transmitting bags 2.
[0011]
The exhaust pipe 5 is attached to an end of the light transmissive bag 2 via a support member 6 so as to communicate with the closed space 4. A vacuum pump (not shown) is connected to the exhaust pipe 5. The edge bleeder 7 is arranged in the closed space 4 for pressing and fixing the photo-curable resin-impregnated reinforcing fibers stored therein.
[0012]
Two light sources, for example, metal halide lamps 8 and 9 are arranged so as to face the light transmitting mold 1 and the light transmitting bag 2, respectively.
[0013]
The light transmitting mold 1 may be made of glass or another light transmitting plastic such as polyacrylic resin instead of polycarbonate.
[0014]
The light transmitting bag 2 may be made of another light transmitting plastic film instead of the polyacryl resin film.
[0015]
As the light source, a halogen lamp, a xenon lamp, a mercury lamp, or the like may be used instead of the metal halide lamp.
[0016]
Next, the production of a fiber-reinforced photocurable resin molded product using the production apparatus shown in FIG. 1 will be described.
[0017]
First, a photocurable resin-impregnated reinforced fiber in which a reinforced fiber is impregnated with a radical polymerization type photocurable resin is prepared. The photocurable resin-impregnated reinforcing fiber 10 is set on the light transmitting mold 1 via the lower release paper 11. Subsequently, the periphery of the upper surface of the photocurable resin-impregnated reinforcing fiber 10 is pressed and fixed by the edge bleeder 7, and then the upper release paper 12 is disposed on the upper surface of the photocurable resin-impregnated reinforcing fiber 10. Subsequently, the light-transmitting bag 2 is attached to the main surface of the light-transmitting mold 1 via a frame-shaped sealant material 3 adhered to the periphery of the main surface, and the light-transmitting bag 2 is disposed between the light-transmitting mold 1 and the light-transmitting bag 2. The lower release paper 11, the photocurable resin-impregnated reinforcing fiber 10, and the upper release paper 12 are stored in the closed space 4 formed in the above.
[0018]
Next, a vacuum pump (not shown) is operated to exhaust air in the closed space 4 through an exhaust pipe 5 attached to an end of the bag 2 via a support member 6. When almost all of the air in the closed space 4 has been exhausted, the two metal halide lamps 8 and 9 are turned on to emit ultraviolet light through the light-transmitting mold 1 and the light-transmitting bag 2 to photocurable resin-impregnated reinforced fibers 10. Irradiate the upper and lower surfaces. At this time, the enclosed space 4 in which the photocurable resin-impregnated reinforcing fiber 10 is stored is an oxygen-free atmosphere in which air is exhausted, and the photocurable resin of the photocurable resin-impregnated reinforcing fiber 10 is photocured to obtain a fiber. A reinforced photocurable resin molded article is manufactured.
[0019]
Thereafter, the inside of the closed space 4 is returned to the atmospheric pressure, the light transmissive bag 2 is removed, and the fiber-reinforced photocurable resin molded product is taken out together with the upper and lower release papers 12 and 11, and these release papers 12 and 11 are removed. Peel off and take out the fiber reinforced photocurable resin molded product.
[0020]
As the reinforcing fiber, for example, a glass fiber or a woven or nonwoven fabric made of glass fiber can be used.
[0021]
The radical-curable photocurable resin is a) a photopolymerizable prepolymer (oligomer) such as an ester, an ether acrylate, a urethane acrylate, an epoxy acrylate, an amino resin acrylate, an acrylic resin acrylate, and an unsaturated polyester; b) Photopolysynthetic diluents (monomers), such as monofunctional, such as 2-ethylhexyl acrylate, bifunctional, such as neopentyl glycol diacrylate, and polyfunctional, such as mermethylolpropane triacrylate; and c) benzoethers The main component is a photopolymerization initiator such as a system.
[0022]
As described above, according to the manufacturing apparatus of the first embodiment, in a state where the photo-curable resin-impregnated reinforcing fibers are set in the closed space 4 formed between the light-transmitting mold 1 and the light-transmitting bag 2, the air therein is blown. The radical polymerization type photocurable resin of the photocurable resin-impregnated reinforcing fiber can be photocured by irradiating ultraviolet rays from two metal halide lamps 8 and 9 as light sources in an oxygen-free atmosphere after exhaustion. As a result, the radical polymerization type photocurable resin can be cured stably and in a short time without being inhibited by the photocuring reaction due to oxygen, so that the tensile properties and bending properties are comparable to those of fiber-reinforced thermosetting epoxy resin molded products. A fiber-reinforced photocurable resin molded article having the same can be manufactured.
[0023]
In addition, the manufacturing apparatus according to the first embodiment does not require large-scale equipment such as an autoclave and a curing furnace, so that downsizing and cost reduction can be realized.
[0024]
(Example 1)
First, six layers of glass cloth (Kanebo Co., Ltd .; KS1581) are layered, and this glass cloth laminate is a vinyl ester resin (trade name of Showa Kogaku Co., Ltd., LC-720) which is a radical-curable photocurable resin. To impregnate it to produce a glass cloth laminate impregnated with vinyl ester resin having a weight ratio of glass cloth: vinyl ester resin of 60:40.
[0025]
Next, using the manufacturing apparatus shown in FIG. 1 described above, the closed space 4 formed between the light-transmitting mold 1 and the light-transmitting bag 2 with the vinyl ester resin-impregnated glass cloth laminate sandwiched between two pieces of release paper. The air in the closed space 4 is exhausted through an exhaust pipe 5 attached to the end of the bag 2 via a support member 6 by operating a vacuum pump (not shown). When almost all of the air has been exhausted, the two metal halide lamps 8 and 9 are turned on, and ultraviolet light is applied to the upper and lower surfaces of the glass cloth laminate impregnated with the vinyl ester resin through the light transmitting mold 1 and the light transmitting bag 2 for 10 minutes. Irradiation produced a 6-layer glass cloth reinforced vinyl ester resin molded product.
[0026]
The obtained six-layer glass cloth reinforced vinyl ester resin molded product of Example 1 was subjected to a tensile test according to JIS K7054 to determine a tensile strength and a tensile modulus calculated from the tensile strength. As a result, molded articles tensile strength 24.5kgf / mm 2 of Example 1, the tensile modulus represents the value of 1700kgf / mm 2, a tensile strength of 6-layer glass cloth reinforced thermoset epoxy resin molded article 25. 6 kgf / mm 2, tensile modulus was confirmed to have a 1900kgf / mm 2 and in no way inferior tensile properties.
[0027]
(Example 2)
Eight layers of glass cloth (Kanebo Corp .; KS1581) are laminated, and this glass cloth laminate is immersed in a vinyl ester resin (trade name of Showa Kogaku KK; LC-720) which is a photopolymerizable resin of radical polymerization type. And a glass cloth impregnated with a vinyl ester resin having a weight ratio of 60:40 of vinyl ester resin, and irradiating ultraviolet rays from two metal halide lamps 8 and 9 to 10 minutes. An 8-layer glass cloth reinforced vinyl ester resin molded product was produced in the same manner as in Example 1 except that the above procedure was repeated.
[0028]
The obtained eight-layer glass cloth reinforced vinyl ester resin molded product of Example 2 was subjected to a bending test according to ASTM D790 to determine a bending strength and a bending elastic modulus calculated from the bending strength. As a result, the molded product of Example 2 had a bending strength of 21.4 kgf / mm 2 and a flexural modulus of 1750 kgf / mm 2 , and the eight-layer glass cloth reinforced thermosetting epoxy resin molded product had a bending strength of 24. 3 kgf / mm 2, it was confirmed that the flexural modulus have 1800kgf / mm 2 and in no way inferior bending characteristics.
[0029]
(Example 3)
First, six layers of glass cloth (Kanebo Co., Ltd .; KS1581) are laminated, and this glass cloth laminate is applied to an epoxy resin (Dow Chemical Co., Ltd .; UVR-6110) which is a radical polymerization type photocurable resin. The glass cloth was impregnated and impregnated to prepare an epoxy resin impregnated glass cloth laminate having a weight ratio of glass cloth: epoxy resin of 60:40.
[0030]
Next, using the manufacturing apparatus shown in FIG. 1 described above, the epoxy resin-impregnated glass cloth laminate is sandwiched between two pieces of release paper to form a sealed space 4 formed between the light-transmitting mold 1 and the light-transmitting bag 2. The air in the closed space 4 is exhausted through an exhaust pipe 5 attached to the end of the bag 2 via a support member 6 by operating a vacuum pump (not shown). When almost all of the gas has been exhausted, the two metal halide lamps 8 and 9 are turned on, and the upper and lower surfaces of the vinyl ester resin-impregnated glass cloth laminate are irradiated with ultraviolet light for 3 minutes through the light transmitting mold 1 and the light transmitting bag 2. Thus, a six-layer glass cloth reinforced epoxy resin molded product was produced.
[0031]
The obtained six-layer glass cloth reinforced epoxy resin molded product of Example 2 was subjected to a tensile test according to JIS K7054 to determine a tensile strength and a tensile modulus calculated from the tensile strength. As a result, the molded product of Example 3 had a tensile strength of 23.5 kgf / mm 2 and a tensile modulus of 1700 kgf / mm 2 , and the six-layer glass cloth reinforced thermosetting epoxy resin molded product had a tensile strength of 25.5 kgf / mm 2 . 6 kgf / mm 2, tensile modulus was confirmed to have a 1900kgf / mm 2 and in no way inferior tensile properties.
[0032]
(Example 4)
Eight layers of glass cloth (manufactured by Kanebo Co .; KS1581) are laminated, and this glass cloth laminate is immersed in an epoxy resin (trade name of Dow Chemical Company; UVR-6110) which is a photopolymerization resin of radical polymerization type. Except that the weight ratio of the glass cloth: epoxy resin was 60:40, and the irradiation time of the ultraviolet rays from the two metal halide lamps 8 and 9 was 3 minutes. An eight-layer glass cloth reinforced epoxy resin molded product was manufactured in the same manner as in Example 1.
[0033]
The obtained eight-layer glass cloth reinforced epoxy resin molded product of Example 4 was subjected to a bending test according to ASTM D790 to determine a bending strength and a bending elastic modulus calculated from the bending strength. As a result, the molded product of Example 4 had a bending strength of 24.6 kgf / mm 2 and a flexural modulus of 1750 kgf / mm 2 , and the eight-layer glass cloth reinforced thermosetting epoxy resin molded product had a bending strength of 24. 3 kgf / mm 2, it was confirmed that the flexural modulus have 1800kgf / mm 2 and in no way inferior bending characteristics.
[0034]
(2nd Embodiment)
FIG. 2 is a schematic view showing an apparatus for manufacturing a fiber-reinforced photocurable resin molded product according to the second embodiment.
[0035]
Reference numeral 21 in FIG. 2 denotes a block-shaped light transmitting type made of, for example, polycarbonate having a concave portion 22 on the main surface. For example, a light transmissive bag 23 made of a polyacrylic resin film is attached along a main surface of the light transmissive mold 21 and a concave portion 22 via a frame-shaped sealant material 24 adhered around the main surface. A closed space 25 is formed between the transmissive mold 21 and the light transmissive bag 23.
[0036]
The exhaust pipe 26 is attached to the right end of the light transmissive bag 23 so as to communicate with the closed space 25. A vacuum pump (not shown) is connected to the exhaust pipe 26. An injection pipe 28 is connected to the bottom of the tank 27 containing the radical polymerization type photocurable resin, and the injection pipe 28 is attached to the left end of the light transmissive bag 23 so as to communicate with the closed space 25. Have been. The valve 29 is interposed in the injection pipe 28.
[0037]
Two light sources, for example, metal halide lamps 30 and 31 are arranged so as to face the light transmitting mold 21 and the light transmitting bag 23, respectively.
[0038]
The light-transmitting mold 21 may be made of glass or another light-transmitting plastic such as polyacrylic resin instead of polycarbonate. The shape of the light transmitting type is not limited to a block shape having a concave portion, and may be a block shape having a convex portion or a flat plate shape.
[0039]
The light transmissive bag 23 may be made of another light transmissive plastic film instead of the polyacryl resin film.
[0040]
As the light source, a halogen lamp, a xenon lamp, a mercury lamp, or the like may be used instead of the metal halide lamp.
[0041]
Next, the production of a fiber-reinforced photocurable resin molded product using the production apparatus shown in FIG. 2 will be described.
[0042]
First, the reinforcing fibers 32 are set in the concave portions 22 of the light transmissive mold 21 in an arbitrary layered manner. Subsequently, the light-transmitting bag 23 is attached along the main surface of the light-transmitting mold 21 and the inner surface of the concave portion 22 via a frame-shaped sealant material 24 adhered around the main surface. The reinforcing fibers 32 are stored in a closed space 25 formed between the light-transmitting bags 23.
[0043]
Next, the air in the closed space 25 is exhausted through the exhaust pipe 26 by operating a vacuum pump (not shown). When almost all of the air in the closed space 25 has been exhausted, the valve 29 of the injection pipe 28 is opened, and the radical polymerization type photocurable resin contained in the tank 27 is injected into the closed space 25 through the injection pipe 28. Then, the photo-curable resin is impregnated into the reinforcing fibers 32 to produce photo-curable resin-impregnated reinforcing fibers in the closed space 25. Subsequently, the two metal halide lamps 30 and 31 are turned on to irradiate the upper and lower surfaces of the photo-curable resin-impregnated reinforcing fibers with ultraviolet light through the light-transmitting mold 21 and the light-transmitting bag 23. At this time, the enclosed space 25 in which the photocurable resin-impregnated reinforcing fibers are stored is an oxygen-free atmosphere in which air is exhausted, and the photocurable resin of the photocurable resin-impregnated reinforcing fibers is cured, and the fiber-reinforced photocurable. A resin molded product is manufactured.
[0044]
Thereafter, the light-transmitting bag 23 is removed, and the fiber-reinforced light-cured resin molded product is removed from the light-transmitting mold 21.
[0045]
As the reinforcing fiber and the radical polymerization type photocurable resin, the same ones as described in the first embodiment can be used.
[0046]
As described above, according to the manufacturing apparatus of the second embodiment, while the reinforcing fibers 32 are set in the closed space 25 formed between the light-transmitting mold 21 and the light-transmitting bag 23, the air therein is exhausted, and By injecting a radical polymerization type photocurable resin into the closed space 25 from the tank 29 and the injection pipe 28, the photocurable resin-impregnated reinforcing fibers can be formed in the closed space 25. , 31 can cure the radical polymerization type photocurable resin of the photocurable resin-impregnated reinforcing fiber in an oxygen-free atmosphere in the closed space 25. As a result, the radical polymerization type photocurable resin can be cured stably and in a short time without being inhibited by the photocuring reaction due to oxygen, so that the tensile properties and bending properties are comparable to those of fiber-reinforced thermosetting epoxy resin molded products. A fiber-reinforced photocurable resin molded product having the same can be mass-produced.
[0047]
Further, the manufacturing apparatus of the second embodiment does not require large-scale equipment such as an autoclave and a curing furnace, so that downsizing and cost reduction can be realized.
[0048]
【The invention's effect】
As described in detail above, according to the present invention, a fiber-reinforced light having mechanical properties such as tensile properties and bending properties that is comparable to that of a conventional fiber-reinforced thermosetting epoxy resin molded product without requiring large-scale equipment. A manufacturing apparatus capable of manufacturing a cured resin molded product in a short time can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an apparatus for manufacturing a fiber-reinforced photocurable resin molded product according to a first embodiment of the present invention.
FIG. 2 is a schematic view showing an apparatus for manufacturing a fiber-reinforced photocurable resin molded product according to a second embodiment of the present invention.
[Explanation of symbols]
1,21 ... light transmissive type,
2,23 ... light transmissive bag,
4,25 ... closed space,
5, 26 ... exhaust pipe,
8, 9, 30, 31 ... light source (metal halide lamp),
10. Photocurable resin-impregnated reinforcing fiber,
27 ... Tank,
28 ... injection tube,
32 ... Reinforcing fiber.

Claims (2)

強化繊維にラジカル重合型の光硬化性樹脂を含浸させた光硬化性樹脂含浸強化繊維に光を照射して繊維強化光硬化樹脂成形品を製造する装置であって、
光透過性型と、
前記光透過性型の主面に配置され、前記光硬化性樹脂含浸強化繊維が収納される密閉空間を形成するため光透過性バッグと、
前記光透過性バッグに前記密閉空間と連通するように取り付けられた真空排気手段と、
前記光透過性型および前記光透過性バッグの側にそれぞれ配置された光源と
を具備したことを特徴とする繊維強化光硬化樹脂成形品の製造装置。
An apparatus for manufacturing a fiber-reinforced photocurable resin molded article by irradiating light to a photocurable resin-impregnated reinforced fiber in which a reinforced fiber is impregnated with a radical polymerization type photocurable resin,
Light transmissive type,
A light-transmitting bag disposed on the main surface of the light-transmitting mold to form a closed space in which the photocurable resin-impregnated reinforcing fibers are stored,
Vacuum evacuation means attached to the light-permeable bag so as to communicate with the closed space,
An apparatus for producing a fiber-reinforced photocurable resin molded product, comprising: a light source that is disposed on the side of the light-transmitting mold and the light-transmitting bag.
強化繊維にラジカル重合型の光硬化性樹脂を含浸させ、光を照射して繊維強化光硬化樹脂成形品を製造する装置であって、
光透過性型と、
前記光透過性型の主面に配置され、前記強化繊維が収納されると共に、前記光硬化性樹脂が注入される密閉空間を形成するため光透過性バッグと、
前記光透過性バッグに前記密閉空間と連通するように取り付けられた光硬化性樹脂の注入手段と、
前記光透過性バッグに前記密閉空間と連通するように取り付けられた真空排気手段と、
前記光透過性型および前記光透過性バッグの側にそれぞれ配置された光源と
を具備したことを特徴とする繊維強化光硬化樹脂成形品の製造装置。
A device for impregnating a reinforced fiber with a radical polymerization type photocurable resin and irradiating light to produce a fiber reinforced photocurable resin molded product,
Light transmissive type,
A light-transmitting bag is disposed on the main surface of the light-transmitting type, and the reinforcing fibers are housed therein to form a closed space into which the photocurable resin is injected.
Injection means of a photocurable resin attached to the light-permeable bag so as to communicate with the closed space,
Vacuum evacuation means attached to the light-permeable bag so as to communicate with the closed space,
An apparatus for producing a fiber-reinforced photocurable resin molded product, comprising: a light source that is disposed on the side of the light-transmitting mold and the light-transmitting bag.
JP2002318024A 2002-10-31 2002-10-31 Apparatus for manufacturing molding of fiber-reinforced photo-hardening resin Pending JP2004148732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002318024A JP2004148732A (en) 2002-10-31 2002-10-31 Apparatus for manufacturing molding of fiber-reinforced photo-hardening resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002318024A JP2004148732A (en) 2002-10-31 2002-10-31 Apparatus for manufacturing molding of fiber-reinforced photo-hardening resin

Publications (1)

Publication Number Publication Date
JP2004148732A true JP2004148732A (en) 2004-05-27

Family

ID=32461270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002318024A Pending JP2004148732A (en) 2002-10-31 2002-10-31 Apparatus for manufacturing molding of fiber-reinforced photo-hardening resin

Country Status (1)

Country Link
JP (1) JP2004148732A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009274248A (en) * 2008-05-13 2009-11-26 Toray Ind Inc Method for manufacturing frp
WO2016194676A1 (en) * 2015-06-03 2016-12-08 三菱重工業株式会社 Curing device for resin composite material, curing method, and molded resin article

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009274248A (en) * 2008-05-13 2009-11-26 Toray Ind Inc Method for manufacturing frp
WO2016194676A1 (en) * 2015-06-03 2016-12-08 三菱重工業株式会社 Curing device for resin composite material, curing method, and molded resin article
JP2016221929A (en) * 2015-06-03 2016-12-28 三菱重工業株式会社 Resin composite material curing device, curing method therefor and resin molding

Similar Documents

Publication Publication Date Title
JP4969717B2 (en) Manufacturing method of composite parts subjected to strong stress
US20140147676A1 (en) Composite material including fiber reinforced resin and lightweight core and production method and device therefor
US20080023130A1 (en) Tool and process for manufacturing pieces of composite materials outside an autoclave
US20140138872A1 (en) Method and device configured to produce at least two products including fiber reinforced resin
MXPA02012318A (en) Curing of a gel coat on a mold.
EP1687131B1 (en) Breather sheet for composite curing and method of its assembly
US5554667A (en) Method of forming a primary, wet-to-wet resin bond between at least two laminates, and a product by the process thereof
JPH05505352A (en) Manufacturing method for fiber-reinforced molded plastic products and preforms thereof using photocurable binder
JP2004148732A (en) Apparatus for manufacturing molding of fiber-reinforced photo-hardening resin
JP2001079855A (en) Mold for photo fabrication
JPH1166639A (en) Manufacturing device for optical recording medium and manufacturing method
JP2002079577A (en) Method for applying sheetlike reinforcing material
JP3302518B2 (en) Bonding method and device
JP4390251B2 (en) Top board
EP0558366B1 (en) Process of making a rigid multi-layer preform
JP2544169B2 (en) Reinforced resin laminated material and method of manufacturing the same
TW209872B (en)
JP2005067089A (en) Method for molding molded product
JP2560795B2 (en) Molded sheet and method for manufacturing molded article using the same
JP2006287830A (en) Method of manufacturing diaphragm for electro-acoustic transducer and diaphragm for electro-acoustic transducer
JP2800697B2 (en) Method and apparatus for manufacturing lens sheet
JP4967814B2 (en) Laminated body and method for producing the same
EP0898510B1 (en) Curable sheet material
WO2013171994A1 (en) Method for producing laminated sheet and device for producing laminated sheet
KR100460049B1 (en) Decoration sheet for automobile trim and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050928

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A02 Decision of refusal

Effective date: 20080115

Free format text: JAPANESE INTERMEDIATE CODE: A02